

Extending STPA Hazard Analysis Guidance to Interactions with Human

TOYAMA Keisuke, MIHARA Yukihiro

Software Reliability Enhancement Center Information-technology Promotion Agency, Japan **KAWANO** Takashi

Railway Operation Headquarters, East Japan Railway Company

KANEMOTO Shigeru

The University of AIZU

Contents

- Background and activities at IPA/SEC
- A motivating accident case
- Approach for an augmented guidance
- Analysis for a safety design
 - in two cases
- Results
- Conclusion

IPA and IPA/SEC

Information-technology Promotion Agency, Japan (IPA)

- Incorporated Administrative Agency Working with the Ministry of Economy, Trade and Industry (METI)
- **Established** in 1970, reorganized in 2004
- Realize a "Reliable IT Society"
- Software Reliability Enhancement Center (SEC)
 - Founded : Oct. 1, 2004
 - **Mission :** IPA/SEC contributes to better living with IT in a smart society by implementing safety and security in systems

Background and activities at IPA/SEC

- Growing expectations to STAMP/STPA for software controlled complex systems
 - Risks or vulnerabilities in software centric systems can be effectively analyzed using STPA
 - Safety as well as reliability weighs heavily with advances of systems using automatic control

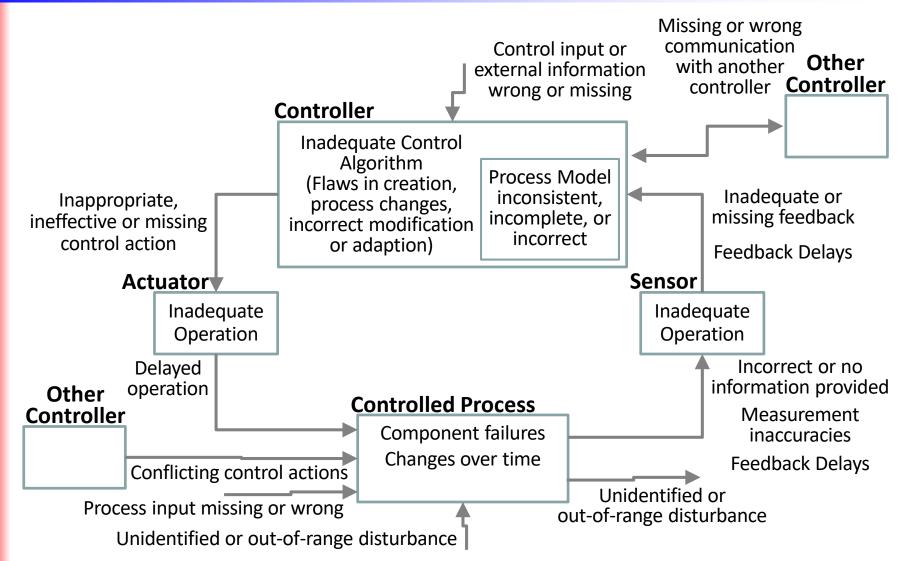
IPA/SEC is promoting STAMP as a design tool or an evaluation method for advanced safety standard

Utilizing STPA more efficiently to software centric systems with human interactions

To get "hint words" that identify HCFs (Hazard Causal Factors)

- Help find more HCFs that are not foreseen
- For analysts who are not experts of the target domain
- Human errors of operators should be analyzed

Characteristics of systems that require safety analysis



Human, machine and organization operate cooperatively in critical socio-tech systems

- Advanced automated manufacturing site using robots
- Aircrafts and trains with autopilot systems, Near-autonomous cars
- Remote controlled or highly automatized construction equipment
- New, unpredictable risks may occur by mutual interactions between human, machine with software and organization
- Existing guidance is rather dedicated to machines and generic
- Additional guidance for potential hazard causal factors by human and organization to accidents would be useful

