RU Research Fund

Ph.D. Student Grants 2019

RU Research Fund has awarded 8 PhD Student Grants og the total amount 42.720.000 ISK. Each grant is 420.000 ISK per month for max one year + 300.000 ISK travel grant.

Furthermore, RU has launched a special two-semester course for PhD students. The course addresses the following topics: How to write a good grant proposal to a competitive research fund, how to write and publish a scientific paper and write scientific English, ethics in science, statistical methods in science – best practice (field specific), and Instruction how to teach. Instructors are Dr. Kristján Kristjánsson, Director of RU Research Services and Dr. Rannveig S. Sigurvinsdóttir, Assistant Professor at School of Business, Psychology Department.

Ármann Gylfason: Lagrangian dispersion in mixed convective turbulence

Grant amount: 5.340.000 ISK

School: School of Science and Engineering

Doctoral Student: NN

Supervisor: Ármann Gylfason

Project title: Dreifni agna í blönduðu varmadrifnu iðustreymi

Short description of the project:

The goal of the project is to explore the transport properties of turbulent thermal convection by a detailed investigation of the Lagrangian properties of Rayleigh-Bénard convection and mixed convective flow systems where the thermal field is perturbed by mechanical forcing of turbulence. We will perform Lagrangian measurements of passive tracers and their temperature and inertial particles, both near solid boundaries and in the bulk flow. Our focus is on the coherent thermal plume structures of the buoyant field, and implications on passive and inertial particle dynamics, dispersion, and distribution of particles, heat and substances. Experiments will be performed in Laboratories at Reykjavik University and at CNRS ENS de Lyon. We apply Lagrangian Particle Tracking combined with Eulerian measurements of the velocity and temperature fields. In addition, we will develop a new Mie Scattering Imaging method, to simultaneously detect Lagrangian particle temperature and velocity, by measuring changes in the size of expanding polymer microcapsules.

The focus of the proposal lies in systematic adjustment of flow parameters, ranging from buoyancy driven flows to perturbations of isotropic flows. The results will be useful to the study of turbulence involving convection, occurring widely in natural and engineering flows. The results will provide a new perspective on convective turbulence and give us insight into deterministic and probabilistic structures that signifies turbulence.

Duncan Paul Attard: Ensuring Correctness in Distributed Systems

Grant amount: 5.340.000 ISK

School: School of Computer Science

Doctoral Student: Duncan Pal Attard

Supervisor: Adrian Francalanza (University of Malta)

Short description of the project:

Runtime Verification is becoming a widespread software verification technique used in cases where the model of the system under scrutiny is unavailable or infeasible to obtain. The technique perceives the system as a black box and can be used for post-deployment verification or in scenarios were system components are loaded dynamically. However, runtime verification has severe limits in terms of what can be monitored at runtime since its analysis is restricted to the current execution trace. We propose to investigate novel methods for extending these limits. In particular, we consider methods that rely on software replication to increase the runtime information available for analysis: multiple traces obtained via the observed execution of each system replica are exploited to obtain a more comprehensive view of system behaviour. Software replication arises naturally in distributed settings where systems typically consist of multiple components, making this an ideal area where our proposed research can be extensively applied.

Gylfi Þór Guðmundsson: The use cases of Anomaly Detection in Aerial Images

Grant amount: 5.340.000 ISK

School: School of Computer Science

Doctoral Student: NN

Supervisor: Gylfi Þór Guðmundsson

Short description of the project:

The use of autonomous unmanned aerial vehicles (UAV) is already growing into a blooming business

and is expected to grow to a revenue of 10 billion Euros in Europe by 2035. The UAV's fulfil a wide range of services but the primary sensing devices of the UAV is the video camera and imaging. Image processing is therefore an important research area in maximising the utility of the UAV revolution. The current state-of-the-art in almost all image processing is Deep-Learning (DL) but the DL algorithms are computationally demanding and thus require power-hungry hardware. For UAV's, where battery power is a scares resource, this is a serious issue and why the image processing is typically done post flight (off-line). The ability to do on-line image processing can however be of great benefit, both in regards to developing new types of applications and services but also in improving the current applications of the drones. We propose here a project with two primary goals: 1) The development of Anomaly Detection in aerial imagery and demonstrate how useful that ability is to solve a wide range of tasks; and 2) The adaptation and extensive evaluation of applying our software to state-of-the-art mobile graphical processing units (GPU) that can do the processing on-line.

