Comparing Reliability Assessment in Transmission System Operation with the STAMP Model

ESW Conference 2017

Samuel Perkin & Íris Baldursdóttir

samuelp@landsnet.is & iris@landsnet.is
1. Power system reliability
2. The EU FP7 GARPUR project
3. STAMP model of Landsnet
4. Comparing/Combining STAMP and GARPUR
5. Conclusion
Power system reliability

Power systems are:

- Critical infrastructure
- Expected to be approx. 100% reliable
- Complex networks of many machines/components
- Mostly outside and unsupervised
- Becoming harder to control (due to wind, solar, electric vehicles, more automation)

Source: Landsnet
The N-1 philosophy

After the loss of any single major grid element, the system must continue to operate without violating Operational Security Limits

See: GARPUR Consortium (2014) *D1.2 Current practices, drivers and barriers for new reliability standards*
TSOs are complex organisations

TSOs: Transmission System Operators (e.g. Landsnet)
When N-1 isn’t enough

- Many radial regions are not N-1 secure

- New lines would fail at the same time as existing lines (large investment for no gain in reliability)

- Installed microgrid system to improve reliability (by reducing outage duration)

- Still not N-1 secure, but more reliable

- Need new ways to quantify/justify such investments
Landsnet and GARPUR

- Landsnet operates the Icelandic transmission system
- Part of the GARPUR project on: developing probabilistic reliability management approaches.
- EU FP7 project (funding: 10.9 M€)
- Justification: Growing risk, aging grids
- Why Landsnet?
Select and assess a **dynamic** set of contingencies based on their **risk** (*discarding principle*)

Perform **socio-economic impact assessment** for each contingency

Find **decisions** that **maximise social welfare** whilst guaranteeing a high probability of meeting **acceptability constraints**
Probabilistic accounting of systemic and human control errors
Requires understanding of ‘all that may go wrong’ to estimate residual risk
– how do we identify out-of-model system trajectories?
Socio-economic impact assessment

• Variety of end-users

• All affected differently

• Need to convert **energy not served** into **interruption costs**

• Also need to consider **environmental costs** and the **costs of control actions among others**

Acceptability constraints

Technical constraint example:
• voltage level constraints
• component loading limits
• Frequency limits

Social constraint examples:
• reliability should be spread equitably
• human safety shouldn’t be put at risk
• Fair market access for renewables

Others:
• Constraints resulting from STPA?
GARPUR at Landsnet

Real-time (minutely) measures on:

- System risk
- Reliability
- Various technical constraints
- Probability of faults
- System response predictions
Probabilistic methods in practice

Risk map: differentiate between high-risk faults.

Probability estimation errors greatly impact risk estimates of HILP events (A)

Probability estimates depend upon models of threats/hazards

Difficult to validate probability estimates - especially when conditional on many factors!
STAMP model of Landsnet

- Main features of the Landsnet model
- Applications/purpose
- Main accident/loss = service outages and their implications
- Insights (multiple hazards in one context may have an underlying cause in another)
- Aim to diagnose hazards as processes, rather than as events. Define operational constraints to prevent hazards.

Figure Source: Björnsdóttir, S.H. (2015) Comparison of Risk Analysis Methodologies in an Electrical Grid, European STAMP Workshop, Amsterdam
STAMP model of control room operator

- Captures relationship between human, exogenous, cyber and physical systems.
- Aim of system operation is to achieve socio-economic optimal levels of reliability.
- Prior decisions (investment, maintenance, planning) are equivalent to process inputs from RT perspective
- Imperfection in physical and cyber systems are learned by operators (experience + intuition).
- Systems and models are highly complex, difficult to define/estimate reliability

Figure adapted from: Leveson, N. (2004), *A new accident model for engineering safer systems*. Safety science, 42(4), 237-270.
Linking STAMP to GARPUR

• Reliability assessment:
 • Is the present system state acceptable?

• Reliability control:
 • Can we improve the present state?

• Need to capture control failure in probabilistic models

• GARPUR relies on the physical model, and its usefulness depends on the design of its interface (making meaningful risk visualisations)

See appendix for high-level STAMP diagrams of short-term operational planning and control processes
Comparing STAMP and GARPUR

<table>
<thead>
<tr>
<th>STAMP/STPA</th>
<th>GARPUR at Landsnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative</td>
<td>Quantitative</td>
</tr>
<tr>
<td>Process-driven</td>
<td>Event-driven</td>
</tr>
<tr>
<td>Expert informed</td>
<td>Data informed</td>
</tr>
<tr>
<td>“How can we avoid hazardous states?”</td>
<td>“How can we improve reliability?”</td>
</tr>
<tr>
<td>Creates boundaries for operation</td>
<td>Assesses performance within boundaries</td>
</tr>
<tr>
<td>(safety constraints)</td>
<td></td>
</tr>
<tr>
<td>Capable of assessing/controlling HILP events</td>
<td>Highly sensitive to HILP events</td>
</tr>
<tr>
<td>Used in anticipation of operation</td>
<td>Used by operators</td>
</tr>
</tbody>
</table>
Both approaches in harmony

• Both methods provide different approaches to assessing and managing system risk

• STAMP/STPA can **identify new hazards** that may be missed by GARPUR

• GARPUR can **evaluate controls and constraints** proposed by STAMP/STPA

• GARPUR may provide a bridge between STAMP/STPA and real-time operators

Note: ‘STPA’ and ‘GARPUR’ in the diagram can be substituted for any top-down and bottom-up approaches, respectively
On acceptability constraints

- STAMP/STPA provides controls (constraints) to manage hazards
- Some may be formulated as acceptability constraints (particularly for HILP events)
- Can measure impact of controls on overall system risk
- Can provide real-time feedback to Operators/Specialists on compliance

Note: ‘STPA’ and ‘GARPUR’ in the diagram can be substituted for any top-down and bottom-up approaches, respectively
On other TSO processes

• Prior decisions = process inputs

• GARPUR approaches may be able to assess impact of improving process inputs

• For example: reducing forecast errors through timing of tasks (changing organisational structure)

• May provide feedback to upstream processes about Value of Information, hence value of organisational change

Note: ‘STPA’ and ‘GARPUR’ in the diagram can be substituted for any top-down and bottom-up approaches, respectively
Conclusion

• Power system reliability is a complex topic

• New probabilistic approaches aim to quantify risk

• STAMP/STPA style approaches are important to ensure we don’t get surprised

2nd GARPUR Webinar (2nd Oct): [Registration]

Final Conference (17th & 18th Oct): [Info] [Programme] [Registration]

Project info and deliverables at: [http://www.garpur-project.eu/]
Appendix:

Basic STAMP diagrams of short-term TSO workflows

All figures in this appendix are adaptations of the workflow diagrams in:

Please refer to the above report for some definitions of the terms used.
Operational Policies
Forecasting
Outage Execution
Voltage Control
Component Load Control

Diagram:
- Policy Planning
- Operational Planning
- Control Room Operation
- Physical System

Connections:
- Exogenous Modelling to Operational Planning
- Operational Planning to Control Room Operation
- Control Room Operation to Physical System
- Physical System to Operational Planning
- Operational Planning to Policy Planning

Data Flows:
- Weather forecasts from Exogenous Modelling to Operational Planning
- Performance reports from Policy Planning to Operational Planning
- Loading limits from Control Room Operation to Physical System
- Live Interface from Physical System to Control Room Operation
System Protection