Classification of Control Flaws to Hazards - A guidance for identifying HCFs -

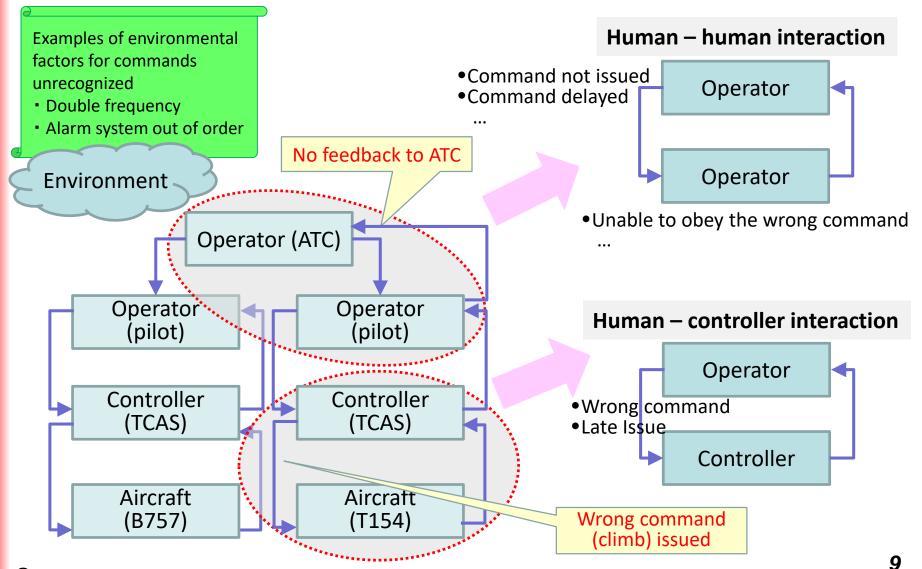
A motivating accident case

Conflicts in rules and improper actions in organizations caused an aviation accident

Überlingen mid-air collision

- On 1 July 2002, a passenger jet (T154) and a cargo jet (B757) collided in mid-air over the southern German town.
 All 71 passengers and crew members aboard were killed
- The main cause of the collision :
 - A number of shortcomings on the part of the Swiss air traffic control service in charge of the sector involved, and
 - > Ambiguities in the procedures regarding the use of TCAS, the onboard aircraft collision avoidance system

Analysis for the accident case



Causes of the accident

- Single man operation, Downgraded Radar/ Phone System, Dual Frequency Responsibility, Alarm system out of operation
 - Unaware of the near-miss, which delayed prompt recovery
- After the pilots were alerted to the collision, TCAS instructed B757 pilot to descend and T154 pilot to climb.
 However, T154 had already been instructed by the ATC (air traffic controller) to descend
- ATC had no information about TCASs' instructions and T154 failed to notice ATC of its behavior because of a frequency trouble
 - > ATC was not aware that the two aircrafts were both descending

Control structure and HCFs

©2017, IPA

Approach for an augmented guidance

Human information model and error type classification

• Exhaustivity

Like the four types for UCAs (Not providing / providing / too early ... / too long ...)

Systems view for human

- Biological characteristic
- Physiological characteristic
- Situation awareness

Establish "Hint words" for human-controller from small cases

Expand them to human and organization's interaction

Adding Human Factors to Hazard Analysis - Human Controller model -

Existing human information processing model and human error classification

 Kuroda's human information processing model, Endsley's situation awareness model, ...

"Perception", "Comprehension", "Decision", "Action"

"Memory", "Knowledge", "Experience", "Emotion"

m-SHEL model

"Software", "Hardware", "Environment", "Liveware", "Management"

Error classification for human HCFs

Classification of human errors

	Omission	Commission
Perception	Overlook, Fail to hear	Misseeing, Mishearing
Comprehension	Lack of confirmation/ awareness	Underestimation
Projection	Forget remembering Lack of prediction/consideration	Misunderstanding Wrong/under estimation
Decision	Wrong decision, Sabotage	Lapse, Deviation
Action	Forget to do	Slip, Mistake, Violation

