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Abstract

New automatic methods for enumerating permutation classes are introduced. The first is
Struct, which is an algorithm that conjectures a structural description using rules similar to
generalized grid classes. These conjectured structural descriptions can be easily enumerated
and are easily verified by a human to be correct.

We then introduce the CombSpecSearcher algorithm, a general framework for searching
for combinatorial specifications. To use this, one must write strategies that explain how
combinatorial classes are related. We introduce strategies for permutation classes that are
used by the CombSpecSearcher algorithm.

We provide an algorithm for finding the insertion encoding of regular insertion encodable
permutation classes. Our approach requires less generation of permutations and as such
is much faster than previous implementations. The algorithm relies on tilings; a new
object introduced that can be used to encode geometric proof ideas for permutation patterns
efficiently.

After developing the theory of tilings briefly, we encode more geometric proof ideas that allow
for placing points, each such leading to a new algorithm. All of these algorithms search for
combinatorial specifications using the CombSpecSearcher which can then be enumerated.
The algorithms introduced that use CombSpecSearcher and tilings we collectively call
Tilescope.

We introduce the notion of an elementary permutation class. We show that our definition is
equivalent to the permutation class being a disjoint union of generalized peg permutations,
and as such all polynomial permutation classes are elementary. We show that such a
description for a permutation class can be extended to permutation classes where the basis
has an extra pattern.

The methods introduced in this thesis can enumerate all permutation classes with six or more
length four patterns. There are only 77 bases consisting of only length four patterns which
are not enumerated by our methods.
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Útdráttur

Nýjar sjálfvirkar aðferðir til að telja umraðanaflokka eru kynntar. Sú fyrsta er Struct, sem er
reiknirit til að búa til tilgátur um uppbyggingu flokka með alhæfðum grindargerðum. Þessar
tilgátur er auðvelt að nota til talninga og staðfesta af manneskju.

Síðan kynnum við CombSpecSearcher, almenna umgjörð til að leita að fléttufræðilegum
forskriftum. Til að nota umgjörðina þarf að skrifa kænskur sem útskýra hvernig fléttu-
fræðilegir flokkar tengjast. Við kynnum kænskur fyrir umraðanaflokka og notum þær í
umgjörðinni.

Við gefum reiknirit til að finna innsetningarumritunina fyrir umraðanaflokka sem hafa reglu-
lega innsetningarumritun. Aðferð okkar þarfnast minni framleiðslu umraðana og er því
hraðvirkari en fyrri útfærslur. Reikniritið byggir á flísum; nýs hlutar sem hægt er að um-
rita rúmfræðilegar sönnunaraðferðir með. Eftir að hafa þróað fræði flísa þá umritum við
sönnunaraðferðir til þess að staðsetja punkta og fáum þannig ný reiknirit. Öll þessi reiknirit
nýta CombSpecSearcher-umgjörðina og leiða til talninga. Við gefum þessum reikniritum
yfirheitið Tilescope.

Við kynnum grundvallarumraðanaflokka og sýnum að það eru þeir umraðanaflokkar sem
eru ósamsniða sammengi alhæfðra pinnaumraðana. Þar af leiðandi eru allir margliðu-
umraðanaflokkar grundvallarumraðanaflokkar. Við sýnum að viðbót á mynstri við grunn
grundvallarumraðanaflokks gefur annan grundvallarumraðanaflokk.

Aðferðirnar í þessari ritgerð geta talið alla umraðanflokka með sex eða fleiri mynstur af lengd
fjórum. Það eru einungis 77 grunnar með mynstur af lengd fjórum sem aðferðir okkar geta
ekki talið.
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In memory of my grandmother (or Nanny to me) Janet Stewart.
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Chapter 1

Introduction

1.1 Combinatorics
Counting is the act of determining the number of objects there are in a set. To enumerate a
set, you assign each object a number. You might do this by pointing at the first object and
labeling it one, the next object two, and so on ensuring to label every object exactly once.
The last label you assign is then the number of objects in your set. This method is a basic
case of a bijection and a useful technique for counting finite sets.

Combinatorics is often described as the mathematics of counting. To be precise, enu-
merative combinatorics is the study of counting finite structures. Our finite structures tend to
have some notion of size, and the question becomes how many of each size are there. What
constitutes a good answer to this question can get philisophical1 but could, for example, be
a formula such as an =

n(n−1)
2 which counts the number of ways of choosing two distinct

numbers from the set {1, 2, . . . , n}. The formula an =
n(n−1)

2 determines the answer for all n
and gives a sequence of numbers

0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, . . ..

Another method is to give a bijection to a set already counted. For example, this
sequence also counts the number of ways to pick two numbers with replacement from the
set {1, 2, . . . , n − 1}. If (a, b) is an ordered such pair, so a ≤ b, then add 1 to b. This pair
will be two distinct numbers from the set {1, 2, . . . , n}. Similarly, if (a, b) are two distinct
numbers with a < b from the set {1, 2, . . . , n} then subtract 1 from b and you will have a pair
of numbers from {1, 2, . . . , n− 1} that are possibly equal. We have described a bijection and,
therefore, these two different things are counted the same.

A sequence of numbers (an)n≥0 can be encoded in a generating function described by
Wilf [58] as “a clothesline on which we hang up a sequence of numbers for display”. A
generating function is a power series whose coefficients are the numbers in your sequence.∑

n≥0
anxn

A generating function often has a closed form in terms of the indeterminate x which
looks like a function of x, for example∑

n≥0

n(n − 1)
2

xn =
x2

(1 − x)3 ,

1see for example Wilf [59] for an article discussing this.
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which has the power series as its series expansion. This is a compact way to answer this
question.

By describing how to construct a finite structure, the symbolic method, detailed in Flajolet
and Sedgewick [30], often allows you to write down an equation or system of equations
satisfied by the generating function. The equations can then be solved to give the generating
function and thus answering the question. This particular approach is the one that will be
used predominantly throughout this thesis. In Chapter 2 we will get some practice using the
symbolic method and in Chapter 3 we will define it more carefully as we aim to automate
research with this method.

1.2 Permutation patterns
The finite structures of interest are permutations and, in particular, permutation patterns.
Precise definitions are deferred to Chapter 2. The study of permutation patterns can be
dated back to 1915 when MacMahon [43] showed that the number of permutations of length
n that can be partitioned into two decreasing subsequences is given by the nth Catalan
number. These permutations can be equivalently defined as those which avoid the (classical)
permutation pattern 123. The field took off due to an exercise in Knuth [38, p. 243, ex. 5]
that asked you to show that a permutation is stack-sortable if and only if it avoids 231. The
Catalan numbers also count these permutations. Permutation sets defined by avoidance of
permutation patterns are called permutation classes.

There has been a movement towards a generalized approach for enumerating permutation
classes.

(1) One of the first completely automatic approaches was a method to find enumeration
schemes introduced by Zeilberger [60] and considerably extended by Vatter [54]. The
goal of enumeration schemes is to break up a permutation class into smaller parts and
find recurrence relations. There is no general theory for when a permutation class has a
finite enumeration scheme, but when it does succeed this is a polynomial time algorithm.

(2) The insertion encoding is an encoding of finite permutations, introduced by Albert,
Linton, and Ruškuc [6], and generalizes the finitely labeled generating trees of Chung et
al. [24]. It encodes how a permutation is built up by iteratively adding a new maximum
element. In particular, Albert, Linton, and Ruškuc [6] studied the permutation classes
whose insertion encodings are regular languages, including giving a characterization of
these permutation classes. For regular insertion encodable permutation classes, Vatter
[55] provides an algorithm for automatically computing the rational generating function.
We will revisit this in more detail in Chapter 5.

(3) Albert and Atkinson [1] were the first to apply the substitution decomposition to the enu-
meration of permutation classes. In this approach, one views permutations as inflations
of simple permutations. There are automatic methods for enumerating permutation
classes with the substitution decomposition when the class under inspection contains
finitely many simple permutations. For wreath-closed permutation classes Bassino et
al. [13] gave an O(n log n) algorithm for determining if the permutation class contains
finitely many simple permutations. This algorithm was extended to an O(n log n + s2k )
algorithm for general permutation classes by Bassino et al. [12].2 The entire procedure

2In these algorithms n denotes the sum of the lengths of the patterns the permutations avoid, and s and k
depend on specific properties of the permutation class.
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for enumerating permutation classes with finitely many simple permutations has been
implemented by Bassino et al. [11].

(4) In the case of polynomial permutation classes3, it was shown by Homberger and Vatter
[33], by combining results by Albert et al. [7] and Huczynska and Vatter [34], that such
a permutation class can be represented by a finite set of peg permutations. From this
finite set of peg permutations, Homberger and Vatter [33] give an automatic method to
enumerate polynomial permutation classes. However, it is not known in general how to
find the set of peg permutations.

In this thesis, a few different algorithms are introduced for enumerating permutation
classes. The Struct algorithm is discussed in Section 2.3. It takes as input a set of permutations
or a permutation property and conjectures certain structural rules that can lead to a generating
function enumerating the input. When the algorithms mentioned in (1)-(4) succeed, they
output a proof, whereas Struct only outputs conjectures. However, the produced conjectures
usually turn out to be easily verified by a human.

The CombSpecSearcher algorithm, introduced in Chapter 3, can find combinatorial
specifications automatically, which in turn proves the enumeration of combinatorial classes.
To use this, you must provide CombSpecSearcher with sets of strategies that explain how
combinatorial classes are related. As such, it represents multiple algorithms, as each set of
strategies gives a different algorithm.

In Chapter 5, we give an alternative implementation for finding the insertion encoding of
regular insertion encodable classes that uses the CombSpecSearcher algorithm. We extend
this in a natural way which leads to the enumeration of more permutation classes. Finally, in
Chapter 6, we introduce our most powerful algorithm that also uses the CombSpecSearcher
algorithm.

3A permutation class is said to be polynomial if the number of length n permutations in the permutation
class is given by a polynomial for all sufficiently large n.
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Chapter 2

Geometric view of permutations

2.1 Classical permutation patterns
A length n permutation is an ordering of the integers {1, 2, . . . , n}. The set of length n
permutation is denoted Sn. For example, S3 = {123, 132, 213, 231, 312, 321}, where the
permutations have been written in one-line notation. The set of all permutations is denoted
S.

Define the standardization of a string, s1s2 · · · sk , of distinct numbers as the permutation
created by replacing the ith smallest entry with i. For example, the standardization of 2673
is 1342.

A permutation π contains σ, written σ � π, if there exist indices i1 < i2 < · · · < ik such
that the standardization of the subsequence πi1πi2 · · · πik is σ. In this context, σ is called
a (classical) permutation pattern. Each set of indices witnessing the containment of σ is
called an occurrence of σ in π. If π does not contain σ then π avoids σ.

For example, the permutation π = 68153724 contains the pattern 1342. This can be seen
by the occurrence {3, 4, 6, 8} which corresponds to the subsequence 1574. It has two more
occurrences of 1342 at indices {3, 4, 6, 7} and {3, 5, 6, 7}.

The diagram of a permutation π is the plot of points (i, πi), on the Cartesian plane. In
Figure 2.1 is an example of the diagram of π = 68153724 with the circled entries showing
an occurrence of 1342 at the indices {3, 4, 6, 8}.

The containment relation forms a partial order on the set of permutations. Any set of
permutations that is closed downwards with respect to the permutation containment order (�)
is called a permutation class. Another way to define a permutation class is by the minimal
(possibly infinite) set of permutations not in the class, called the basis. A permutation π

Figure 2.1: The diagram of the permutation π = 68153724. The circled points show an
occurrence of 1342.
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Figure 2.2: The diagram of the permu-
tation π = 21843756 ∈ Av(231) . The
circled entry highlights the topmost point.
Here α = 21 and β = 43756.

C

C

Figure 2.3: A graphical depiction of
the structure of an arbitrary non-empty
permutation in Av(231) . Here, C =
Av(231) .

avoids a set of patterns Π if it avoids every permutation in Π. Let

Av(Π) = {π ∈ S | π avoids Π}

be the permutation class with basis Π, and Avn(Π) be the length n permutations in this
permutation class. The containers of a pattern σ is

Co(σ) = {π ∈ S | π contains σ} = S\Av(σ)

and Con(σ) is the set of length n permutations in this set.
The question we focus our attention on is, given a permutation class Av(Π) , can we

determine the sequence ( |Avn(Π) | )n≥0? An answer to this can be in the form of a closed
formula or a generating function for the sequence, see for example Wilf [59] for discussion
of what is considered a satisfactory answer. When we get an answer to this question we
say we have enumerated the permutation class, and call the answer its enumeration. Two
permutation classes with the same enumeration are called Wilf-equivalent.

As an example, let us enumerate Av(231) . Every permutation either has no points or a
topmost point. That is, for n ≥ 1 every length n permutation can be written as π = αnβ.
If π avoids 231 then all the points in α must be below all the points in β, else there would
be a 231 pattern in π. Moreover, if π avoids 231 then both α and β must avoid 231, for an
example see Figure 2.2. This describes the structure of the permutations in Av(231) . From
the structure one can obtain the enumeration with the formula (where cn = |Avn(231) |, and
in particular c0 = 1)

cn =

n−1∑
i=0

cicn−1−i =
1

n + 1

(
2n
n

)
for the nth Catalan number. The argument of the structure can be viewed pictorially as in
Figure 2.3. Such a structure is what is searched for by the Struct algorithm in Section 2.3.

2.2 Bivincular patterns
Babson and Steingrímsson [10] introduced a generalization of classical patterns that allow
the requirement that two adjacent letters in a pattern must be adjacent in the permutation.
These are called vincular patterns. A further extension, called bivincular patterns which
also added requirements that consecutive values of a pattern must be consecutive in value
in the permutation, was provided by Bousquet-Mélou et al. [21]. We call the special case
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when only constraints on values are allowed covincular patterns. The set of bivincular
patterns is closed under the action of the symmetry group of the square and an alternative
way of describing the covincular patterns is that they are inverses of vincular patterns. In
the following definition, the sets X and Y are for the vincular and covincular restrictions
respectively.

Definition 2.2.1 (Bousquet-Mélou et al. [21, page 4]). A length k bivincular pattern is a
triple, p = (σ, X,Y ), where σ ∈ Sk is the underlying permutation and X and Y are subsets
of {0, 1, . . . , k}. An occurrence of p in π ∈ Sn is a subsequence w = πi1 · · · πik such that the
standardization of w is σ and

∀x ∈ X, ix+1 = ix + 1 and ∀y ∈ Y, jy+1 = jy + 1,

where {πi1, . . . , πik } = { j1, . . . , jk } and j1 < j2 < · · · < jk . By convention, i0 = j0 = 0 and
ik+1 = jk+1 = n + 1. If such an occurrence exists we say that π contains p.

Further, a permutation avoids p if it does not contain p. If Y = ∅ then p is a vincular
pattern. If X = ∅ then p is a covincular pattern. If X = Y = ∅ then p is a classical pattern.
For example, the permutation 15423 contains an occurrence of (123, {2}, ∅), namely the
subsequence 123, but avoids (123, {1}, ∅). The permutation 23514 contains an occurrence
of (312, ∅, {2}), namely the subsequence 523, but avoids (312, ∅, {1}).

Below we use a pictorial representation of vincular and covincular patterns. For a length
n bivincular pattern p = (σ, X,Y ): First draw the collection of points from the underlying
permutation i.e. (k, σk ) where 1 ≤ k ≤ n. Then, for each i ∈ X , shade the ith column and,
for each j ∈ Y , shade the jth row; see Figure 2.4. The shading is used to denote the empty
regions in the permutation if we were to overlay the grid onto an occurrence of the pattern.