Henning Arnór Úlfarsson: Combinatorial Exploration with Applications to Permutation Patterns and other Structures

Grant amount: 5.340.000 ISK

School: School of Computer Science

Doctoral Student: NN

Supervisor: Henning Arnór Úlfarsson

Short description of the project:

We propose to continue the development of a framework that can leverage domain-specific knowledge to discover and automatically prove theorems in several areas of mathematics. Combinatorial exploration is an experimental approach that rigorously derives structural results about mathematical objects. When a human has discovered the structure of an object, there are several tools which allow various properties of the object to be computed. However, the steps from the problem statement to the structure is often ad-hoc. This is the gap we propose to fill.

Using techniques from enumerative and analytic combinatorics, computer algebra, and algebraic geometry, we have implemented a prototype of our framework. By adding domain-specific knowledge from the field of permutation patterns to the prototype, we created an algorithm that has discovered new theorems and rediscovered results spanning dozens of papers in the literature.

We propose to integrate techniques from machine learning to enhance the prototype, as well as turning the output into a formal proof. We will allow the researcher to interact with the framework while running through a graphical user interface. Finally, we propose to add more strategies for reasoning about several combinatorial objects.

The outcome of this proposal training of young researchers, and publications in journals and presentations at international conferences. The implementations of these theoretical algorithms will be made available open source.

Kamilla Rún Jóhannsdóttir: Assessment of cognitive workload by understanding the heart's neurophysiology

Grant amount: 5.340.000 ISK

School: School of Business

Doctoral Student: NN

Supervisor: Kamilla Rún Jóhannsdóttir

Short description of the project:

Managing cognitive workload effectively is critical for many real world operational environments such as the cockpit or the automobile. Workload monitoring is most commonly done by measuring cardiovascular reactivity. However, our understanding of the psycho-physiological factors controlling the heart‘s reactivity to workload is limited, hindering us in moving forward to a reliable and meaningful measure of cognitive workload. The objective of the proposed research is to understand how cognitive workload as handled by the individual is reflected in the heart's reactivity by looking further at the temporal nature of the signal, individual differences, and the brain. The temporal nature of the cardiovascular signal will be captured using time- and frequency domain methods thereby reducing the use of averaging over time segments and matched against the relevant individual trait dimensions. Additional empirical work will be carried out to further understand the complex interaction between brain and peripheral physiology in regulating the heart‘s state. The ultimate goal of the proposed project is to model the heart‘s reaction to cognitive workload, taking into consideration the brains input and personality trait characteristics.

Mohammad Adnan Hamdaqa: A Framework for Building Secure and Reliable Proof-Carrying Blockchain Applications

Grant amount: 5.340.000 ISK

School: School of Computer Science

Doctoral Student: NN

Supervisor: Mohammad Adnan Hamdaqa

Project title: A Framework for Building Secure and Reliable Proof-Carrying Blockchain Applications

Short description of the project:

The goal of this project is to improve trust in blockchain technologies by filling the gap between smart contract developers and consumers. The project aims to facilitate the development of smart contracts by providing a high-level language on top of current smart contract frameworks. The proposed language is more abstract than existing smart contract specification languages (e.g., Solidity, Viper, or Serpent). It will help software developers architect and build blockchain applications, and generate target executable contracts with the accompanying safety and reliability proofs that will satisfy consumers' safety policies.

The project will take a model-driven engineering approach to develop a modelling language for smart contracts that is platform agnostic. Unlike any other model-driven code generator, our proposed code generation approach will employ a proof carrying code (PCC) mechanism that will enable us to automatically generate proofs of safety and attach certificates to the smart contract code, in order to enable any of the blockchain platforms to verify the smart contract code prior to its deployment.