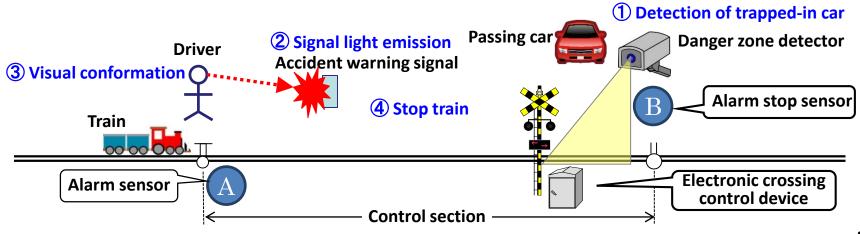
Contributing Factors

- For individual
- From background

IPA

Contributing Factors - to conceive human error causes -

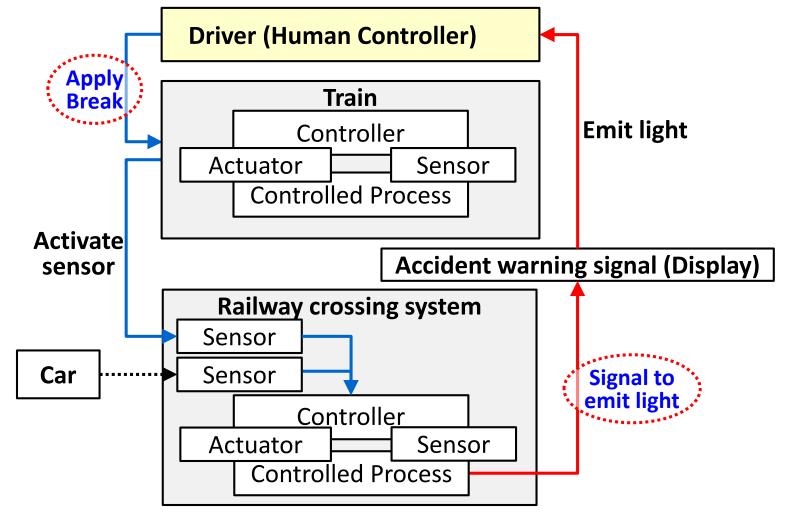
Individual factor		Background factor		
Pathological Pharmaceutical		Software	Defects in requirements	
	Fatigue	Hardware	Defects in equipment	
Physiological	Fatigue, Circadian rhythm,	Environment	Noise, habit,	
Physical	User interface,	Liveware	Mis/inadequate communication,	
	Impatience,			
Psychological	Carelessness,	Management	Problems in organization,	
Psychosocial	Psychological stress,		Commitment,	


Analysis for a safety design (1)

Detection of obstacles trapped in a railroad crossing

 A system or function that notifies train driver of obstacles (cars) trapped in a railroad crossing in order that the driver stops the train to ensure safety of the crossing

		Behavior of equipment	Human process or operation	notes
1	occurrence	Detection of a car passing	—	
2	action	The accident warning signal emits light	The driver recognizes the signal	Visual observation
3	action	— // —	The driver makes a break	Manual break


Identifying Safety Constraints

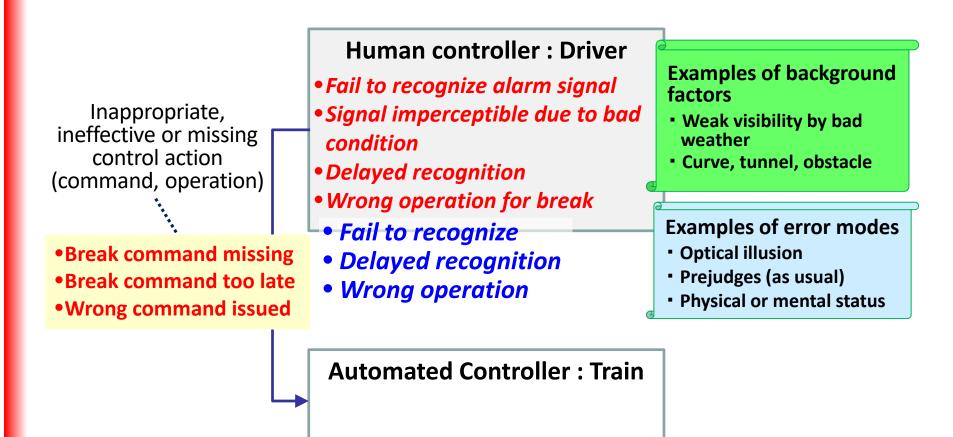
Loss	Hazard	Safety Constraints
(A1)A train collides with a"trapped-in" carThe driver of the	(H1) The accident warning signal does not emit light when "trapped-in" has occurred	(SC1) The accident warning signal emits light when "trapped-in" has occurred
 The driver of the collided car is killed or wounded Crews and passengers of the train are killed or wounded 	(H2) The accident warning signal stops emitting light when "trapped-in" has occurred	(SC2) The accident warning signal does not stop emitting light when "trapped-in" has occurred
	(H3) The driver does not visually confirm the light emission of the accident warning signal	(SC3) A crew is able to confirm visually the light emission of the accident warning signal