Figure 2.4: (231, ∅, ∅), (123, {2}, ∅), (123, {1}, ∅), (312, ∅, {2}), and (312, ∅, {1}).

Simultaneous avoidance of two vincular patterns was studied by Claesson and Mansour
[26] and by Kitaev [37]. Allowing one of the patterns to be covincular is a natural follow
up question and leads to some well-known sequences. In Bean, Claesson, and Ulfarsson
[15] the goal was to count the number of permutations simultaneously avoiding a length 3
vincular and a length 3 covincular pattern, where both patterns force at most one restriction.
We will give some of the results from there which will be used to illustrate the automatic
methods of Section 2.3.

Proposition 2.2.2. Let p = and r = . The number of permutations in

Avn
(
p, r

)
is 2n−1, for n ≥ 1.

Proof. Let A be the set of avoiders in question and let π ∈ A. As π avoids p, the points
after the minimum of π form a decreasing sequence. Moreover, in order to ensure that the
permutation avoids r , every point to the right of the minimum must be greater than every
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point on the left of the minimum. Therefore, all non-empty permutations ofA have the form

A

where A symbolizes a (possibly empty) permutation which avoids the patterns, and
symbolizes a decreasing permutation. As the structure is so rigid we can find the ordinary
generating function of the avoiders by multiplying together the ordinary generating functions
of the component parts. There is one decreasing permutation of length n and so the ordinary
generating function is 1/(1 − x). The ordinary generating function of a single point is x. If
A is the ordinary generating function for A, then it follows that

A = A · x ·
1

1 − x
+ 1

where we add 1 for the empty permutation which trivially avoids both patterns. Rearranging
we get

A =
1 − x
1 − 2x

= 1 +
∑
n≥1

2n−1xn.

Proposition 2.2.3. Let p = and r = . The number of permutations in

Avn
(
p, r

)
is 2n−1, for n ≥ 1.

Proof. LetA be the set of avoiders in question. Consider the leftmost point ` of a permutation
in A. To avoid p the points greater than ` must form a decreasing sequence and similarly
to avoid r the points less than ` must form a decreasing sequence. Therefore the non-empty
permutations in A have the form

.

A permutation matching this picture cannot contain an occurrence of p = 123, and every oc-
currence of 312 will have the point ` preventing it from being an occurrence of r . Hence these
can be encoded with binary strings and so there are 2n−1 such permutations. Alternatively,
if we let A be the exponential generating function for A then

A = 1 +
∫

ex · exdx = 1 +
e2x

2
= 1 +

∑
n≥1

2n−1xn

n!
.

The Motzkin numbers, Mn, form a well-known sequence which can be defined by a
functional equation their ordinary generating function satisfies:

M = 1 + xM + x2M2 where M =
∑
n≥0

Mnxn.

For more information on Motzkin numbers see e.g., sequence A001006 on the OEIS, Sloane
[52], and Donaghey and Shapiro [28].

https://oeis.org/A001006
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Proposition 2.2.4 (Elizalde and Mansour [29]). Let p = and r = . The number
of permutations in

Avn
(
p, r

)
is Mn.

The proof given by Elizalde and Mansour [29] provides a bijection between Avn
(
p, r

)
and

Motzkin paths. We show that the structure of the permutations implies they are enumerated
by the Motzkin numbers.

Proof. Consider a permutation π in A = Av
(
p, r

)
. Further, consider the rightmost point of

π. For π to avoid p the structure of π must be like

A

σ

.

With regard to σ, let us consider two cases. Either σ is empty or it has at least one point.
If σ is empty the structure looks like

A (2.1)

If σ is non-empty then consider the maximum point, m, of σ. If there was a point to the
left of m in σ then this point together with m and the rightmost point of π would create an
occurrence of r . Therefore there must be no points to the left of m in σ. Thus we can place
any possibly empty smaller permutation in A to the right of the maximum of σ without
creating an occurrence of p or r , and so we have the structure

A

A

. (2.2)

In conclusion, any non-empty permutation in A either has a structure described by (2.1) or
a structure described by (2.2). Letting A denote the ordinary generating function for A we
thus have A = 1 + x A + x2 A2, from which the claim follows.

2.3 The Struct algorithm
In Bean, Gudmundsson, and Ulfarsson [16] we introduced Struct, an algorithm which takes
as input a set of permutations or a permutation property and conjectures certain structural
rules that can lead to a generating function enumerating the input. We emphasize that Struct
outputs conjectures but note that the produced conjectures usually turn out to be easily
verified by a human. In Chapter 3 and Chapter 4 we discuss an algorithm for finding proofs
rather than conjectures.

We first review the generalized grid classes introduced by Vatter [56]. For non-negative
integers n and m, define the intervals [n] = {1, 2, . . . , n}, [m, n] = {m,m + 1, . . . , n} and
[m, n) = {m,m+1, . . . , n−1}. Given a permutation π of length n, and two subsets X,Y ⊆ [n],
then π(X × Y ) is the permutation that is order isomorphic to the subword with indices from
X and values in Y . For example 35216748([3, 7] × [2, 6]) = 132, from the subword 264.
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Suppose M is a t × u matrix (indexed from left to right and bottom to top) whose entries
are permutation sets1. An M-gridding of a permutation π of length n is a pair of sequences
1 = c1 ≤ · · · ≤ ct+1 = n+1 and 1 = r1 ≤ · · · ≤ ru+1 = n+1 such that π([ck, ck+1)×[rl, rl+1))
is in Mk,l for all k in [t] and ` in [u]. The generalized grid class of M , Grid(M) , consists of
all permutations with an M-gridding.

A (Struct) rule R is a matrix whose entries are permutation sets, with the requirement
that each permutation π in the grid class Grid(R) has a unique R-gridding. From now on
we will abuse notation and use R to denote both the Struct rule and its grid class. Let R≤n
be the set of permutations in R of length at most n.

For a permutation set S, Struct tries to write it as a disjoint union of rules. We call this a
Struct cover. We can restate the propositions from Section 2.2 in this language.

Proposition 2.3.1 (Propositions 2.2.2, 2.2.3 and 2.2.4). The following are Struct covers,
where D = Av(12) .

1. C = Av(231) = t

C

C

2. A = Av
(

,
)
= t A

D

3. Av
(

,
)
= t

D

D

4. B = Av
(

,
)
= t

B

t

B

B

The Struct algorithm consists of four main steps for finding a cover for a permutation set
S. The input is S and an integer ` being the maximum size of the rules considered.

1. Generate the block set, that is the set of permutation sets used in the rules.

2. Generate Struct rules2, R1,R2, . . . ,RK up to ` × ` with entries from the block set,
satisfying R≤`+1 ⊆ S. The trivial rule S is discarded.

3. Try to find a cover of S≤`+1 = {π ∈ S | |π | ≤ ` + 1} with the rules from the previous
step, i.e., write this set as a disjoint union

S≤`+1 = Ri1,≤`+1 t · · · t Rik,≤`+1.

4. If a cover is found, verify that it remains valid in length ≤ ` + 3, i.e.,

S≤`+3 = Ri1,≤`+3 t · · · t Rik,≤`+3.

1In the original definition given by Vatter [56] the entries are permutation classes
2Candidates for Struct rules are experimentally checked to not create duplicates up to length ` + 1.
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The bounds mentioned are somewhat arbitrary and can be increased by the user. By providing
different settings, the user can make the algorithm look for a cover with larger rules, or verify
a found cover for longer permutations. In step (3) we use the integer linear programming
solver Gurobi (Gurobi Optimization, Inc. [31]) to find a minimal cover if one exists; resorting
to the SAT solver Lingeling (Biere [19]) if Gurobi runs out of memory.

In Bean, Gudmundsson, and Ulfarsson [16] we focussed on permutation classes and
assumed a finite basis, Π, was given. The blocks of our rules are the non-finite subclasses of
the permutation class that are formed by taking subpatterns of the elements in the basis of the
permutation class. More formally, define the set ∆(π) to be the set of all patterns contained
in π,

∆(π) = {σ ∈ S : σ � π}.

For a set of patterns Π, let ∆(Π) =
⋃
σ∈Π ∆(σ) . A permutation class could also be defined

as a set C such that ∆(C) = C.
A block of a permutation classC = Av(Π) is a permutation classC′ = Av(Π′) , containing

infinitely many permutations, such that Π′ ⊆ ∆(Π) and Π′ ∩ ∆(σ) , ∅ for all σ in Π. We
also allow the finite permutation class Av(1) = {ε } as a block for any permutation class C.
Additionally, if 1 ∈ C we allow {1} as a block, even though this is not a permutation class,
and contains only one permutation. We call 1 “the point” and denote it with .

The block set,M(Π) , of C = Av(Π) is the set of all blocks of C. We note that for a finite
basis the block set of the permutation class Av(Π) is always finite. For example,

M({231}) = {Av(1), {•},Av(12),Av(21),Av(231) }.

Note that Av(12, 21) is not a block since it is finite. As another example we have

M({231, 1234}) = {Av(1), {•},Av(12),Av(123, 231),Av(231, 1234) }.

As a simple example consider the decreasing permutations D = Av(12) , where ` = 3. Step
(1) finds the block setM({12}) = {Av(1), {•},Av(12) }. Step (2) generates the rules

, ,
D

,
D
, ,

D

, D ,
D

.

One of the covers found in step (3) is

D≤4 =
≤4
t

D

≤4

.

Step (4) verifies this cover up to length 6. At this stage, a human must step in and verify
that the cover remains valid for all lengths. In this case, it is obvious, and if D(x) is the
generating function then we can see from the cover that D(x) = 1 + xD(x), so D(x) = 1

1−x .
If the block set is large, then the space of possible rules to consider in step (2) will be

too large to search for valid rules exhaustively. To prune the search space, we first check
which blocks can share a row, column or diagonal without creating a pattern from the basis.
This information is used to build the candidate Struct rules recursively without considering
every possibility. We also arrange the blocks in a poset where the relation is set containment.
When creating the Struct rules; if a rule with a block A in a particular cell produces the same
permutation twice or a permutation outside of Av(Π) then replacing A with a block A′ ⊃ A
will also not work.
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The implementation of Struct can be found on GitHub, Bean, Gudmundsson, and Ulfars-
son [17]. The conjectures discovered can be found on the Permutation Pattern Avoidance
Library (or PermPAL for short), Arnarson et al. [8], alongside the conjectured enumerations.

In Bean, Gudmundsson, and Ulfarsson [16] there are many examples of Struct covers.
We will look at one example to illustrate how it can be verified to be true for all lengths.

Proposition 2.3.2 (West [57], Bean, Gudmundsson, and Ulfarsson [16]). The structure of
the permutation class G = Av(321, 1342) is given by the cover in Equation (2.3). The
enumeration is given by A116702 and the generating function is

G(x) =
1 − 4x + 6x2 − 3x3 + x4

1 − 5x + 9x2 − 7x3 + 2x4 = 1 + x + 2x2 + 5x3 + 13x4 + 32x5 + 74x6

+ 163x7 + 347x8 + 722x9 + 1480x10 + · · · .

G = t

G

I t
I

I

I

(2.3)

Proof. We will prove the equivalent cover in Equation (2.4). Let π be a permutation from
G. Either π is empty or it can be written as αnβ where n is the length of π, α ∈ G and
β ∈ I = Av(21) . If all the elements of α have value smaller than all the elements of β then
it is not possible to create an occurrence of 321 or 1342 across α and β.

Otherwise, there exists some occurrence of 21 across α and β. Choose the occurrence
cb where the points are as far to the left as possible in π. If the first element of π has value
a less than c then acnb would form an occurrence of 1342. If the first element to the left of
n has value d greater than b then ndb would form an occurrence of 321. Therefore we can
write π as cγnbδ where γ ∈ G and δ ∈ I.

The elements of γ with value less than c must all have a value less than b to avoid 321
and, moreover, must be to the right of the elements of γ with a value greater than c to avoid
1342. Similarly to avoid 321 the elements with a value less than c in δ must be greater than
b and to the left of the elements with a value greater than c.

Therefore we can write π = cγ1γ2nbδ1δ2 where γ1, γ2, δ1, δ2 ∈ I. The elements in γ1
must have values less than the elements in δ2 in order to avoid 1342. It is not possible to
create an occurrence of 321 or 1342 across γ1, γ2, δ1, δ2. Therefore G has the cover

G = t

G

I t

I

I

I

I

(2.4)

which is equivalent to the cover in Equation (2.3). From the cover, we obtain G(x) =
1 + xG(x)I (x) + x3I (x)4, where I (x) = 1

1−x . Solving produces the claimed equation.

https://oeis.org/A116702
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2.4 Polynomial permutation classes
A permutation class C is said to be polynomial if the number of length n permutations,
|Cn |, is given by a polynomial for all sufficiently large n. One of the first general results
on permutation classes by Kaiser and Klazar [36] states that if the number of length n
permutations in a permutation class is less than the nth Fibonacci number for some n then the
permutation class is polynomial. This is known as the Fibonacci dichotomy and alternative
proofs were given by Huczynska and Vatter [34] and Albert, Atkinson, and Brignall [2].
From the results of Homberger and Vatter [33], we get the following theorem.

Theorem 2.4.1. All polynomial permutation classes have a cover.

In order to prove this, we will recall some definitions used by Homberger and Vatter
[33]. A peg permutation is a permutation where each letter is decorated with a +, − or ◦, for
example, ρ = 3◦1−4◦2+. Let Mρ be the matrix defined by

Mi, j =




Av(12) if ρi = j+

Av(21) if ρi = j−

{1} if ρi = j◦

∅ otherwise

then we let Grid
(
ρ
)
= Grid

(
Mρ

)
.

A peg permutation is, therefore, a generalized grid class with monotone intervals for its
matrix entries. We can specify these intervals with vectors of non-negative integers. We call
this a ρ-partition. For example, we could write

6321745 = 3◦1−4◦2+[〈1, 3, 1, 2〉].

Throughout it is insisted that we use vectors that fill peg permutations, meaning that a
component of a vector equals 1 if it corresponds to a ◦ and otherwise is at least 2. For a set
of filling vectorsV , define

ρ[V] = {ρ[v] : v ∈ V}.

Given vectors v and w in Nm, then v is contained in w if v(i) ≤ w(i) for all indices i. This is
a partial order and moreover, if v is contained in w then for a length m peg permutation, ρ[v]
is contained in ρ[w]. A set closed downwards under containment is called a downset, and
closed upwards an upset. The intersection of a downset and an upset is called a convex set.

The set of vectors which fill a given peg permutation ρ forms a convex set. The downset
component of this convex set consists of those vectors which do not contain an entry larger
than one corresponding to a dotted entry of ρ. The upset component consists of those vectors
which contain the vector v defined by v(i) = 1 if ρ(i) is dotted and ρ(i) = 2 if ρ(i) is signed.
As we discussed in Section 1.2, all polynomial permutation classes can be represented by a
finite set of peg permutations. In fact, a more general condition holds.

We can now state the result from Homberger and Vatter [33, Theorem 1.4].

Theorem 2.4.2 (Homberger and Vatter [33], Theorem 1.4 and Proposition 2.3). For every
polynomial permutation class C there is a finite set H of peg permutations, each associated
with a convex setVρ of filling vectors, such that C is the disjoint union

C =
⊔
ρ∈H

ρ[Vρ].
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In Homberger and Vatter [33, Proposition 2.3] the authors show that every permutation
which fills a peg permutation ρ has a unique ρ-partition. Together with Theorem 2.4.2, this
leads to the following result.

Theorem 2.4.3. A peg permutation ρ and its convex setVρ of filling vectors is a Struct rule.