Slawomir Marcin Koziel: Design-Oriented Computationally-Efficient Surrogate Modelling of High-Frequency Structures

Grant amount: 5.340.000 ISK

School: School of Science and Engineering

Doctoral Student: NN

Supervisor: Slawomir Marcin Koziel

Short description of the project:

Accurate evaluation of the system performance is a fundamental prerequisite to ensure reliability of design processes in any engineering discipline. In the design of high-frequency structures (RF/microwave circuits, antennas and antenna arrays, photonics, electromagnetic compatibility, etc.) it is normally performed using full-wave electromagnetic (EM) analysis, which is inherently expensive in computational terms when applied to realistic structures. Consequently, its straightforward application in design and modelling processes is challenging, especially when repeated simulations at different points of the design/modelling space are necessary, e.g., for parametric optimization, statistical analysis, robust or tolerance-aware design. For these tasks, fast yet reliable replacement models are indispensable. The majority of existing methods for constructing of replacement models, data-driven and surrogate-assisted, are of limited applicability in terms of dimensionality and ranges of parameter spaces. This research project aims at development of techniques for low-cost construction of fast surrogate models which can be utilized for real-world design and performance analysis tasks of RF, microwave, antenna, and photonic engineering, and closely related fields, e.g., high-frequency electronics, EM packaging, RFID, digital signalling, wireless powering.

Slawomir Marcin Koziel: Accelerated Surrogate-Assisted Design of High-Performance Microstrip Corporate Feeds Integrated with Array Apertures

Grant amount: 5.340.000 ISK

School: School of Science and Engineering

Doctoral Student: NN

Supervisor: Slawomir Marcin Koziel

Short description of the project:

Integration of devices, components, and modules is essential for miniaturization of modern electronics. At the digital end, integration is realized with semiconductor technology. For integrated antenna-feed modules at the high-frequency end of radars, communication, navigation, RFID, and medical systems, CAD tools and techniques (in addition to devices and materials) are essential for development. Microstrip antenna arrays are an important class of low-profile/-weight/-cost and embeddable antennas of spatial filtering/directive capabilities. Microstrip corporate feeds allow for better control of microwave signals and extendable for phased and reconfigurable solutions. Systematic, man-hour efficient design approaches have not been developed yet for integrated high performance array modules—contemporary antenna engineering means used in practice are not readily suitable for integrated microstrip arrays. This project aims reliable, comprehensive, computationally-efficient, and automated techniques (from prototyping stage up to validation) for design of low-sidelobe microstrip antenna arrays with integrated apertures and feeds.

Ph.D. Student Grants 2018

RU Research Fund has awarded 8 Ph.D. Student Grants. The total amount awarded is 42.720.000 ISK. The Fund received 9 applications. Below are information on the projects that receive grants from the Fund 2018. Each grant is 420.000 ISK salary support per month for max one year + 300.000 ISK travel grant.

List of RU Research Fund Projects:


Hlín Kristbergsdóttir

  • Grant amount: 5.340.000 ISK
  • Applicant: Hlín Kristbergsdóttir
  • School: School of Business
  • Supervisor: Jón F. Sigurðsson and Heiðdís B. Valdimarsdóttir
  • Project title: Impact of mental distress during pregnancy on child adverse outcomes
  • Short description of the project:
    Untreated mental illness during pregnancy is a serious problem affecting up to 20% of women during the perinatal period. This major public health issue impacts not only the mothers but their future children's health, emotional and cognitive development. Research on the association between perinatal distress and adverse child outcomes is limited (e.g. lack of diagnosis and distinguish between level of distress).

    The aim of this project is to examine impact of severity of prenatal mental distress on children's adverse outcomes at the age of 0-13 years and to explore potential moderators of this relationship. Data will be obtained from 437 children of mothers that were screened with symptoms of distress, diagnosed with major depression and/or anxiety disorder or found to be healthy. To test path models we will use latent growth trajectories models.

    We hypothesise that children exposed to prenatal distress are a) different at birth b) have different developmental history c) worse academic performances d) are more likely to show conduct and emotional problems than children not exposed. Also, that children born to mothers diagnosed with a mental disorder will have the worst outcomes.

    Further, that higher level of distress, single mothers, poverty and low maternal education will moderate the relationship. The results will have both theoretical and applied implications providing information on high risk children and beneficial for improving preventive measures in antenatal care.