Preparation 2

Control structure

Step 1

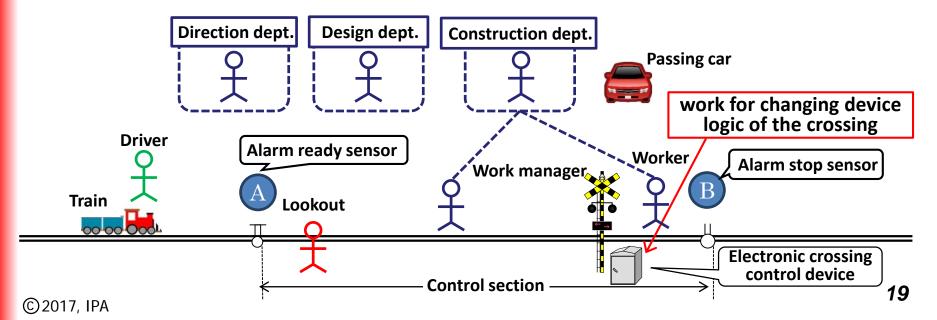
Identifying UCAs


Control action	Not providing	Providing causes Hazard	Too early / late	Stop too soon
(Detector → Warning signa Emit light	(UCA1) The accident warning signal does not emit light when "trapped-in" occurred	Stop train by emitting light when "trapped-in" does not occur	(UCA2) The accident warning signal emits light too late when "trapped-in" occurred	
UCA with hun	nan			••••
(Driver → Train Operation to make break		Stop train by emitting light when "trapped-in" does not occur	(UCA4) The train does not come to rest in time	(UCA4) ←

. . .

Step 2 Identifying HCFs

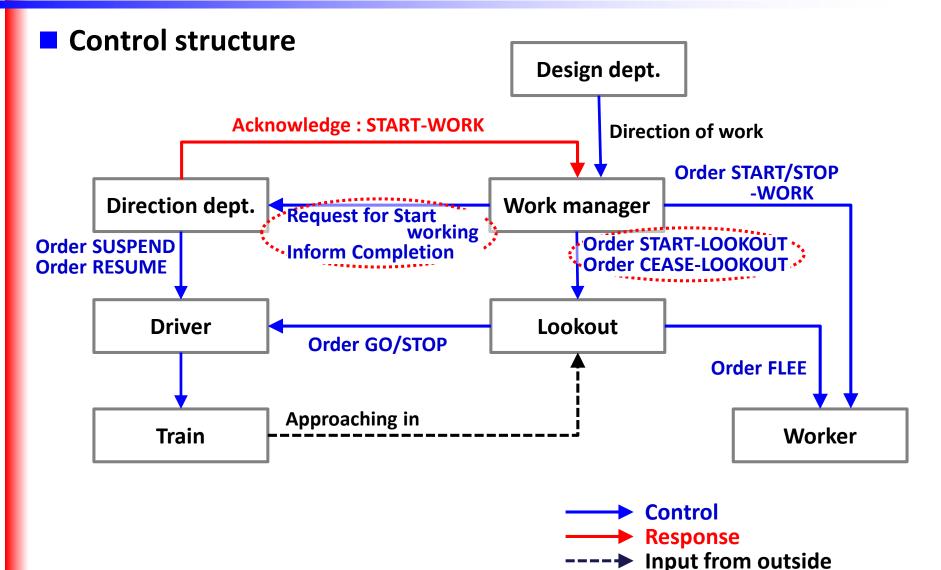
Obtained hazardous scenarios leading to the UCA for human