Proof. For a peg permutation, ρ, Vρ consists of the vectors with ρ(i) = 1 when v(i) is
dotted and the remaining elements are integers greater than 1. We create ρ′ from ρ by
replacing an entry x+ in ρ with the subsequence (x − 0.2)◦(x − 0.1)◦x+ and entries y− with
the subsequence (y + 0.2)◦(y + 0.1)◦y− and taking the standardization of the underlying
permutation. The set Grid

(
Mρ′

)
is a generalized grid class. Moreover, it is a Struct rule

since every permutation which fills ρ has a unique ρ-partition.

Theorem 2.4.1 follows as a corollary, as we now have a finite set of Struct rules. Given
there exists a cover for every polynomial permutation class a natural follow-up question
which we do not answer is: for a polynomial permutation class C is there a bound on the
size of the Struct rules required in a cover for C?

2.5 Enumerating Struct covers
Most of the contents of this section were implemented in the BSc thesis by Arnarson et al. [9]
that the author helped advise. With this we have enumerations for every conjectured Struct
cover that we have found. In the BSc thesis they discuss a method for getting a recurrence
relation, but here we will only explain how to obtain a generating function for a cover.

A Struct cover is a disjoint union of rules. Hence, the generating function is the sum of the
generating functions for each rule. Each rule is some matrix whose entries are permutation
sets. We assume from here on that the generating function of these permutation sets is
known.

For a rule R, we build a graph where the vertices are the cells containing a permutation
set. There is an edge between two vertices if the corresponding cells are on the same row or
column. If we take the connected components of this graph and translate it back to subrules,
then the generating function for R is the product of the subrules. We call these subrules the
factors of R. See Figure 2.5 for an example. We have reduced the problem of enumerating
covers to enumerating factors. As we assume that our rules have unique griddings, when we
reduce it to the factors we must count the number of griddings on the factor, rather than the
number of permutations. We adopt this convention throughout the rest of this section.

A B C

D

A B C D

Figure 2.5: An example Struct rule on the left, alongside its factors on the right.
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Proposition 2.5.1. For a permutation setA with generating function A(x) =
∑

n≥0 anxn, the

rule R =
A

is enumerated by the generating function

R(x) = x
d
dx

(x A(x)).

Proof. For n > 0, the nth coefficient of x d
dx (x A(x)) is nan−1. To create a gridding of length

n > 0 on R first choose a length n − 1 permutation from A. The minimum point can be
placed at any position between the points in the permutation from A, that is n choices.
Hence, there are nan−1 griddings on R.

Proposition 2.5.2. Let I = Av(21) . The generating function for the rule R consisting of k
Is in a row is 1

1−k x .

Proof. Consider building a R-gridding by iteratively adding a new maximum. At each
iteration, there are k choices where it can go. Hence, there are kn R-griddings.

The Hadamard product of two generating functions, A =
∑

n≥0 anxn and B =
∑

n≥0 bnxn,
is defined as the pairwise multiplication of terms, A ∗ B =

∑
n≥0 anbnxn. There is a package

in Maple which can find the Hadamard product of two holonomic generating functions by
Salvy and Zimmermann [51].

Proposition 2.5.3. Let A1, A2, . . . , Ak be permutation sets with generating functions
A1(x), A2(x), . . . , Ak (x) respectively and R(x1, x2, . . . , xk ) be the multivariate generating
function for the rule R consisting of the sets A1, A2, . . . , Ak in a single row,

R = A1 A2 . . . Ak ,

where the coefficient of x`11 x`22 · · · x
`k
k is the number of R griddings with `i points in the ith

column. This generating function is

R(x1, x2, . . . , xk ) =
(

1
1 − (x1 + x2 + · · · + xk )

)
∗1 A1(x1) ∗2 A2(x2) ∗3 · · · ∗k Ak (xk )

where ∗i denotes the hadamard product with respect to the variable xi. In particular
R(x, x, . . . , x) is the generating function for the number of R-griddings.

Proof. Consider building a gridding on R. First we determine where each value of the
gridding goes, i.e. as in 2.5.2 repeatedly add a new maximum. This enumeration is given by

1
1−(x1+x2+···+xk ) . Then in the ith column, the points can be shuffled so long as the values do
not change and that it lies within the permutation set Ai, which is equivalent to taking the
Hadamard product with Ai (xi).

In practice, this is not what we did as our implementation uses SymPy, Meurer et al. [49],
which, at the time of writing, does not have the Hadamard product implemented. What we do
instead is to define a canonical form for rules. In our case, all our permutation sets are points
or permutation classes with a known basis. As we are only interested in the enumeration,
we replace each basis with its lexicographically smallest symmetry. We then consider the
symmetries of the rule and pick the one in which the cells used are lexicographically smallest.
We store this canonical form in a database with its generating function which was computed
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by hand. In total there are less than 100 unique factors found to date, and when a new
one is found we add it to our database. The enumeration of our factors is straightforward
applications of these (or similar) propositions. For example, the propositions above can be

easily extended to handle any factor where there are no subrules of the form
A B

C D
.

2.6 Results of the Struct algorithm
The enumeration and Wilf-classification are known for all permutation classes with a subset
of S3 for a basis. There exists a Struct cover for all of these classes except Av(123) , which
we revisit in Chapters 3 and 4.

We will now look at the results of applying the algorithm to bases containing length four
patterns. The total number of bases is 224, but of course, it suffices to look at one basis from
each symmetry class. This brings the total down to 2 097 152 ≈ 221 bases. In Section 2.4
we showed that all polynomial permutation classes have a cover. Therefore, we look at the
non-polynomial classes, bringing the total down to 157 736 ≈ 217 bases.

As expected Struct does better on bases with many patterns. In Table 2.1 we break down
the computer output by the size of the basis and the size of the largest dimension of the Struct
rules required for the cover. 3 For all of the non-polynomial bases, we searched for a cover
with rules of size of at most 7 × 7. We consider the permutation class failed if Struct does
not find a cover within this bound. Of course, there may exist covers using larger rules.

successes
|Π | non-symmetric non-polynomial failures 2 × 2 3 × 3 4 × 4 5 × 5 6 × 6 7 × 7
24 1 0 0 0 0 0 0 0 0
23 7 0 0 0 0 0 0 0 0
22 56 0 0 0 0 0 0 0 0
21 317 0 0 0 0 0 0 0 0
20 1524 0 0 0 0 0 0 0 0
19 5733 1 0 0 1 0 0 0 0
18 17728 9 0 0 8 1 0 0 0
17 44767 58 0 0 32 26 0 0 0
16 94427 285 0 0 75 206 4 0 0
15 166786 1069 0 0 118 901 49 1 0
14 249624 3143 0 0 137 2620 377 9 0
13 316950 7338 0 0 122 5118 2038 60 0
12 343424 13891 0 1 82 6372 7163 273 0
11 316950 21451 1 0 36 4890 15551 970 3
10 249624 27274 12 0 9 2285 21947 2990 31
9 166786 28391 59 0 1 615 19672 7856 188
8 94427 24160 177 6 0 85 9956 13051 885
7 44767 16489 708 0 0 10 2267 10924 2580
6 17728 8935 3249 0 0 2 167 3668 1849
5 5733 3716 2597 0 0 0 7 331 781
4 1524 1187 1160 3 0 0 1 8 15
3 317 279 279 0 0 0 0 0 0
2 56 53 53 0 0 0 0 0 0
1 7 7 7 0 0 0 0 0 0

Table 2.1: Data from running Struct on every non-polynomial basis with length four patterns.

Judging from the data in the table, one would hope to get some successes for bases
with three patterns. However, at this point the memory usage becomes infeasible for the
computers we have access to, routinely exceeding 32GiB of memory. Therefore, we expect

3Most of the computation was done on a cluster owned by Reykjavik University, and the remainder on a
cluster owned by the University of Iceland.
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there to be some permutation classes with covers consisting of 7 × 7 rules, although we can
not find them at this point.

In Section 6.5, we introduce the notion of an elementary permutation class. These are
classes which are given by a disjoint union of certain Struct rules with a different block set
than used to generate the results in this section. In Table 6.1, we see that a lot of elementary
permutation classes that did not find cover.

In Bean, Gudmundsson, and Ulfarsson [16], there are many examples of Struct covers
given, including examples which separate Struct and the other automatic methods. The
drawback of the Struct algorithm is that it only provides conjectures and it is up to the
mathematician to confirm that the cover is correct. The remainder of this thesis will be about
removing this step.



18



19

Chapter 3

Combinatorial exploration

3.1 Combinatorial classes
The goal of enumerative combinatorics is to enumerate combinatorial objects. One method
is to find a combinatorial specification as defined in Flajolet and Sedgewick [30, p. 31-33].
We will review some of these definitions briefly. A combinatorial class is a set, C, with a
size function C 7→ N0 such that the preimage for all integers is finite. Any element c ∈ C is
called a combinatorial object and the size of c is denoted |c|. For a combinatorial class, we
let Cn be the set of objects in C of size n.

The set of all permutations S is a combinatorial class since there are n! permutations of
each length n. In Section 2.1, we defined a permutation class as a permutation set closed
downwards with respect to the permutation containment order. All permutation sets are
combinatorial classes. However, not all are permutation classes. Moreover, subsets of
permutation classes are not necessarily permutation classes, but of course are combinatorial
classes. In Chapters 4, 5, and 6 we will use the methods of this chapter to enumerate
permutation classes.

The goal of this chapter is to enumerate a combinatorial class, that is to determine
the sequence (|Cn |)n≥0. In Section 2.2, we determined this sequence for permutation sets
avoiding bivincular patterns and in Section 2.3, we did this for Struct rules. We showed how
to construct those combinatorial classes from known combinatorial classes. In this section,
we will formalize this method. A common tool we used was generating functions. That is,
the ordinary generating function for a combinatorial class C is

FC (x) =
∑
n≥0
|Cn |xn =

∑
c∈C

x |c | .

In this section, we will only use ordinary generating functions so we will simply refer to
these as generating functions.

For two combinatorial classes A and B, define their Cartesian product to be the set of
ordered pairs

A × B = {(a, b) | a ∈ A, b ∈ B},

where |(a, b) | = |a | + |b|. This is a combinatorial class, and its generating function satisfies

FA×B (x) =
∑
n≥0

n∑
i=0
|Ai | |Bn−i |xn = FA (x)FB (x).

If A and B are two disjoint combinatorial classes, then their union is a combinatorial
class. We will use the symbol t to denote the disjoint union. The generating function for
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A t B satisfies

FAtB (x) =
∑
n≥0
|An |xn + |Bn |xn = FA (x) + FB (x).

If there is a length preserving bijection C 7→ A × B or C 7→ A t B and we know the
generating functions forA and B then we know the generating function for C. Constructors,
such as × and t, satisfying this property are called admissible constructors. The two
discussed here are the only admissible constructors we will consider in this thesis. However,
the methods can handle any admissible constructor satisfying the definition outlined by
Flajolet and Sedgewick [30, p. 24-30]. When such a length preserving bijection exists we
will write C � A×B or C � AtB. The above is naturally extendable to Cartesian products
and disjoint unions of any number of combinatorial classes.

A (combinatorial) rule is a tuple (C, {C1, C2, . . . , Ck }, ◦), where C and all Ci are combi-
natorial classes and ◦ is an admissible constructor, if C � C1 ◦ C2 ◦ · · · ◦ Ck , that is, there is
a length preserving bijection between the C and C1 ◦ C2 ◦ · · · ◦ Ck . If the enumeration of a
combinatorial class is known then we consider (C, ∅, ◦) a combinatorial rule.

A combinatorial specification for a tuple Č = (C1, C2, . . . , Ck ) of non-empty combinato-
rial classes is a set of k rules using only combinatorial classes in Č and each Ci appears on
the left of a rule exactly once. We say it is a combinatorial specification for C1 also.

There are two main stages to combinatorial exploration. The first is the expansion stage,
where strategies are applied to the combinatorial classes of interest, resulting in a set of rules
which explain how combinatorial classes are related. The second stage is to check if there
exists a combinatorial specification for the original combinatorial class of interest within this
set of rules. We automated this procedure, and we call our algorithm CombSpecSearcher.

The expansion stage is mostly bookkeeping, and we will discuss how the CombSpec-
Searcher does this in Section 3.2. In Section 3.3, we will discuss how CombSpecSearcher
searches for combinatorial specification in a given set of rules.

3.2 Combinatorial expansion
In the expansion stage of the CombSpecSearcher algorithm there are four types of strategies
used. This section will discuss each individually. We will also outline the order in which
we apply them, which has been chosen primarily through heuristics. In Chapters 5 and 6 we
will discuss such strategies in terms of permutation classes.

The first type of strategy we will discuss we call expansion strategies. These take as input
a combinatorial class C and return combinatorial rules of the form (C, S, ◦), where S is some
set of combinatorial classes. If an expansion strategy returns combinatorial rules with ◦ = t
we call it a batch strategy and if ◦ = × we call it a decomposition strategy.

The CombSpecSearcher expands combinatorial classes in a breadth-first manner. That
is, there is a queue which starts with the initial combinatorial class of interest. At each
stage, a combinatorial class is removed from the queue and then expanded using all of the
expansion strategies. Each combinatorial class in the combinatorial rules returned by this
expansion is added to the back of the queue and the process repeats.

An assumption made by the CombSpecSearcher is that there exists a method that de-
termines if a combinatorial class is equal to the empty set. Given that the definition of
combinatorial specification requires non-empty combinatorial classes, we remove these from
the strategies returned by expansion strategies.
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If an expansion strategy returns a combinatorial rule (C, {C′}, ◦) then it follows that
C � C′ and we say that the combinatorial classes are equivalent as any combinatorial
rule containing C will also be a combinatorial rule after exchanging each C with C′. The
CombSpecSearcher keeps track of this equivalence using a union-find data structure. The
combinatorial rules are considered in terms of the equivalence classes of the combinatorial
classes.

If there is a strategy that only returns combinatorial rules that imply equivalence, then
we call this an equivalence strategy. To try and maximize the size of the equivalence classes
of combinatorial classes the CombSpecSearcher always fully expands the equivalence class
of every combinatorial class.

When a combinatorial class C is understood, that is there is a method for getting its
enumeration, the CombSpecSearcher marks it as verified by giving the combinatorial rule
(C, ∅, ◦). A strategy for determining this is called a verification strategy. Once verified,
CombSpecSearcher no longer expands this object1.

The final type of strategy the CombSpecSearcher uses are called inferral strategies.
It is an equivalence strategy. However, the goal of an inferral strategy is to attempt to
return a canonical form for a combinatorial class. The CombSpecSearcher will only expand
further the combinatorial class returned from an inferral strategy and not the original inputted
combinatorial class.

The CombSpecSearcher begins with a combinatorial class C and sets of expansion
strategies, equivalence strategies, inferral strategies, and verification strategies. It expands
in the following manner.

(1) Let Q be a queue containing the combinatorial class C.

(2) Take the first combinatorial class in Q, call it C′

(3) If C′ has been expanded previously or is verified then go to Step (2).

(4) Apply all expansion strategies to C′, removing all empty combinatorial classes from
combinatorial rules

(5) For each combinatorial rule R first apply inferral strategies to the combinatorial classes
in R, second apply verification strategies to each combinatorial class, and finally apply
all equivalence strategies to each combinatorial class, ensuring to repeat this step for
each equivalent combinatorial class

(6) Add all new combinatorial classes to Q.

(7) If Q is empty, terminate, else go to step (2).

There are a few other search parameters that are allowed by the CombSpecSearcher to
customize the search for different combinatorial classes. For example, there might be a
reason that some combinatorial classes found should not be expanded in the future2. This is
added as a boolean and checked in Step (3).