María Kristín Jónsdóttir

  • Grant amount: 5.340.000 ISK
  • Applicant: María Kristín Jónsdóttir
  • School: School of Business
  • Doctoral Student: Ingunn S. Unnsteinsdóttir
  • Supervisor: María Kristín Jónsdóttir
  • Project title: Concussions among Icelandic athletes: Incidence, hypopituitarism and psychological health
  • Short description of the project:
    Study 1:
    This is a 12-month prospective study of concussions among male and female elite athletes in Iceland. Concussions represent a public health crisis and athletes are at a risk for repeated concussions. Sport injury rates are not uniform across cultures and national information on concussion incidence are needed. Incidence will be reported as number of concussion divided by athlete-exposure (AE) and reported by age, gender, sport, position played, and whether the concussion happened during practice or in a game.

    Study 2: Hypopituitarism (i.e., deficient pituitary functioning) and its relationship to concussion history, neuropsychology/IQ , mental health and quality of life in concussed female elite athletes will be studied. Published findings show that hypopituitarism is common in concussed athletes but only include data on seven female athletes. Yet, females are often said to be particularly vulnerable to concussions.

    There are three phases to this study: 1) a questionnaire will be sent to all Icelandic female elite athletes, active and retired (aged 18-45, N = 1160), in high concussion-risk sports. We will ask about concussion history, mental health/quality of life and concussion symptoms; 2) those with a self-reported history of concussion go to phase 2, which includes a more precise assessment of concussion history, IQ and neuropsychological testing. In phase 3, those with a clear history of concussion undergo hormone evaluation and a medical exam.

Luca Aceto


  • Grant amount: 5.340.000 ISK
  • Applicant: Luca Aceto
  • School: School of Computer Science
  • Doctoral Student: NN
  • Supervisor: Luca Aceto and Anna Ingólfsdóttir
  • Project title: Open Problems in the Equational Logic of Processes (OPEL)
  • Short description of the project:
    The overarching goal of this project is to solve some of the challenging open problems in the equational axiomatisation of behavioural equivalences over process calculi. The results obtained within this project will lead to an improved understanding of the power of the classic logic of equations in describing and reasoning about a ubiquitous class of computing systems, and will have impact on future work on algebraic methods in concurrency theory. The project will be the first one in concurrency theory (and perhaps in computer science as a whole) that uses large-scale on-line collaboration to solve problems in that field, thus providing a blueprint for future research cooperation.

Sigrún Ólafsdóttir

  • Grant amount: 5.340.000 ISK
  • Applicant: Sigrún Ólafsdóttir
  • School: School of Business
  • Supervisor: Jón F. Sigurðsson and Paul Salkovskis
  • Project title: Development and evaluation of a cognitive behavioural treatment for persistent physical symptoms that cause work disability
  • Short description of the project:
    Background: Persistent physical symptoms (PPS) that cannot be explained by organic diseases are common in all health care settings and have been associated with diminished quality of life, increased work disability and high health care use and cost. Conventional medical therapy is largely ineffective.

    There is evidence for a range of Cognitive-Behavioural treatments (CBT) but those are based on models that are specific to particular types of PPS which creates serious practical problems. Recently, we addressed these problems with a transdiagnostic cognitive behavioural model for PPS and novel hybrid transdiagnostic CBT (HT-CBT). Aims: To adapt the HT-CBT for PPS causing work disability and evaluate in a Randomised Controlled Trial comparing HTCBT to treatment as usual, analysing data using the intention to treat method. Participants will be 250 people with PPS seeking work rehabilitation from VIRK Vocational Rehabilitation Fund. Feasibility: We are cooperating with VIRK and pilot data shows that severe PPS are common among VIRK clients and they generally find psychological treatment acceptable. Originality and impact: The study adds considerably to existing knowledge as it responds to poor availability of cost-effective treatments for PPS and a clear need for a treatment suitable for work rehabilitation. If effective, the HT-CBT will have major public health implications as it will be manualized, easy to deliver and be more cost-effective than currently available treatments.