Application to another case

- Analysis for a safety design (2) -

Maintenance work of railway crossing system

	Step	Operation of the crossing	human	check
1	Design	_	 Logic development Preparation of charts, procedures 	Checked by human (double check, screening, approval,)
2	Construction	Temporary suspend	Cable wiring	Checked by human (visual observation, repetition,)
3	Test	Temporary suspend	 Simulation 	
4	Operation	Operation with the new logic	 (observation) 	

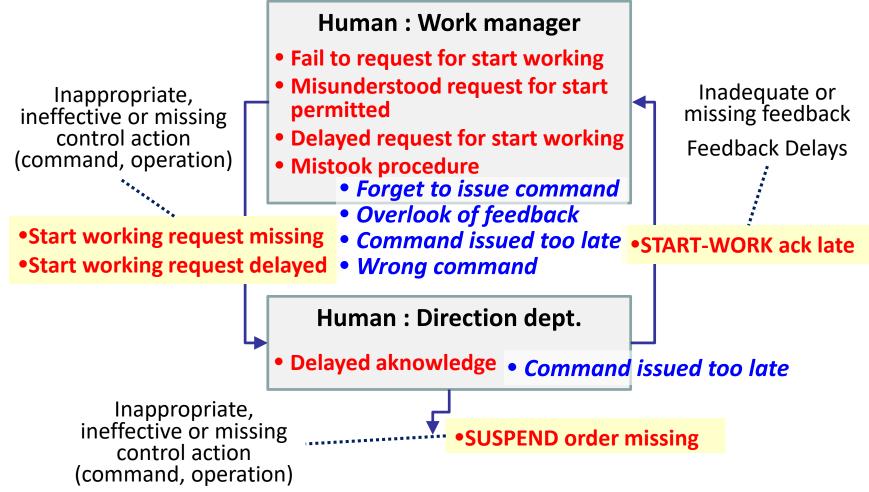

Identifying Safety Constraints

Loss	Hazard	Safety Constraints
(A1) A worker, vehicle and materials collide with a train	(H1) The train proceeds when maintenance in progress	(SC1) The train shall not proceed into the control section under work
	(H2) The work is not suspended when train proceeds into the control section under work	(SC2) The work shall be suspended when train proceeds into the control section under work

. . .

Preparation 2

Step 1


Identifying UCAs

Control action	Not providing	Providing causes Hazard	Too early / late	Stop too soon
(Work manager → Direction dept.) Request for Start working	(UCA1) Train proceeds because SUSPEND order has not been issued, assuming the work has not started	-	(UCA2) Train proceeds because SUSPEND order is issued too late	-
		•••		
(Work manager → Lookout) Order START-LOOKOUT	(UCA3) Train proceeds into when Lookout does not watch	-	(UCA4) Train proceeds into when Lookout goes effective is too late	-

Step 2 Identifying HCFs

Obtained hazardous scenarios leading to the UCA for human

Identified hazard scenarios

HCF/ Scenario

UCA1: Train proceeds because SUSPEND order not issued due to absence of application for start working

Scenario1 Forget to submit application for start working

Scenario2 START-WORK order is issued without permission Not to wait permission or make a wrong guess of permission obtained

UCA2: Application for start working is too late, thus order SUSPEND too late

Scenario3 Wrong order of work procedure steps is taken

UCA3: WORK-COMPLETE is noticed despite work in progress, and order RESUME is issued