1although in some cases there might be a benefit to expanding these
2Perhaps a symmetry of a combinatorial class has already been expanded, and the strategies being applied

are closed with respect to this symmetry, then no new information would be gained by expanding this symmetric
combinatorial class.
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3.3 Searching for a combinatorial specification
A combinatorial specification Č = (C1, C2, . . . , Ck ) is iterative if the combinatorial rules are
upper triangular, that is they are of the form

(C1, S1 ⊆ {C2, C3, . . . , Ck }, ◦1)
(C2, S2 ⊆ {C3, C4, . . . , Ck }, ◦2)
...

(Ck−1, Sk−1 ⊆ {Ck }, ◦k−1)
(Ck, ∅, ◦k ).

This means that the combinatorial class C1 can be written as a single equation with known
combinatorial classes, that is those whose combinatorial rule is (C, ∅, ◦). Otherwise, the
combinatorial specification is recursive.

Alternatively, define the dependency graph of a combinatorial specification, Γ, to be the
directed graph with vertices {1, 2, . . . , k} where there is a directed edge i 7→ j if Cj is in
Si for some combinatorial rule (Ci, Si, ◦i). The combinatorial specification is iterative if its
dependency graph is acyclic. If the dependency graph of the combinatorial specification
contains a cycle, then it is recursive.

After the expansion stage of combinatorial exploration, we have a set of combinatorial
rules, U , that we call the universe. The CombSpecSearcher searches within this universe
to find a combinatorial specification if such exists. We are going to present two algorithms,
the first searches for an iterative combinatorial specification, and the second will search for
possibly recursive combinatorial specifications.

Algorithm 1 Iterative Combinatorial Specification Searcher
1: Input: A set of combinatorial rulesU
2: Output: A set of combinatorial rulesU ′ ⊆ U such that each combinatorial rule inU ′

is in an iterative combinatorial specification
3:
4: V← ∅
5: U ′ ← ∅
6: changed← True
7: while changed do
8: changed← False
9: for (Ci, S) ∈ U\U ′ do

10: if S ⊆ V then
11: V← V ∪ {Ci}

12: U ′ ←U ′ ∪ {(Ci, S)}
13: changed← True
14: end if
15: end for
16: end while
17: returnU ′

Theorem 3.3.1. LetU be a set of combinatorial rules. A combinatorial rule (C, S) is in an
iterative combinatorial specification that is a subset ofU if and only if (C, S) inU ′, the set
returned by Algorithm 1 with inputU .
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Proof. Assume (C, S) is in an iterative combinatorial specification with the combinato-
rial rules (C1, S1 ⊆ {C2, C3, . . . , Ck }, ◦1), (C2, S2 ⊆ {C3, C4, . . . , Ck }, ◦2), . . ., (Ck−1, Sk−1 ⊆
{Ck }, ◦k−1), and (Ck, ∅, ◦k ). On the first pass at least (Ck, ∅, ◦k ) will be added to U ′ and Ck
added to V. On the ith pass, Ck , . . ., Ck−i−1 will be on the left hand side of some combinatorial
rule. Therefore at this stage Sk−i ⊆ V, so if not already in U ′ (Ck−i, Sk−1, ◦k−i) it will be
added. Hence by induction all of the combinatorial rules will be inU ′.

When a rule is added to U ′, it is in some iterative combinatorial specification, so it
follows that all combinatorial rules inU ′ are in a combinatorial specification.

Algorithm 2 Combinatorial Specification Searcher
1: Input: A set of combinatorial rulesU
2: Output: A set of combinatorial rulesU ′ ⊆ U such that each combinatorial rule inU ′

is in a combinatorial specification
3:
4: changed← True
5: while changed do
6: changed← False
7: for (Ci, S) ∈ U do
8: if any Cj ∈ S not in some (Cj, S′) ∈ U then
9: U ← U\{(Ci, S)}

10: changed← True
11: end if
12: end for
13: end while
14: returnU

Theorem 3.3.2. Let U be a set of combinatorial rules. A combinatorial rule (C, S, ◦) is in
a combinatorial specification that is a subset of U if and only if (C, S, ◦) is in U ′, the set
returned by Algorithm 2 with inputU .

Proof. Assume (C, S) is in a combinatorial specification with the combinatorial rules
(C1, S1, ◦1), (C2, S2, ◦2), . . ., (Ck, Sk, ◦k ). Each Si is a subset of {C1, C2, . . . , Ck }. There-
fore, at each pass all of the combinatorial rules will not be removed from U . Hence, this
combinatorial specification will still be a subset ofU at the end of the algorithm.

For a given combinatorial rule (C, S) in U at the end of the algorithm it follows, every
combinatorial class C′ in S is in some combinatorial rule. Pick one, and repeat unless the
class C′ is already on the left-hand side of some rule chosen. This procedure is guaranteed
to terminate since the set is finite.

These two algorithms allow searching for combinatorial specifications. During the
combinatorial expansion, as in Section 3.2, we periodically check the universe found to
find a combinatorial specification using these algorithms. It is then easy to tell if any
combinatorial class is in a combinatorial specification, so the CombSpecSearcher treats
those that are as verified and expands them no further unless otherwise instructed.
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Chapter 4

Gridded permutations

4.1 Figures and tilings
In this thesis, we have been thinking of permutations with a geometric mindset. In Section 2.3,
we introduced Struct rules, grids used to represent permutation sets. To do this, we defined
a gridding on the rules and then only allowed rules in which permutations had a unique
gridding. The Struct rules we used for permutation classes use subclasses as the permutation
sets allowed in the cells. In this section, we explore allowing restrictions across cells, in terms
of some gridding. Moreover, we are going to drop the condition for unique griddings, and
rather than consider permutations with a gridding we will consider the set of all griddings.

In order to do this, we borrow some definitions from Section 2 of Albert et al. [7] altering
them slightly to suit our thinking. The grid position of a point (x, y) in R2 is defined as the
integer point (a, b) such that (x, y) ∈ [a, a + 1) × [b, b + 1).

We say that a figure F ⊆ R2 is grid involved in the figure G, denoted F � G if there are
subsets A, B ⊆ R and increasing injections φx : A 7→ R and φy : B 7→ R such that

F ⊆ A × B and φ(F ) = {(φx (a), φy (b)) : (a, b) ∈ F } ⊆ G

and φ preserves the grid position of a point (x, y) in R2. Ignoring the grid position recovers
the definition of involvement as in Albert et al. [7].

As in Albert et al. [7] this relation forms a preorder on the collection of all figures. If
F � G and G � F we say they are grid equivalent. (This means two figures are equivalent
if and only if one can be transformed to the other by stretching and shrinking the axes without
ever crossing the integer lattice).

We say a figure is independent if no two points lie on the same horizontal or vertical
line. The set of all gridded permutations, G, is then defined as the set of all equivalence
classes of finite independent figures with respect to grid equivalence. We define containment
of gridded permutations with respect to the involvement relation, and we refer to σ as a
gridded pattern when σ � π for some gridded permutation π. Define the length of a gridded
permutation as the number of points. The standardization of the set of sorted points is called
the underlying permutation.

For convenience to represent an equivalence class we write the underlying permuta-
tion where we put the grid position of each point in its exponent, for example the figure{ (

1
2,

1
2

)
,
(

3
2,

3
2

) }
is in the equivalence class 1(0,0)2(1,1). A larger example is given in Fig-

ure 4.1 where we have drawn the figure in Equation (4.1).

F =

{(
1
4
,
3
4

)
,

(
3
4
,
15
4

)
,

(
5
4
,
7
4

)
,

(
7
4
,
5
4

)
,

(
9
4
,
13
4

)
,

(
11
4
,
11
4

)
,

(
13
4
,
17
4

)
,

(
15
4
,
1
4

)
,

(
15
4
,
9
4

) }
.

(4.1)
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x

y

Figure 4.1: A drawing of the figure F from Equation (4.1) that is in the equivalence class
represented by 2(0,0)8(0,3)4(1,1)3(1,1)7(2,3)6(2,2)9(3,4)1(3,0)5(4,2).

The set of gridded permutations G is not a combinatorial class, as there are not finitely
many gridded permutations of each length. Therefore, we define G(n,m) to be the set of
gridded permutations with grid positions in {0, . . . , n − 1} × {0, . . . ,m − 1}. This set is a
combinatorial class as there are k!

(
n+k−1

n−1

) (
m+k−1

m−1

)
length k gridded permutations with grid

positions in {0, . . . , n − 1} × {0, . . . ,m − 1}. The binomials in this formula count the number
of ways to draw n− 1 horizontal and m − 1 vertical lines into the k + 1 positions between the
points of a length k permutation.

A gridded permutation avoids a set of gridded patterns O if it avoids every gridded
permutation in O. Let

Av(n,m)(O) = {π ∈ G(n,m) | π avoids O}

be the avoiders of O, and Av(n,m)
k (O) be the length k gridded permutations in this set. We

say a gridded permutation contains a set of gridded patterns R if it does not avoid R. That
is it contains at least one gridded permutation in R. The containers of R is the set

Co(n,m)(R) = {π ∈ G(n,m) | π contains R}

and Co(n,m)
k (R) is the set of length k gridded permutations in this set.

Lemma 4.1.1. Let R1 and R2 be two finite sets of gridded patterns. Then there exists a finite
set R such that

Co(n,m)(R) = Co(n,m)(R1) ∩ Co(n,m)(R2) .

For the proof of this lemma we define the merge of two gridded permutations σ and τ to
be the set merge(σ, τ) of gridded permutations which contain both σ and τ but contain no
smaller such gridded permutation, i.e.,

merge(σ, τ) = {π ∈ Co(σ) ∩ Co(τ) | ∀δ ∈ G such that δ ≺ π, δ < Co(σ) ∩ Co(τ) } .

The proof shows that merge(σ, τ) is finite, and moreover one method to generate this set is
to generate all gridded permutations to the bound |σ | + |τ | and filter.

Proof. Let π be a gridded permutation in Co(σ) ∩ Co(τ) , so π contains an occurrence of
both σ and τ. Select an occurrence of each and by removing the remaining points create
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a smaller gridded permutation in Co(σ) ∩ Co(τ) of length at most |σ | + |τ |. Hence, the
length of the elements in merge(σ, τ) have length at most |σ | + |τ |. In particular, the set
merge(σ, τ) is finite.

Let R =
⋃

(σ,τ)∈R1×R2 merge(σ, τ) . Then it follows that

Co(n,m)(R) = Co(n,m)(R1) ∩ Co(n,m)(R2)

since π contains R1 and R2 if π contains some σ in R1 and τ in R2, which implies π
contains some gridded permtutation in the merge(σ, τ) . Conversely, if π contains a gridded
permutation in R, then this is in some set merge(σ, τ) for some σ in R1 and τ in R2. This
implies that π contains σ and τ and in particular contains the sets R1 and R2.

We define a tiling to be a triple T = ((n,m),O,R = {R1,R2, . . . ,Rk }) where O is a set of
gridded permutations that we call obstructions, and R a set of sets of gridded permutations
that it must contain that we call requirements. We define

Grid(T ) = Av(n,m)(O) ∩ Co(n,m)(R1) ∩ Co(n,m)(R2) ∩ · · · ∩ Co(n,m)(Rk ) .

Denote Gridn(T ) to be the length n gridded permutations in Grid(T ) . When discussing
tilings referring to an obstruction will mean a gridded permutation we must avoid, and a
requirement will mean a set of gridded permutations that we must contain.

Lemma 4.1.1 shows that the containment of any number of sets of gridded permutation can
be reduced to a single set. Therefore for every tiling T = ((n,m),O,R = {R1,R2, . . . ,Rk }),
there exists a single set of gridded permutations R′ such that

Grid(T ) = Av(n,m)(O) ∩ Co(n,m)(R′) .
However, it is often more convenient to think about requiring many smaller requirements
and this is why we have chosen to use the more fine-grained definition. In some cases, this
simpler definition can prove easier to work with.

For example, consider the tiling

T =
(
(1, 1),

{
1(0,0)2(0,0), 2(0,0)1(0,0)

}
,
{{

1(0,0)
}} )
. (4.2)

In Figure 4.2, there is a pictorial representation of T where obstructions have been drawn in
red and the requirement drawn in green. With this tiling it is clear that

Grid(T ) =
{
1(0,0)

}
.

We therefore call this the point tiling.
We say a gridded permutation is local if the grid positions of all the points are the same.

We write πc to represent the local gridded permutation with underlying pattern π with grid
positions being c.

Proposition 4.1.2. Let C = Av(Π) be a permutation class and

T =
(
(1, 1), {σ(0,0) | σ ∈ Π}, ∅

)
,

then Grid(T ) is in bijection with C.

Proof. The mapping φ : C 7→ Grid(T ) given by φ(π) = π(0,0) is a bijection.
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Figure 4.2: The left hand picture is a representation of the tiling T in Equation (4.2), called
the point tiling. As the set Grid(T ) contains only the gridded permutation 1(0,0) we draw it
as a point as in the right hand side tiling.

The goal is to use the methods of Chapter 3 to find a combinatorial specification for
tilings. We will translate our geometric proof ideas for permutation classes into the language
of gridded permutations. We will discuss this in greater detail in Chapters 5 and 6, and
then by using this proposition we will be able to find combinatorial specifications for and
enumerate permutation classes. We will first develop a theory for gridded permutations and
tilings. These will be used implicitly in later sections and appear in the CombSpecSearcher
algorithm as inferral strategies.

4.2 Minimal obstructions and requirements
Let σ and τ be two gridded permutations such that σ � τ. If a gridded permutation π avoids
σ then it also avoids τ. If π contains τ then it clearly contains σ. Imagine σ and τ are in
some set O ⊆ G. Then

Av(n,m)(O) = Av(n,m)(O\{τ}) .

since avoidance of σ implies the avoidance τ. Similarly, if σ and τ are in some set R ⊆ G,
then

Co(n,m)(R) = Co(n,m)(R\{τ}),

since the containment of τ implies the containment of σ. Let T = ((n,m),O, {R1, . . . ,Rk })
be a tiling such thatσ ∈ O and τ ∈ Ri for some i. Since avoidance ofσ implies the avoidance
of τ we can freely remove τ from Ri as we can not contain it1. Moreover, we can replace Ri
with the set of gridded permutations in Ri that avoid O. Let

R′i = Ri ∩ Av(O) and T ′ =
(
(n,m),O, {R′1, . . . ,R

′
k }

)
,

then it follows that Grid(T ) = Grid(T ′) .
For a gridded permutation, let ∆(π) be the set of all gridded patterns contained in π,

∆(π) = {σ ∈ G : σ � π},

and define the intersection of two gridded permutations π1 and π2 to be the set of gridded
permutations that both contain,

π1 ∩ π2 = {σ | σ ∈ ∆(π1) ∩ ∆(π2) }.
1If on removing τ from Ri this set becomes empty, then there are no gridded permutations that can satisfy

the requirements, since Co(∅) = ∅.
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For example, the intersection of the gridded permutations π1 = 1(0,0)3(0,0)2(1,0)4(1,1) and
π2 = 1(0,0)2(0,0)3(1,0)4(1,1) is

π1 ∩ π2 = {ε, 1(0,0), 1(1,0), 1(1,1), 1(0,0)2(0,0), 1(0,0)2(1,0),

1(0,0)2(1,1), 1(0,0)2(0,0)3(1,0), 1(0,0)2(1,0)3(1,1)}.
(4.3)

This can be seen pictorially in Figure 4.3.