Hulda Kristín Magnúsdóttir

  • Grant amount: 5.340.000 ISK
  • Applicant: Hulda Kristín Magnúsdóttir
  • School: School of Law
  • Supervisor: Gunnar Þór Pétursson
  • Project title: Extending the borders of the Energy Union - the effects on Icelandic energy legislation
  • Short description of the project:
    Agreement on energy legislation in Iceland has been and still is underestimated, with a focus on the reservation made in Article 125 of the EEA Agreement in relation to property rights. I have divided my research into the following research questions: (I) What is the current scope of EEA energy law and how has it evolved since 1994? (II) How has EEA energy law and the provisions on free movement in the EEA Agreement impacted energy legislation in Iceland, in particular with reference to property rights? (III) To what degree have Iceland and Norway managed to modify EU energy law to their standpoint upon incorporation into the EEA Agreement and what were the underlying factors for the standpoint adopted by Iceland/Norway? (IV) What are the potential effects of the Energy Union on EEA energy law? To answer these research questions, I will be using legal dogmatics as an established research method in law to answer questions I, II and IV. To be able to answer question III, I will use a comparative socio-legal approach where I will be using quantitative research methods to determine what factors have impacted the standpoint adopted by Iceland and Norway.

    My research will provide a detailed insight into how Iceland and Norway have sought to protect their national interest and maintain their competitive edge, particularly in comparison to EU Member States in relation to energy.

Sigurður Ingi Erlingsson

  • Grant amount: 5.340.000 ISK
  • Applicant: Sigurður Ingi Erlingsson
  • School: School of Science and Engineering
  • Doctoral Student: NN
  • Supervisor: Sigurður Ingi Erlingsson
  • Project title: Analytical results for Shubnikov-de Haas oscillations in a two-dimensonal electron gas with spin-orbit and Zeeman coupling
  • Short description of the project:
    Here we derive an analytical expression for the Shubnikov-de-Haas (SdH) oscillations in a two-dimensional electron gas with both Rashba and Dresselhaus spin-orbit interactions of arbitrary strength in the presence of Zeeman coupling. We first obtain accurate approximate spin-split Landaulevel eigenenergies and from these an exact trace formula for the density of states, which is directly connected to the magnetoresisitivity of the system. Our analytical results hold for a wide range of Rashba and Dresselhaus couplings and agree well with the numerical calculations, even for very high Landau level index. This allows us to analytically describe SdH oscillations and make predictions on how the Zeeman coupling modifies the condition for the absence of beatings.

    We propose how our method can be used to improve the analysis of existing experimental data for semiconductors with strong spin-orbit coupling.

Andrei Manolescu 

  • Grant amount: 5.340.000 ISK
  • Applicant: Andrei Manolescu
  • School: School of Science and Engineering
  • Doctoral Student: NN
  • Supervisor: Andrei Manolescu and Sigurður Ingi Erlingsson
  • Project title: Thermoelectric transport in core/shell nanowires
  • Short description of the project:
    In this proposal, we describe our intended research on the thermoelectric and heat transport characteristics of semiconductor core/shell nanowires, beyond the linear regime, by computational methods. The cross section of such a nanowire can de circular or polygonal. We shall study the effect of the nanowire shape and length on the thermoelectric transport. We shall investigate the possibilities to control the thermoelectric efficiency with magnetic or electric fields, for specific geometries, and for specific temperature domains.

Andrei Manolescu 

  • Grant amount: 5.340.000 ISK
  • Applicant: Andrei Manolescu
  • School: School of Science and Engineering
  • Doctoral Student: NN
  • Supervisor: Andrei Manolescu
  • Project title: Majorana states in core/shell nanowires
  • Short description of the project:
    Majorana states are quasiparticles which can be created in nanosystems, reminding of the elementary particles with the same name predicted in 1937. Model calculations predicted that such states can be obtained at the two ends of a semiconductor nanowire in an induced superconducting state and recent experimental investigations gave some hints on their existence. Core/shell nanowires are radial heterostructures with polygonal cross section, i.e. prismatic, very interesting for Majorana physics. Electrons with low energy can be localized at the corners (edges) and can create multiple Majorana states at each nanowire end.

    The goal of the present research proposal is to investigate, by theoretical and computational means, the implications of the core/shell prismatic geometry on the Majorana states.


Was the content helpful? Yes No