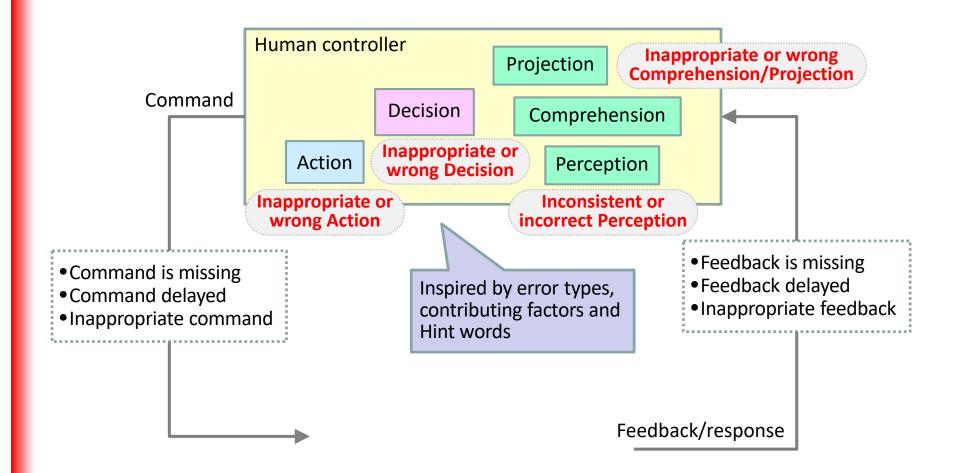
- Scenario4 Presumed completed (finish time has come, etc.) and inform before actual finish
- Scenario5 Forget/ignore the cleanup time and notice before actual finish

Verification: effectiveness in case study

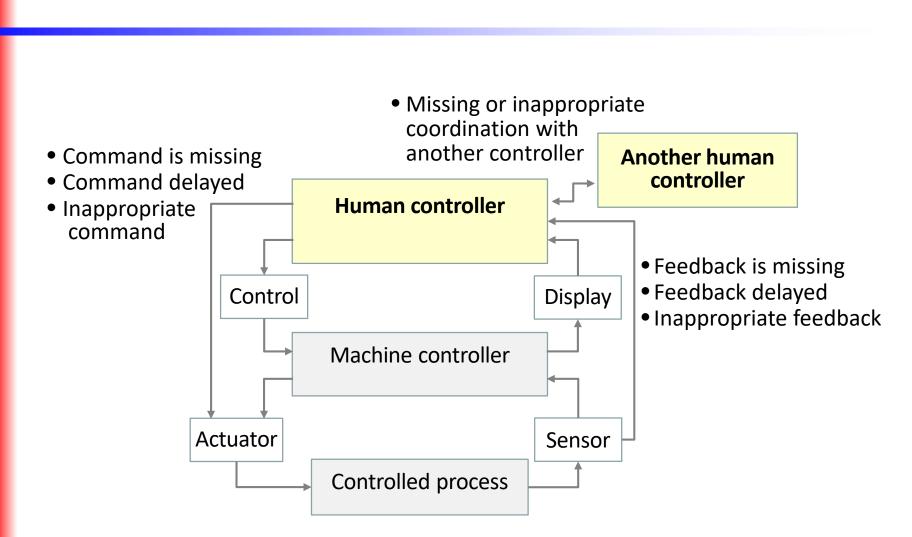
The two cases are practical applications at JREast ("trapped-in detection" and "maintenance at railway crossing")

Identified causes of unsafe control

		Failures/	Design flaws	Hur	nan
	All HCFs	Sensing errors		Director	Directee
CASE 1 (Trapped-in)	23	15	4	4	0
CASE 2 (maintenance)	40	1	0	29	10


- The identified HCFs relating to human are derived with "Hint words" proposed
- Experts from the train system company evaluated this result as "These HCFs are practically exhaustive"

Obtained "Hint words"



		Hint words			
	0	Presume the command unnecessary			
)mis	Forget to issue the command	Maintenance		
	mission	Suppose the command has been issued			
₽.		Operation is skipped due to an overlook of feedback	Trapped-in		
Director		Issue a wrong command	Trapped-in		
or	Com	Command is issued too late (Forget and remember the command)	Trapped-in		
	ommissio	The meaning of command mistaken			
	sion	Issue command to a wrong directee			
	د	Issue command inappropriately (fail to confirm)	Maintenance		
	On	Unable to receive the command			
	Omission	Unable to execute the command			
Dire	ion	Forget to feedback the result	Collision		
Directee	Con	Executed behavior is not what was ordered			
P	Commiss	Execution is delayed (Forget and remember the command)			
	sion	Unable to act because the command is wrong	Collision		

Proposed human entity for HCF guidance

Augmented HCF guidance

Conclusion and Future work

Augmentation for control flaw guidance

- Human Controller entity in control loop model
- Classification of human error types and Contributing factors
- "Hint words" to identify as many HCFs originated by human

Analysis for organizations

Thank you for your attention