Figure 4.3: The left hand tiling T1 has the gridded permutations π1 = 1(0,0)3(0,0)2(1,0)4(1,1)

and π2 = 1(0,0)2(0,0)3(1,0)4(1,1) as the requirement R1 = {π1, π2}. The right hand tiling T2
has the maximal elements of intersection of π1 and π2 as two size one requirements. By
Proposition 4.2.1 we know Grid(T1) ⊆ Grid(T2) .

Proposition 4.2.1. For a set of gridded permutations R, the containers of R is a subset of
the containers of each gridded permutation in the intersection of the gridded permutations
in R, i.e.

Co(R) ⊆ Co(τ) for all τ in
⋂
σ∈R

σ.

Proof. Let π in Co(R) . There is some τ in R such that τ � π, and π contains every element
of ∆(τ) . In particular, π contains every element in the intersection

⋂
σ∈R σ, since it is a

subset of ∆(τ) .

A gridded permutation σ is a factor of a gridded permutation π if π has an occurrence of
σ and the gridded positions of points in the complement of this occurrence do not share a row
or column with any of the gridded positions of the points in the occurrence. The factorization
of π is the set F(π) of minimal factors it contains. For example, the factorization of the
gridded permutation π = 1(0,0)2(0,0)5(1,2)6(1,2)3(2,1)4(3,2)7(3,3) is

F(π) =
{
1(0,0)2(0,0), 2(1,2)3(1,2)1(3,2)4(3,3), 1(3,1)

}
.

This can be seen pictorially in Figure 4.4.

Lemma 4.2.2. For a gridded permutation σ, Co(σ) =
⋂
τ∈F(σ) Co(τ) .

Proof. Assume π contains σ. Then for τ � σ it follows τ � π, hence Co(σ) ⊆⋂
τ∈F(σ) Co(τ) . Conversely, assume π avoids σ then, as the factorization of π covers π,

there is some factor τ that π avoids, so π < Co(τ) and not in the intersection.
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Figure 4.4: The left tiling T1 has the requirement
{
π = 1(0,0)2(0,0)5(1,2)6(1,2)3(2,1)4(3,2)7(3,3)

}
,

and the right tiling T2 has a requirement for each factor in F(π) . By Lemma 4.2.2, we know
Grid(T1) = Grid(T2) .

The containment of a gridded permutation is equivalent to the containment of the factors.
We are now going to discuss removing a factor from a gridded permutation. Let σ and π
be two gridded permutations such that σ is a factor of π. Define π\σ to be the gridded
permutation obtained by removing the single occurrence of σ. For example,

1(0,0)2(0,0)5(1,2)6(1,2)4(2,2)7(2,2)3(3,1)\2(1,2)3(1,2)1(2,2)4(2,2) = 1(0,0)2(0,0)3(3,1) .

If σ is not a factor define π\σ = π. For a tiling T with Grid(T ) ⊆ Co(σ) it is possible to
remove σ from the obstructions and requirements if it appears as a factor.

Proposition 4.2.3. Let σ be a gridded permutation and O,R ⊆ G, then

Av(O) ∩ Co(σ) = Av({τ\σ | τ ∈ O}) ∩ Co(σ) (4.4)

and if all τ in R contain σ as a factor

Co(R) ∩ Co(σ) = Co({τ\σ | τ ∈ R}) ∩ Co(σ) . (4.5)

Proof. Let π be a gridded permutation that contains σ.

1. If τ in O does not contain σ as a factor then τ\σ = τ and the avoidance condition
does not change. If τ does contain σ as a factor, then an occurrence of τ\σ in π
together with an occurrence of σ will form an occurrence of τ in π, hence τ avoids
τ\σ. Conversely, avoiding τ\σ implies avoiding τ.

2. Assume all τ in R contain σ as a factor, so τ\σ is a factor of τ for each τ. If π contains
τ then π contains τ\σ. In order to satisfy that at least one τ is contained πmust contain
at least one τ\σ. Conversely, an occurrence of τ\σ together with an occurrence of σ
forms an occurrence of τ.

Consider the tiling T = ((3, 1), {1(0,0)2(1,0), 1(1,0)2(2,0)}, {{1(1,0)}}), shown in Figure 4.5.
For a gridded permutation in Grid(T ) all of the points in (0, 0) must be below the points
in (1, 0). Similarly, the points in (1, 0) must be below the points in (2, 0). Since (1, 0)
contains a point, it follows that all of the points in (0, 0) are below the points in (2, 0). In
particular, the gridded permutation avoids 1(0,0)2(2,0). Looking at the set of obstructions
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and requirements, it is not clear, without this argument, why the gridded permutations
in Grid(T ) avoid 1(0,0)2(2,0), in particular notice that the sets {1(0,0)2(1,0), 1(1,0)2(2,0)} and
{1(0,0)2(1,0), 1(1,0)2(2,0), 1(0,0)2(2,0)} are both minimal with respect to set containment. It is,
however, possible to check if any gridded permutation is avoided by a tiling.

Figure 4.5: Two tilings that have the same set of gridded permutations but have two different
minimal sets of obstructions with respect to set containment.

Theorem 4.2.4. For a gridded permutation π and tilingT it is decidable if Grid(T ) ⊆ Av(π) .

Proof. If R = ∅ set R = {{ε }}. By Lemma 4.1.1 a tiling can be represented as T =
((n,m),O,R) where O and R are two sets of gridded permutations. In the proof of
Lemma 4.1.1 we introduced the merge of two gridded permutations. We will show that
Grid(T ) ⊆ Av(π) if and only if for all σ in R all gridded permutations in merge(π, σ)
contain some τ in O. Decidability follows since merge(π, σ) is a finite set.

Assume Grid(T ) ⊆ Av(π) . For eachσ inR, a permutation π′ in merge(π, σ) contains π
and containsR. As Grid(T ) = Av(n,m)(O)∩Co(n,m)(R) it follows that π′ is not in Av(n,m)(O) ,
that is it contains some τ in O.

Conversely, assume Grid(T ) * Av(π) and let δ ∈ Grid(T ) be such that δ contains π.
There is some σ ∈ R such that σ � δ. Then the permutation δ′ � δ created by taking the
union of the occurrences ofσ and π in δ′ is an element of merge(π, σ) . Since δ ∈ Av(n,m)(O)
so is δ′. Hence, δ′ does not contain any τ in O.

Corollary 4.2.5. For a tiling T it is decidable if Grid(T ) contains no gridded permutations.

Proof. Check if Grid(T ) ⊆ Av(n,m)(ε ) .

We have shown already that there can be two sets O and O′ that are minimal with respect
to set containment such that T = ((n,m),O,R) and T ′ = ((n,m),O′,R). In some sense,
Lemma 4.1.1 gives a canonical form for the set of requirements. Is there a useful canonical
form for the set of obstructions? Moreover, if it does exist, how can it be computed?

4.3 Counting tilings
Let us briefly step away from gridded permutations. Consider the set of permutations
Avn(Π) ∩ Con(σ) for some set Π of permutations and some permutation σ. To count the
size of this set, we can use the principle of inclusion and exclusion. That is

|Avn(Π) ∩ Con(σ) | = |Avn(Π) | − |Avn(Π ∪ {σ}) |, (4.6)

which, of course, generalizes to containing many patterns, i.e.

|Avn(Π) ∩ Con(σ1) ∩ · · · ∩ Con(σk ) | =
∑

S⊆{σ1,...,σk }

(−1) |S | |Avn(Π ∪ S) |.
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Therefore, if we assume we can enumerate |Avn(Π) | and all of its subclasses, then we have
the enumeration of this set where we force the containment of certain patterns.

In Section 2.3 we covered a method to enumerate Struct rules. The method generalized
to counting the number of griddings on any n×m grid where the enumeration of permutation
sets in each cell is assumed. The first step was to reduce the Struct rules into factors. We
will do the same for tilings. This method will also generalize to a combinatorial rule with
respect to the Cartesian product.

The active cells of a tiling are all those who do not contain a length 1 obstruction. We
will create the graph whose vertices correspond to these active cells and say that two cells
are connected if there is an obstruction or requirement which uses both cells, or the two
cells are on the same row and column. We will then say that the factors of the tiling are
the tilings that are created by using the obstructions and requirements in each connected
component (the cells not mentioned in any gridded permutation are assumed to contain a
length 1 obstruction). An example of factors is given in Figure 4.6.

� × ×

Figure 4.6: A tiling and its factors.

It is clear that if T1, T2, . . ., Tk are the factors of a tiling T then

(Grid(T ), {Grid(T1),Grid(T2), . . . ,Grid(Tk) } ,×)

is a combinatorial rule. We define Factors to be the strategy that takes as input a tiling and
returns this combinatorial rule. For reasons that will become apparent in later sections we
also say the strategy returns all combinations of factors.

Let T = ((n,m),O,R) be a tiling, where all obstructions in O are local. If R = ∅ then
we can apply the methods of Section 2.3. We can enumerate sets with containment, and so
the method generalizes to allowing R to contain length 1 requirements that are local. We
call tilings that satisfy this subset verified since we assume we can get the enumeration for
it. In Figure 4.7, all of the tilings in this Struct cover are subset verified.

We say a gridded permutation is locally factorable if all of the factors in its factorization
are local. From Lemma 4.2.2 the containment of a locally factorable gridded permutation is
equivalent to containing all of the factors.

Consider a locally-factorable gridded permutation. It has the form

π =
(
πc1

1 · · · π
c1
i1

) (
πc2

i1+1 · · · π
c2
i2

)
· · ·

(
πck

ik−1+1 · · · π
ck
ik

)
where each of the ci are on their own row and column. Then if we consider the gridded
permutations avoiding π, they satisfy the formula

Av(π) =
(
Av

(
πc2

i1+1 · · · π
c2
i2
· · · πck

ik−1+1 · · · π
ck
ik

)
∩ Co

(
πc1

1 · · · π
c1
i1

) )
t Av

(
πc1

1 · · · π
c1
i1

)
,

in particular if we iterate this procedure we end with a formula for Av(π) in terms of avoidance
and containment of local gridded permutations. We then have a method to enumerate
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= t t

Figure 4.7: The Struct cover from Proposition 2.3.2 in terms of tilings.

tilings where all of the obstructions are locally factorable, assuming the enumeration of the
appropriate permutation classes are known. We call a tiling T = ((n,m),O,R) locally
factorable if all obstructions in O are locally factorable and all of the requirements in R are
sets of size 1 containing a local gridded permutation. We define the verification strategy
LocallyFactorable that checks if a tiling is locally factorable as we have a method to enumerate
such tilings.

For example, consider the locally factorable tiling

which represents the set of non-empty permutations in Av(231, 1234) as can be seen from
the methods we will introduce in Chapter 6. The gridded permutation 1(0,0)2(0,0)3(2,1)4(2,1) is
locally factorable. In particular it contains the local factor 1(0,0)2(0,0), and by Equation (4.3),
we get that

� t .
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Applying Equation (4.3) to the first tiling on the right hand side gives

�

*............
,

t

+////////////
-

t . (4.7)

All of the gridded permutations in the tilings in Equation (4.7) are local. Therfore, it can be
easily enumerated using Equation (4.6) and the methods in Section 2.5.



35

Chapter 5

Revisiting the insertion encoding

5.1 Insertion encoding
In this section, we will review the insertion encoding introduced by Albert, Linton, and
Ruškuc [6]. The underlying idea is that every length n permutation can be created by
taking a length n − 1 permutation and inserting a new maximum. This is also true for the
permutations in a permutation class however not all positions are allowed. Tracing how to
build a permutation in this way starting from the empty permutation is called the evolution
of a permutation. In the insertion encoding, as we map the evolution, we keep track of where
future points will be inserted. For example, Figure 5.1 has the evolution of the permutation
325146 where the � is viewed as the promise of a future point. A � is called a slot and a string
such as 32�1� is called a configuration. We can not continue to evolve from a configuration
with no slots. The idea is to model the evolution using a language.

�

� 1 �
� 2 � 1 �
3 2 � 1 �

3 2 � 1 4 �
3 2 5 1 4 �
3 2 5 1 4 6

Figure 5.1: The evolution of the permutation 325146.

The slots of a configuration are labeled from left to right, starting with 1. At each step
of the evolution, an insertion is determined by which slot it is inserted into, and how it is
inserted. There are four ways to insert a new maximum element n into a slot:

� 7→ �n� represented by m (for middle)
� 7→ n� represented by l (for left)
� 7→ �n represented by r (for right)
� 7→ n represented by f (for fill)

By subscripting the insertion type by which slot we insert into, this encoding is then unique
on the set of all permutations. For example, the permutation 325146 considered in Figure 5.1
has the encoding m1m1f1l2f1f1. This is called the insertion encoding.
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For a permutation class C, let L(C) be the language that is formed by the insertion
encodings of the permutations in C. We are going to look particularly at the case when this
language is regular.

The prefix p of a word in L(C) corresponds to some configuration. If it has k slots then,
as slots are viewed as promises, the shortest word in L(C) with this prefix will be of length
|p| + k by choosing to fill the promises in some order. We say a configuration is acceptable
if it corresponds to a prefix of some word in L(C) .

For a language to be regular, it must be accepted by some deterministic finite automata
(DFA). In particular, if this DFA has k states, then for any prefix p of any word in L there
exists a word w of length at most k + |p| since we can always choose a path that does not
revisit a state. In particular, there is a maximum number of slots allowed on any configuration
which can be completed to form a word if L is regular. The work of Albert, Linton, and
Ruškuc [6] tells us that this condition is sufficient, and moreover, they gave a linear time
check for a basis as to whether or not this language is regular. This result was rephrased
nicely by Vatter [55].

Theorem 5.1.1 (Albert, Linton, and Ruškuc [6], Vatter [55]). For a permutation class
C = Av(Π) the following are equivalent:

(i) the set Π contains at least one permutation from each of Av(132, 312) , Av(213, 231) ,
Av(123, 3142, 3412) , and Av(321, 2143, 2413) ,

(ii) there exists an integer k such that there are at most k slots in any acceptable configuration
for C,

(iii) the language L(C) is regular.

The remainder of this section will be focused on showing how to find the insertion
encoding, or an equivalent formulation, using the Tilescope algorithm for those whose
language is regular. We will call these the regular insertion encodable permutation classes.
Let Lp(C) be the set of words in L(C) with prefix p.

Lemma 5.1.2. Let C = Av(Π) be a permutation class and p be a prefix of a word in
L(C) , then the words in Lp(C) correspond to the underlying permutations of the gridded
permutations on a tiling.

(sketch). The 1 × 1 tiling formed by placing an obstruction for each pattern in Π and a point
requirement

T =
(
(0, 0),

{
σ(0,0) | σ ∈ Π

}
,
{{

1(0,0)
}} )
,

corresponds to the configuration� and all of the gridded permutations in Grid(T ) correspond
to all of the non-empty permutations in C. Let p = p1p2 · · · pk , and T0 = T . Then pi will
be one of f j , l j , r j , or m j for some integer j. Build Ti as follows by adding the point to
the jth cell, from the left in the top row containing a point requirement, say c = (x, y). For
all the obstructions, add 1 to the y-coordinate of each cell, except those which have points
in c. If an obstruction πd1

1 π
d2
2 · · · π

dm
m has a point in c and contains the contiguous subword

π′ = πc
s1π

c
s2 · · · π

c
st add the t + 1 obstructions created by picking some s′ ∈ {0, . . . , st } by

placing the points in π′ in the cell (x − 1, y + 1) if si ≤ s′ else in cell (x + 1, y + 1), and
raising the y-coordinate of the remaining cells of π by 1. If πc

s′ = 1c then add the obstruction
created by removing 1c from π and raising the y-coordinate of each cell by 1. If pi = f j
add the obstructions 1(x−1,y+1) and 1(x+1,y+1); if pi = l j add the obstruction 1(x−1,y+1); or if
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pi = r j add the point obstruction 1(x+1,y+1). For p iterate to get Tp = Tk . In Figure 5.2 the
tilings for all of the length 1 prefixes are shown for Av(231) .

Then Grid
(
Tp

)
is in bijection with Lp(C) , since we are mimicking the action of each

letter at each step, keeping track of the avoidance conditions as we go. Theorem 6.3.3 gives
a rigorous proof which proves a more general statement.

= =

= =

Figure 5.2: The tilings for the prefixes ε , f1, l1, r1, and m1, respectively, as described in
Lemma 5.1.2 for Av(231) , where for each we have the tiling using the methods of Section 4.2
and removing rows and columns that are empty.

The points in Tp play no role in terms of avoidance. These points are also placed onto
their own row and column, and so we see that Grid

(
Tp

)
can then be enumerated as a Cartesian

product of points and the top row. This is a special case of the Factors strategy discussed in
Section 4.3. We define the verification strategy PointVerify that only verifies the point tiling.

Given a tiling T , with a row containing j cells which all contain a point requirement.
Then there is a length preserving bijection from Grid(T ) to the disjoint union of the tilings
created as in the proof of Lemma 5.1.2 by the moves f j , l j , r j and m j for all j ∈ {1, 2, . . . , n}.
We define InsEnc to be the strategy that takes as input Grid(T ) and returns this combinatorial
rule.

After removing the points from Tp we are left with a 1× k tiling. By Theorem 5.1.1 there
is a bound on the number of slots, and as the non-empty cells in the top row correspond to
the slots, this implies there is a bound on the size of k. Each application of InsEnc will add
obstructions which are shorter or equal to the length of those in the original tiling. Therefore,
there is a bound on the length of obstructions in these tilings, and moreover, this implies
there are finitely many 1 × k tilings we will come across.

Theorem 5.1.3. The Tilescope algorithm will terminate on regular insertion encodable
permutation classes.

Proof. Use the strategies Factors, InsEnc, and PointVerify. By Theorem 5.1.1 this will
terminate, as the top rows in the tilings found must eventually repeat.

Vatter [55] gave an implementation for finding the regular insertion encoding of permuta-
tion classes. This implementation relied on a result that requires generating all permutations
from a given configuration to some length. We do not have to do that as the gridded per-
mutations already encode all of the information gained from this. Since the generation of
permutations is an expensive operation, the implementation of Theorem 5.1.3 is much faster.
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5.2 Row separation
From Theorem 5.1.1(i) it can be seen that Av(312) is not a regular insertion encodable
permutation class. It does, however, have a context-free grammar, as given by Albert,
Linton, and Ruškuc [6, Proposition 4]. We will rediscover this using gridded permutations.

We first apply InsEnc to the tiling corresponding to the prefix ε , as in Lemma 5.1.2, and
use the methods of Section 4.2 to get that

� t t t .

The first tiling will be verified by PointVerify. Applying Factors will decompose each of the
middle two tilings into two 1 × 1 tilings.

� × �

Consider the fourth tiling, corresponding to Tm1 . All of the points in cell (0, 1) of a gridded
permutation in Grid

(
Tm1

)
will appear below all of the points in cell (2, 1) due to the

obstruction 2(0,1)1(2,1). Therefore it is equivalent to the tiling where these two cells are
put on their own row and column, which we can then apply Factors to.

. � � × × . (5.1)

Together these combinatorial rules form a combinatorial specification, as depicted in Fig-
ure 5.3 Moreover they can be seen to imply the grammar

S 7→ f1 |l1S |r1S |m1SS,

given in Albert, Linton, and Ruškuc [6]. We are now going to define a set of strategies for
finding insertion encodings taking into consideration such separations. The combinatorial
specifications found can be translated to context-free grammars and so will have algebraic
generating functions.

Given a tiling T = ((n,m),O,R) with the obstructiion 2(x,y1)1(x,y2) we know that for
a gridded permutation π in Grid(T ) all of the points in (x, y1) must be below all of the
points in (x, y2). A similar statement holds for the obstruction 1(x,y2)2(x,y1). If either of
these obstructions are in O we say (x, y1) <T (x, y2). If there is a cell (x, y) that satisfies
(x, y) <T (x, y′) for all non-empty cells (x, y′) in T , then it is true that all of the points in
(x, y) are below the rest of the points in that row. As such we can create the separated tiling
as we did in our argument for Av(312) in Equation (5.1).



5.2. ROW SEPARATION 39

�

Figure 5.3: A pictorial representation of the combinatorial specification for Av(312) found
by Tilescope using the separation insertion encoding.

This idea could also be stated in terms of columns. Therefore, we define RowColSep to
be the strategy that takes as input a tiling T and separates all rows (and columns) maximally
with respect to the length two obstructions in T . In practice, what we do is generate all
possible separations that satisfy the inequalities and sort these by the number of rows (or
columns) we separate into, picking the one with the most separation.

In Section 4.2, we showed that

� .

This essentially says that there is a transitivity of our inequalities through cells containing
point requirements. As the InsEnc strategy will leave many point requirements, and more
length 2 obstructions can imply more separations, we define the strategy ObsTrans, that adds
in the extra length 2 obstructions that can be found in this manner. We collectively call the set
of strategies InsEnc, ObsTrans, PointVerify, RowColSep and Factors the separation insertion
encoding. This can be tried from all directions, and we call this strategy the separation
insertion encoding with symmetries.

Conjecture 5.2.1. There exists a condition such as the one in Theorem 5.1.1 that charach-
terizes the bases that will terminate with the separation insertion encoding.

Tenner [53] enumerated the permutation class

Av(4321, 34512, 45123, 35412, 43512, 45132, 45213, 53412, 45312, 45231) .

Tilescope found a combinatorial specification for this with 100 equations using separation
insertion encoding with symmetries. These equations can be solved to give the generating
function

1 − 4x + x3

1 − 5x + 3x2 + 2x3 − x4
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for this permutation class.
In Pantone [50], the permutation classes

Av(3124, 4123, 4231, 4312, 21435, 21534, 32541) ,
Av(3124, 4132, 4312, 21354, 21435, 21543, 31542) , and

Av(3124, 4123, 4132, 4231, 4312, 21354, 21435, 21534, 21543, 31542, 32541)

were enumerated using grid classes. Tilescope found combinatorial specifications with 47,
39, and 38 equations, respectively, using separation insertion encoding with symmetries.
These solve to give the generating functions

1−5x+7x2−x3

1−6x+11x2−6x3 ,
1−8x+24x2−32x3+19x4−6x5+x6

1−9x+31x2−51x3+41x4−15x5+12x6 , and 1−6x+13x2−11x3+3x4−2x5+x6

1−7x+18x2−21x3+11x4−2x5

for each of these permutation classes.

5.3 Allowing more directions
The insertion encoding builds the permutations from bottom to top. Of course, this can be
done in any direction: top to bottom, bottom to top, left to right, or right to left. But why not
build from both the top and the bottom at the same time? We will consider the permutation
class C = Av(2143, 2413, 3142, 3412) which does not succeed with the regular insertion
encoding or with separation insertion encoding.

We will start by applying InsEnc and removing redundant obstructions to get,

� t t t .

After considering the factors, we are left with only the top row of the final tiling to consider.
Instead of continuing with InsEnc, we will use the variation where we place the maximum.
This would normally return a combinatorial rule with 8 tilings, but we remove the tilings that
come from placing in the middle of either cell, the rightmost of cell (0, 0), or the leftmost of
cell (1, 0) as each of these choices will lead to always containing at least one of the length 3
obstructions. After removing redundant obstructions from the remaining 4 tilings we have,

� t t t .

After applying Factors, we have a combinatorial specification for Av(2143, 2413, 3142, 3412)
as depicted in Figure 5.4. This combinatorial specifiaction leads directly to the generating
function

x − 2x2

1 − 4x + 2x2 .

We define the strategy InsEncTAB that allows inserting both the top or bottom elements of a
given row in a tiling and define separation top and bottom insertion encoding with symmetries
to be the same the set of strategies as separation insertion encoding with symmetries except
we replace InsEnc with InsEncTAB.
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Figure 5.4: A pictorial representation of the combinatorial specification found by Tilescope
for Av(2143, 2413, 3142, 3412) using top and bottom insertion encoding.
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5.4 Successes

In this section, we will discuss running the Tilescope algorithm with the strategies introduced
in this chapter. We will run on all permutation classes whose basis is a subset of S4. With
Theorem 5.1.3 we know Tilescope will terminate on regular insertion encodable permutation
classes, and using Theorem 5.1.1 whether a permutation class has a regular insertion encoding
can be seen from the basis. Therefore we work on the lexicographically minimal bases which
are not regular insertion encodable from any direction. In total there are 2897 such bases,
the largest containing 12 patterns.

We ran with three sets of strategies, incrementally increasing the power of the set of
strategies. The first set we ran was the separation insertion encoding. The second set was
the same, but we tried it from all directions by using the separation insertion encoding with
symmetries. The final set of strategies used was the separation top and bottom insertion
encoding with symmetries.

If a basis succeeds with the separation insertion encoding, then it will succeed by taking
symmetries. If it succeeds with either of those, it will succeed allowing the top and bottom
insertions. Therefore we ran one after the other, only running the failures from the previous
run. Each basis was run for ten minutes using the separation insertion encoding, then ten
minutes with symmetries and finally 60 minutes with the top and bottom strategy. A basic
heuristic we came to while running these bases with these strategies, is either they finish
reasonably quickly or not at all. The results of these runs can be seen in Table 5.1.

Number of
length 4

patterns in
basis

Not regular
insertion
encodable

Success
with

separation
insertion
encoding

Success
with

separation
insertion
encoding

with
symmetries

Success
with

separation
top and
bottom

insertion
encoding

with
symmetries

No success
with any of

these
strategy

sets

12 1 1 - - 0
11 10 8 1 0 1
10 48 34 8 0 6
9 151 93 36 0 22
8 337 171 108 1 57
7 547 211 221 9 106
6 659 178 300 36 145
5 578 94 254 75 155
4 363 26 114 79 144
3 153 2 10 36 105
2 43 0 0 3 40
1 7 0 0 0 7

total 2897 818 1052 239 788

Table 5.1: The successes for bases consisting of length 4 patterns with insertion encoding
strategies.
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The three 2x4 permutation classes that succeed with separation top and bottom insertion
encoding with symmetries are Av(1324, 4231) , Av(1342, 2431) and Av(1432, 3412) . These
combinatorial specifications correspond to systems of 112, 66, and 56 equations, respectively,
which can be routinely solved by an algebra system to show that their generating functions
are

1−12x+59x2−152x3+218x4−168x5+58x6−6x7

1−13x+60x2−202x3+336x4−320x5+160x6−32x7 ,
1−5x+3x2+x2√1−4x

1−6x+8x2−4x3 , and 1−4x+x2

1−5x+4x2 ,

respectively.
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Chapter 6

Point placement

6.1 Placing points on a tiling
In Chapter 5, we introduced strategies that inserted the minimum point in each row and
placed this point on a new row and column. In this chapter, we will generalize this idea,
although we will move away from the idea of slots. Given a tiling T , we will create a larger
tiling with a required point placed into a cell, expanding that row and column, as seen in
Figure 6.1. We refer to the tiling with the placed point at cell (i, j) in an n × m tiling as
T

(n,m)
(i, j) .

Figure 6.1: On the left is a tiling T with a point requirement at cell (2, 2). On the right is the
tiling T (6,6)

(2,2) with the point requirement of the left tiling placed on a new row and column.
The regions enclosed by the bold lines correspond to the cells of T . In Sections 6.2 and 6.3
we discuss how to make this operation a combinatorial rule.

In Figure 6.1 we have drawn bold lines to highlight the regions that the cells from T will
be mapped to. Formally, for an n × m tiling T and the cell (i, j) of T corresponds to the set
of cells in T (n,m)

(i, j) given by κ(n,m)
(i, j) (a, b) = A × B where

A =




{a} a < i
{a, a + 1, a + 2} a = i
{a + 2} a > i

and B =




{b} b < j
{b, b + 1, b + 2} b = j
{b + 2} b > j

.

We want to ensure that the avoidance and containment conditions given by T are maintained
with respect to this expansion of cells.

There are two stages to this process. First, we want the expanded regions to still have
the same avoidance and containment conditions as the original tiling. We will cover this in
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Figure 6.2: A gridded permutation in red, with black circles representing where a placed
point in the region could be with respect to the gridded permutation.

Section 6.2. Secondly, we need that the placed point can be uniquely identified from the
original tiling to ensure we get a bijection between the sets of gridded permutations defined
by these tilings. For example, with the insertion encoding, we uniquely identified the placed
point as the lowest point in the given row. We will cover this in Section 6.3.

6.2 Stretching gridded permutations
To place a point (i, πi) of a gridded permutation π = πc1

1 π
c2
2 · · · π

ck
k onto a new row and

column we need the following: For integers a, b and x, let

αa,b(x) =




x a < b
x + 1 a = b
x + 2 a > b

.

For the point (`, π`), in cell c`, we say β(a,b) (`, π`, c`) = (α`,a (c`), απ`,b(c`)). Finally, the
mapping φ(i,πi ), given by

φ(i,πi )
(
πc1

1 π
c2
2 · · · π

ck
k

)
= πd1

1 π
d2
2 · · · π

dk

k , where d` = βi,πi (`, π`, c`),

is the mapping which places the point (i, πi) onto a new row and column and shifts the
remaining points accordingly.

We also need to consider the case where the points of π are not placed on a new row and
column. If we are placing the point into cell (i, j) then the point being placed must be on
some horizontal line between the points in row j and some vertical line between the points
in column i, see Figure 6.2. The points in the column will have r contiguous indices in π,
say u, u + 1, . . ., u + r − 1, and the points in the row will have s contigous values v, v + 1,
. . ., v + s − 1. We define

stretch(i, j)(π) =
{
φ(u+n−0.5,v+m−0.5) (π) | n ∈ {0, 1, . . . , r } and m ∈ {0, 1, . . . , s}

}
∪

{
φ(`,π` ) (π) | (`, π`) ∈ π such that cl = (i, j)

}
.

In words, stretch(i, j)(π) is the set of gridded permutations obtained by streching a gridded
permutation in a n × m tiling to a gridded permutation in Grid

(
T

(n,m)
(i,j)

)
with the same

underlying permutation that maps each gridded position (k, `) to some cell in κ(n,m)
(i, j) (k, `).

By construction we get the following.

Theorem 6.2.1. Let σ be a gridded permutation and T be a tiling. Then Grid(T ) is a subset
of Av(σ) if and only if Grid

(
T

(n,m)
(i,j)

)
is a subset of Av

(
stretch(i, j)(σ)

)
.
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The goal is to find a combinatorial rule for a tiling by placing points onto a new row
and column. To do this we will need to find a bijection to a set of tilings. If for a fixed
subset G′ ⊆ G we can select the index of a specific point of each gridded permutation in
G′ i.e., some function f : G′ 7→ Z2 defined with the mapping fn : G′n 7→ {1, 2, . . . , n}
as f (π) = ( fn(π), π fn (π)) e.g., G′ could be the set of all non-empty gridded permutations
then f (π) might be the topmost point in π, then the mapping θ f : G′ 7→ G given by
θ f (π) = φ f (π) (π) is a well defined map. We call the function f a point picking function.

Theorem 6.2.2. For an n × m tiling T and a point picking function f : Grid(T ) 7→ Z2 the
mapping

θ f : Grid(T ) 7→
⊔

(i,πi )∈{ f (π) |π∈Grid(T ) }

Grid
(
T

(n,m)
ci

)
where ci is the gridded position of f (π) in π is a well-defined mapping.

Proof. Let f (π) = ci. Then θ f maps π to a gridded permutation in Grid
(
T

n,m
ci

)
. Since f is

well-defined this gridded permutation will always be the same.

In the next section, we will modify the image of this mapping, for some point picking
functions, so that θ f is a bijection.

6.3 Forced points in requirements
Magnússon [44] introduced forced permutation patterns. The idea is to reduce the number
of occurrences of a pattern σ in a permutation π by considering the set of occurrences of σ
in π where a particular point is as far in some direction as possible. We extend this definition
to gridded permutations.

Definition 6.3.1. Let σ = σc1
1 σ

c2
2 · · ·σ

ck
k be a gridded permutation. A force F is a point

(i, σi) with a direction from the set {←,→, ↑, ↓}. For an occurrence of σ in a gridded
permutation π, say πc1

j1
πc2

j2
· · · πck

jk
, the strength of the force F = ((i, σi), d) is

strength
(
σ, F, πc1

j1
πc2

j2
· · · πck

jk

)
=




ji d =→
− ji d =←
πi d =↑
−πi d =↓

.

Let occσ,F (π) be the set of occurrences of σ in π with maximum strength.

For a gridded permutation σ and force F, the point being forced is uniquely defined
within every permutation containing σ. For a tiling Grid(T ) ⊆ Co(σ) and for every force
F on σ define the function fσ,F : Grid(T ) 7→ Z2 such that fσ,F (π) is the unique forced
point in π. Then the function θ fσ,F as given in Theorem 6.2.2 is a well-defined map.

Let T = ((n,m),O,R) be a tiling such that R contains the requirement {σ}. For some
force F = ((i, σi), d), let ci be the gridded position of (i, σi) in σ. Define Tσ,F to be the
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tiling T (n,m)
ci with the additional obstructions and requirements

Oσ,F =
{
o = σe1

i1
σe2

i2
· · ·σek

ik
∈ stretchci(σ) | ei is farther in direction d than (i + 1, j + 1)

}

∪ *
,

⋃
o∈O

stretchci(o)+
-

Rσ,F =




⋃
r∈Ri

stretchci(r) | Ri ∈ R



.

With this we can refine the image of the mapping θσ,F to get a bijection.

Theorem 6.3.2. Let σ be a gridded permutation. For a tiling T = ((n,m),O,R) ⊆ Co(σ) ,(
Grid(T ),

{
Grid

(
{Tσ,F

) }
,t

)
is a combinatorial rule.

Proof. The mapping θσ,F is a length preserving mapping that also preserves the underlying
permutation. We will show it is a bijection.

Let π1 and π2 be two gridded permutations in Grid(T ) such that θσ,F (π1) = θσ,F (π2),
then it follows that π1 = π2 since θσ,F maps the gridded positions with the mapping κ(n,m)

(i, j) .
Let π be a gridded permutation in Grid

(
Tσ,F

)
. Let π′ be the gridded permutation formed

by replacing a gridded position ci in π with the inverse mapping of κ(n,m)
(i, j) . As the gridded

permutations in Grid
(
Tσ,F

)
avoid all of the stretched gridded permutations in stretch(i, j)(σ)

which are farther in direction d it is clear that θσ,F (π′) will place the unique forced point in
π in cell (i + 1, j + 1), and therfore θσ,F (π′) = π.

Theorem 6.2.1 shows that if Grid(T ) ⊆ Av(σ) then Grid
(
Tσ,F

)
⊆ Av(σ) . Also, for

a set of gridded permutations R, Theorem 6.2.1 shows that if Grid(T ) ⊆ Co(R) then
Grid

(
Tσ,F

)
⊆ Co(R) . We define PointPlacement to be the equivalence strategy which

returns the combinatorial rules in Theorem 6.3.2.
If a tiling Grid(T ) ⊆ Co(R) , then we could also find the point which is the lowest in an

occurrence of some σ ∈ R. We will do this one level of generality further, that is we will
consider Grid(T ) ⊆ Co(R1) ∩ Co(R2) ∩ · · · ∩ Co(Rk ) . For a direction d ∈ {←,→, ↑, ↓}
let the mapping fd,(R1,R2,...,Rk ) : Co(R1),Co(R2) ∩ · · · ∩ Co(Rk ) 7→ Z2 be defined by:
fd,(R1,R2,...,Rk ) is the point furthest in the direction d in π that is in an occurrence of a pattern
σ in some Ri.

For each (i, j) in { fd,(R1,R2,...,Rk ) | π ∈ Grid(T ) } define the tiling T (i, j)
d,(R1,R2,...,Rk ) to be the

tiling T (i, j)
(n,m) with the additional obstruction and requirements

O
(i, j)
d,(R1,R2,...,Rk ) =

*
,

⋃
o∈O

stretch(i, j)(o)+
-

∪ {o = σe1
i1
σe2

i2
· · ·σek

ik
∈ stretchi, j(σ) | σ ∈

k⋃
i=1
Ri and e is

farther in direction d than (i + 1, j + 1)}

R
(i, j)
d,(R1,R2,...,Rk ) =




⋃
r∈Ri

stretch(i, j)(r) | Ri ∈ R



.
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Theorem 6.3.3. Let R1,R2, . . . ,Rk be sets of gridded permutations. Let T = ((n,m),O,R)
be a tiling that is a subset of each Co(Ri) , then(

Grid(T ),
{
Grid

(
T

(i,j)
d,(R1,R2,...,Rk)

)
| (i, j) = fd,(R1,R2,...,Rk ) (π) for some π ∈ Grid(T )

}
,t

)
is a combinatorial rule.

Proof. The mapping θ fd, (R1,R2,...,Rk ) is a length preserving mapping as it preserves the under-
lying permutation. We will show it is a bijection.

Let π1 and π2 be two gridded permutations in Grid(T ) such that

θ fd, (R1,R2,...,Rk ) (π1) = θ fd, (R1,R2,...,Rk ) (π2)

is in the same tiling Grid
(
T

(i,j)
d,(R1,R2,...,Rk)

)
, then it follows that π1 = π2 since θ fd, (R1,R2,...,Rk )

maps the gridded positions with the mapping κ(n,m)
(i, j) .

Let π be a gridded permutation in Grid
(
T

(i,j)
d,(R1,R2,...,Rk)

)
. Let π′ be the gridded permutation

formed by replacing a gridded position ci in π with the inverse mapping of κ(n,m)
(i, j) . As gridded

permutations in Grid
(
T

(i,j)
d,(R1,R2,...,Rk)

)
avoids all of the stretched gridded permutations in

stretch(i, j)(r) for every gridded permutation r in some Ri which are farther in direction d it is
clear that θσ,F (π′) will place the unique forced point in π in cell (i + 1, j + 1), and therefore
θσ,F (π′) = π.

As before this mapping also preserves the avoidance and containment conditions. We de-
fine the strategy ExtremePointPlacement(d) that returns the combinatorial rules in direction
d from Theorem 6.3.3.

The InsEnc fits into this framework by applying the ExtremePointPlacement(↓) strategy
to the set of singleton requirements with the length 1 gridded permutation in each cell
corresponding to a slot. To capture the InsEnc precisely some work needs to be done to
ensure the cells are corresponding to slots in the end, but with the ideas in Section 6.4 InsEnc
is recovered.

6.4 Requirement insertion and placement
The most basic thing we can say when looking for the structure of permutations is either a
permutation is empty or it is not. Said differently, either a permutation contains 1 or avoids
1. This statement is true for any pattern and can be stated for gridded permutations also.

Theorem 6.4.1. Let T = ((n,m),O,R)) be a tiling and σ be a gridded permutation. Define
the tilings

TAv(σ) = ((n,m),O ∪ {σ},R) and TCo(σ) = ((n,m),O,R ∪ {{σ}}),

then (Grid(T ), {Grid
(
TAv(σ)

)
,Grid

(
TCo(σ)

)
},t) is a combinatorial rule.

Proof. Every gridded permutation either avoids or contains σ, so

Grid(T ) = (Grid(T ) ∩ Av(σ) )t(Grid(T ) ∩ Co(σ) ) = Grid
(
TAv(σ)

)
tGrid

(
TCo(σ)

)
.



50 CHAPTER 6. POINT PLACEMENT

Given this theorem we define ReqInsertion(k) to be the strategy that returns these
combinatorial rules for local gridded permutations of length at most k. For example,
ReqInsertion(1) says either a cell is empty, or it is not.

We will refer to the set of strategies ReqInsertion(k) , PointPlacement, RowColSep,
ObsTrans, Factors, LocallyFactorable as length k requirement insertion with point placement.
The remainder of this section will give an example of a combinatorial specification found
using length 2 requirement insertion with point placement for Av(1243, 1342, 2143) , first
enumerated by Mansour and Shattuck [48] (it is T6 in their paper).

A permutation π in Av(1243, 1342, 2143) is either empty or contains at least one point,
i.e., performing ReqInsertion(1) gives

� t .

We can then place the point requirement we have introduced using PointPlacement. We have
shown the leftmost and rightmost cases, hence these are two representations of non-empty
permutations in Av(1243, 1342, 2143) .

� � (6.1)

Alternatively, we can say a non-empty permutation in Av(1243, 1342, 2143) is either a
non-empty decreasing permutation or contains 12, i.e., performing ReqInsertion(2) gives

� t .

If we apply PointPlacement to the second tiling twice, first placing the point with force
((2, 2),→) and then placing the point with the force ((1, 1),←), after applying RowColSep,
we will get the following combinatorial rule,

�
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which we can apply Factors to, giving the combinatorial rule

� × × ×

where the first is equivalent to any non-empty permutation in the permutation class, see
Equation (6.1). We then only need to explore the second tiling on the right hand side. In this
tiling, either cell (1, 0) is empty or contains a point.

� t

If we place this point with force ((1, 1),←) we get

�

which applying Factors to gives

� ×

where the first tiling on the right is equivalent to a non-empty permutation in the per-
mutation class, see Equation (6.1). Thus we have described a combinatorial specification
for Av(1243, 1342, 2143) , as depicted in Figure 6.3, which routinely gives the generating
function

1 + x −
√

1 − 6x + 5x2

4x − 2x2

for the binomial transform of Fine’s sequence, A033321 on the OEIS.

6.5 Elementary combinatorial specifications for
permutation classes

For a regular insertion encodable permutation class Av(Π) it can be seen from Theorem 5.1.1
that for an arbitrary pattern σ the permutation class Av(Π ∪ {σ}) is also regular insertion

https://oeis.org/A033321
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�

�

�

�

Figure 6.3: A pictorial representation of the combinatorial specification found by Tilescope
for Av(1243, 1342, 2143) .
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encodable. In this section, we will find a similar condition for some of the combinatorial
specifications the Tilescope algorithm returns.

As we have seen a few times in this thesis, Av(231) can be described by the combinatorial
rule

� t

which leads to the Catalan generating function. This would be found using the strategies
ReqInsertion(1) , PointPlacement, RowColSep, Factors and PointVerify. For a permutationσ,
if we enforce that each tiling in this combinatorial rule avoids σ this will be a combinatorial
rule for Av(231, σ) . For example, if σ = 1234, we would get

� t . (6.2)

After adding the avoidance condition for an arbitrary σ second tiling in this combinatorial
rule will always be locally factorable and can be enumerated using the methods in Section 4.3.

The reason we could add an arbitrary permutation σ and get back a combinatorial rule
that is easy to enumerate is that each tiling in the rule is fully separated i.e., there are no
non-empty cells in the same row or column. Given such a tiling, all obstructions must be
local or locally factorable, and in particular, verified by the LocallyFactorable strategy. We
will call such a tiling elementary, and define ElementaryVerify to be the verification strategy
that verifies all elementary tilings.

We define a permutation class C to be elementary if it can be represented as a non-trivial
disjoint union of elementary tilings in such a way that the underlying permutations of the
gridded permutations in the tilings are precisely the permutations in C. We say the disjoint
union of tilings is trivial if it consists of a single tiling, or if all of the tilings are 1.

Theorem 6.5.1. Let C = Av(Π) be an elementary permutation class, given by

C = S(T1) t S(T2) t · · · S(Tk )

where S(T ) is the set of underlying permutations of the gridded permutations in Grid(T ) .
For any pattern σ in S the permutation class Av(Π ∪ {σ}) is elementary if there is no Ti
with Av(Π ∪ {σ}) ⊆ S(Ti).

Proof. Let T ′i be the same as tiling Ti that additionally avoids all gridded permutations
in G(n,m) with underlying permutation σ, then S(T ′i ) ⊆ Av(σ) . Each of the gridded
permutations we have added will be locally factorable because Ti was assumed to be fully
separated. Therefore,

C ∩ Av(σ) = S(T ′1 ) t S(T ′2 ) t · · · t S(T ′k )
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where each T ′i is an elementary tiling. Since there are at least two tilings in the original
disjoint union of sets which contain elements from Av(Π ∪ {σ}) this will be a non-trivial
disjoint union.

The definition of an elementary permutation class can be restated in a way more akin
to peg permutations defined in Section 2.4. Define a generalized peg permutation to be a
permutation where each letter is decorated with a permutation set of the form

Av(Π) ∩
⋂
σ∈Π′

Co(σ)

for two permutation sets Π and Π′. Let Mρ be the matrix defined by Mi, j = S if ρi = jS

that is ρ − i is decorated with the set S, then Grid
(
ρ
)
= Grid

(
Mρ

)
as for peg permutations.

We say a generalized peg permutation ρ is valid if each permuation in Grid
(
ρ
)

has a unique
gridding.

Theorem 6.5.2. A permutation class is elementary if there exists a finite set of valid gener-
alized peg permutations H such that

C =
⊔
ρ∈H

Grid
(
ρ
)
.

Proof. After repeated application of ReqInsertion, any elementary tiling can be given by a
disjoint union of tilings with local obstructions and requirements. These correspond directly
to valid generalized peg permutations.

For example, in Section 4.3 this procedure was applied to the tiling representing non-
empty permutations in Av(231, 1234) in Equation (6.2).

Corollary 6.5.3. All polynomial permutation classes are elementary.

Proof. This follows from Theorem 6.5.2 and Theorem 2.4.2.

As evidenced by Av(231) not all elementary permutation classes are polynomial. A
permutation class is elementary if there exists an iterative combinatorial specification where
each of the terminal states is an elementary tiling. We search for such specifications for all
permutation classes with basis Π ⊆ S4 using the sets of strategies

• ReqInsertion(k) , PointPlacement, Factors, ObsTrans, RowColSep,
and ElementaryVerify (for k ∈ {1, 2, 3})

• InsEnc, Factors, ObsTrans, RowColSep, and ElementaryVerify

• InsEncTAB, Factors, ObsTrans, RowColSep, and ElementaryVerify

for 24 hours each. From Theorem 6.5.1, if we find an elementary iterative combinatorial
specification for a permutation class then by adding another length 4 pattern to the basis this
will remain elementary. Therefore we first ran bases with one pattern, then two patterns,
etc., removing those which have a shorter elementary specification found by the algorithm
that implies it is elementary. The results are given in Table 6.1.

There are 3 polynomial permutation classes with two length 4 patterns, but despite Corol-
lary 6.5.3 the Tilescope algorithm was unable to find a witnessing elementary combinatorial
specification for two of these, only succeeding for the finite class Av(1234, 4321) .
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|Π| non-
symmetric

minimal
elementary

bases

total
number of
elementary

bases

total
number of

non-
elementary

bases

non-
insertion-
encodable
and non-

elementary
12 342424 0 342424 0 0
11 316950 0 316949 1 0
10 249624 0 249611 13 0
9 166786 0 166717 69 0
8 94427 0 94196 231 3
7 44767 0 44260 507 28
6 17728 5 16933 795 108
5 5733 44 4890 843 222
4 1524 334 903 621 244
3 317 38 44 273 143
2 56 1 1 55 43
1 7 0 0 7 7

total - 422 - 3416 798

Table 6.1: The successes for bases consisting of length 4 patterns with elementary point
placement strategies.

6.6 Successes
We are now going to turn the algorithm to full strength on the bases which are non-elementary
and non-regular-insertion-encodable. We searched for recursive combinatorial specification
for each permutation class with the sets of strategies

• ReqInsertion(k) , PointPlacement, Factors, ObsTrans, RowColSep,
and LocallyFactorable (for k ∈ {1, 2, 3})

• InsEnc, Factors, ObsTrans, RowColSep, and LocallyFactorable

• InsEncTAB, Factors, ObsTrans, RowColSep, and LocallyFactorable

first for 1 hour, then 24 hours and finally 14 days. The results of these runs are given in
Table 6.2. The longest time taken to successfully find a combinatorial specification was
approximately 4 days for Av(1234, 1324, 3412) .

The successful bases with two length four patterns are listed in Table 6.3. Some other
notable successes outside of S4 include Av(4231, 35142, 42513, 351624) which correspond
to the DBI Schubert variety and was first enumerated by Albert and Brignall [5]. Tilescope
found a combintatorial specification with 50 equations that can be solved to find the generating
function

3 − 17x + 8x2 −
(
1 − 5x − 2x2

) √
1 − 4x

2
(
1 − 6x + 5x2 − 4x3) .

Brignall and Sliačan [23] enumerated Av(4132, 4231, 31254, 41253) that can be equiv-
alently described as the set of permutations that are juxtapositions of the form αβ where
α ∈ Av(312) and β ∈ Av(21) . Tilescope found a combinatorial specification with 37
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|Π| non-
insertion-
encodable
and non-

elementary

success
after 1 hour

success
after 24
hours

success
after 14

days

number of
bases

remaining

8 3 2 1 0 0
7 28 20 6 0 2
6 108 82 14 0 12
5 222 172 20 0 30
4 244 180 21 1 42
3 143 80 17 7 39
2 43 9 5 0 29
1 7 0 0 0 7

total 798 545 84 8 161

Table 6.2: The successes for bases consisting of length 4 patterns with point placement
strategies.

equations that lead to the generating function

(
1 − 6x + 7x2 +

(
1 − 4x + x2

) √
1 − 4x

) √
1 − x +

(
1 − 4x + 3x2 +

(
1 − 2x + x2

) √
1 − 4x

) √
1 − 5x(

1 − 7x + 12x2 − 6x3 +
(
1 − 5x + 4x2

) √
1 − 4x

) √
1 − x +

(
1 − 5x + 6x2 − 2x3 +

(
1 − 3x + 2x2

) √
1 − 4x

) √
1 − 5x

for this permutation class.

Π number of
equations

OEIS
sequence

reference to first enumeration

1243, 2143 65 A155069 Kremer [39, 40]
1243, 2413 12 A165538 Albert, Atkinson, and Vatter [4]
1324, 2143 71 A032351 Bóna [20]
1324, 2413 10 A032351 Bóna [20]
1324, 4231 112 A165528 Albert, Atkinson, and Vatter [3]
1342, 2413 9 A165541 Albert, Atkinson, and Vatter [4]
1342, 2143 20 A109033 Le [42]
1342, 2413 15 A165541 Albert, Atkinson, and Vatter [4]
1342, 2431 12 A032351 Bóna [20]
1342, 3142 6 A155069 Kremer [39, 40]
1342, 3241 24 A032351 Bóna [20]
1432, 2413 12 A032351 Bóna [20]
1432, 3412 15 A047849 Kremer and Shiu [41]
2413, 3142 14 A155069 Kremer [39, 40]

Table 6.3: Bases consisting of two length 4 patterns that succeed with point placement
strategies. They are listed with the number of equations the combinatorial specification has,
their OEIS sequence, and the reference to the paper that first enumerated it.

https://oeis.org/A155069
https://oeis.org/A165538
https://oeis.org/A032351
https://oeis.org/A032351
https://oeis.org/A165528
https://oeis.org/A165541
https://oeis.org/A109033
https://oeis.org/A165541
https://oeis.org/A032351
https://oeis.org/A155069
https://oeis.org/A032351
https://oeis.org/A032351
https://oeis.org/A047849
https://oeis.org/A155069
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6.7 Combinatorial systems
To illustrate an extension of the Tilescope algorithm we will review the first proof of Theo-
rem 5 from Claesson [27], which enumerates C = Av(1243, 1234, 1324, 1423, 2134, 2314) ,
one of the permutation classes Tilescope failed on. We will translate this proof into com-
binatorial rules on tilings found by our strategies. This permutation class is known as the
123-segmented permutations and can alternatively be described as the permutations that
avoid a non-consecutive occurrence of 123.

Every permutation in the basis of C contains 123. Therefore every permutation in the
class is either in Av(123) or contains 123, giving the combinatorial rule

� t

found by ReqInsertion(3) . Every permutation in C containing 123 must contain a leftmost
occurrence of 123, that is place the points with forces ((1, 1),←), ((2, 2),←) and ((3, 3),←)
to get the combinatorial rule

�

which after applying Factors gives the combinatorial rule

� × × .

The first tiling on the right hand side represents any non-empty permutation in Av(123) since

�
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by using PointPlacement with the force ((1, 1),→), i.e. placing the rightmost point. If we let
B(x) be the generating function for the Catalan numbers and F (x) be the generating function
for C, then from our combinatorial rules F (x), satisfies the equation

F (x) = B(x) + x(B(x) − 1)A(x) (6.3)

where A(x) is the generating function for the tiling

.

We now consider, every permutation in C is either empty or not. If we consider placing the
leftmost point of a non-empty permutation then we get the combinatorial rule

� .

The top cell either avoids 12 or contains 12 giving the combinatorial rule

� t .

If we place the points in the 12 with forces ((1, 1),←) and ((2, 2),←) then we get the
combinatorial rule

�
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which after applying Factors gives

� × × .

Therefore F (x) also satisfies the equation

F (x) = 1 + A(x) + x2 A(x). (6.4)

Solving equations (6.3) and (6.4) for F (x) and eliminating A(x) gives the generating function

1 − x + 3x2 − (1 − x + x2)
√

1 − 4x

x + 2x2 + 2x3 + x
√

1 − 4x

for C.
What we have described here is not a combinatorial specification as there are multiple

combinatorial rules with the same left-hand side. Despite this, the system of combinatorial
rules captures the enumerative information. We define a combinatorial system to be any set of
combinatorial rules. The exact theory of when a combinatorial system gives the enumeration
is unknown to us at the time of writing. Therefore our approach is somewhat experimental.

Using these methods Tilescope has been able to find the enumeration of many other
permutation classes by finding combinatorial systems. In particular, it has been able to bring
down the number of bases consisting of length four patterns remaining in Table 6.2 from 161
down to 77. The largest basis that remains unenumerated has five length four patterns. The
automatic methods in this thesis can therefore enumerate all of the cases in Mansour and
Schork [47], Mansour and Schork [45], and Mansour and Schork [46]. Details of the results
can be seen in Table 6.4.

The Tilescope algorithm generates a set of combinatorial rules. Each rule corresponds
to an equation satisfied by the generating function of a set of permutations that is a subset
of the permutation class we are trying to enumerate. Within this system of equations we
then attempt to eliminate, as we did to solve equations (6.3) and (6.4), and hopefully find a
solution for the generating function of the permutation class in question.

However, as of writing, this method has only been semi-automated. Our current approach
is as follows, first, run the Tilescope algorithm for a set amount of time, and then collect the
system of equations. Input these to a separate program in Maple that then tries to solve for
the generating function. As this method is still in its early days for us, we anticipate that it
will enumerate even more permutation classes when developed further.
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� �

�

�

Figure 6.4: A pictorial representation of the combinatorial system found by Tilescope for
Av(1243, 1234, 1324, 1423, 2134, 2314) .
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|Π| no combinatorial
specification

found
enumerable
combintorial

system

number of bases
remaining

7 2 2 0
6 12 12 0
5 30 28 2
4 42 31 11
3 39 8 31
2 29 2 27
1 7 0 7

total 161 84 77

Table 6.4: The successes for bases consisting of length 4 patterns with combinatorial systems
using point placement strategies.
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Chapter 7

Conclusion

7.1 Permutations avoiding 123
As was pointed out in Section 1.2, permutation patterns can be dated back to 1915 when
MacMahon [43] showed that Av(123) is enumerated by the Catalan numbers. For this
reason, it is very frustrating that all of the automatic methods introduced in this thesis have
not found a combinatorial specification for Av(123) . In this section, we discuss two methods
for enumerating Av(123) which are not yet automated. If automated, one would anticipate
they will be capable of enumerating many other permutation classes.

7.1.1 Left-to-right minima
The arguments in this subsection are from Bean, Claesson, and Ulfarsson [15].

Given a permutation avoiding 123 we can use its left-to-right minima1 to partition the
remaining points into cells. Each cell must be decreasing, and the same is true for each
row and each column, as noted by Claesson and Kitaev [25]. Therefore the permutation is
uniquely determined by the number of points in each cell. If a cell is non-empty, then all the
cells strictly above and strictly to the right of it will be empty. See, e.g., Figure 7.1 where
we have five left-to-right minima and are assuming that A contains at least one point. This

A

Figure 7.1: An avoider of 123 with five left-to-right minima where A contains at least one
point

property allows us to construct a larger avoider from two smaller ones. See Figure 7.2 where
F′ has one more point than F. If we are adding the empty permutation, on the left, we instead
add a left-to-right minimum. See Figure 7.3. This construction is reversible. Therefore, if

1A point (i, πi) of a permutation π is called a left-to-right minimum if πj > πi for all j in {1, 2, . . . , i − 1}.
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A B C

D E
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7→

A B C

D E

F′ G H I
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Figure 7.2: The sum of two 123-avoiding permutations

ε +

G H I

J K

L

7→

G H I

J K

L

Figure 7.3: The sum of the empty permutation and a 123-avoiding permutation

we let A(x) be the generating function for Av(123) then it is clear that it will satisfy

A(x) = 1 + x(A(x) − 1)A(x) + x A(x) = 1 + x A(x)2,

which solves to give the generating function of the Catalan numbers.
The key to this proof of the enumeration of Av(123) is to consider the set of left-to-

right minima, which in Bean, Claesson, and Ulfarsson [15] we called the boundary of the
permutation. We also considered other types of boundaries that use left-to-right maxima,
right-to-left minima or right-to-left maxima and even unions of these. In Bean, Tannock,
and Ulfarsson [18], we extended the boundary idea further to enumerate other permutation
classes and some subsets of permutations avoiding 1324.

In the case of Av(1324) , we considered the boundary formed by the left-to-right-minima
and right-to-left maxima. As with the permutations above, given a permutation avoiding 1324
if we partition the remaining points not on the left-to-right-minima and right-to-left maxima
boundary into cells, then each cell, row, and column must be decreasing. Every boundary
for a permutation avoiding 1324 is a permutation avoiding 123. Given any boundary, i.e.,
any permutation avoiding 123, it is possible to enumerate the permutations in Av(1324) with
that boundary. It corresponds to a tiling that is locally factorable, so is enumerated by the
Tilescope algorithm. However, for this to lead to the enumeration of Av(1324) we would
somehow need to consider all boundaries simultaneously as we did in our proof for Av(123) .

Working with general boundaries seems difficult to automate as often there is no bound
on how many points a boundary contains. If we were to find a way to bridge this gap and
teach a computer to argue about a general boundary with an arbitrary number of points, it
would be possible to recreate the argument above for enumerating Av(123) and hopefully
many other permutation classes.
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7.1.2 Interleaving factors
In Bean, Gudmundsson, and Ulfarsson [16, Proposition 14], we discussed a method for
finding the structure of permutations in Av(123) that we hoped could be found by a future
algorithm. That future algorithm we were discussing was the Tilescope algorithm, and
it is able to rediscover the structure in the proposition. However, this structure is not a
combinatorial specification because it uses a non-admissible constructor. We will present a
slight variation, which leads to enumeration by adding a catalytic variable.

Applying the PointPlacement strategy to non-empty permutations avoiding 123 gives

� � (7.1)

by placing either the rightmost or bottommost point. Let F (x, y) be the generating function
where the coefficient of xnyk counts the number of length n permutations avoiding 123 with
k points to the right of the minimum. From Equation (7.1), as the two tilings with placed
points are the same up to inverse symmetry, this coefficient also counts the number of length
n permutations avoiding 123 with k points below the rightmost point.

A permutation in Av(123) either has no points below the rightmost point or at least one
which we can apply PointPlacement to, to give the combinatorial rule

� t . (7.2)

If we were to apply Factors to the rightmost tiling in Equation 7.2, then only the two points
would be removed. However, there are no obstructions across the cells (2, 0) and (2, 3) and
if we let ⊗ be the operator that counts the interleavings of points in the cells, then

�

*........
,

⊗

+////////
-

× . (7.3)

Equations (7.1), (7.2), and (7.3) imply that F (x, y) satisfies the functional equation

F (x, y) = 1 + xF (x, 1) +
xy

(
F

(
x, 1

1−xy

)
− 1

)
1 − xy

, (7.4)
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where the last term comes from counting the interleavings in Equation (7.3). Given the
functional equation in Equation (7.4) it is a non-trivial exercise to show that F (x, 1) is indeed
the generating function for the Catalan numbers.

If we alter the Factors strategy to allow for such interleavings then structurally the
combinatorial rule makes sense as given a gridded permutation from each factor the rule
provides a recipe to build a set of gridded permutations from the original tiling. However,
the enumerative information is harder to capture as the ⊗ constructor is no longer easy to
understand. In some special cases, we can introduce catalytic variables to track the number
of points in specific regions of tilings and write down a useful functional equation.

In the case of PointPlacement, in the forward direction, a single cell expands into multiple
cells. If this equivalence is reversed, then a set of cells corresponds to a single cell. If the
constructor interleaves one of these cells, then the information is now lost. If we only
allow the forward direction of this, we can write down functional equations with similar
substitutions as we did for Av(123) . Doing this will give a polynomial time algorithm for
the enumeration. However, the equations are hard to solve for a generating function for a
permutation class.

By allowing interleavings Tilescope succeeded for all but 43 of the permutation classes
with length four patterns that have not been enumerated by other methods in this thesis. The
method for turning the Tilescope output with interleavings into a polynomial time algorithm
has not been implemented.

7.2 Other combinatorial classes
The primary focus of this thesis has been automating the combinatorial exploration of
permutation classes. This automation used the CombSpecSearcher algorithm, introduced in
Chapter 3. CombSpecSearcher is a general purpose algorithm for performing combinatorial
exploration on any combinatorial class.

In particular, it would be interesting to develop the appropriate strategies to automate
the discovery of the results from Section 2.2 on bivincular patterns. There have already
been some automatic methods for enumerating sets avoiding vincular patterns, Baxter and
Pudwell [14]. The theory of gridded permutations in Chapter 4 should be extendable to
bivincular patterns. It also seems possible to go one step further and define mesh gridded
patterns akin to the definition of the mesh patterns defined by Brändén and Claesson [22].
The added difficulty with these types of patterns is that they lose the downwards closure
property that classical permutation patterns have.

Outside of the field of permutation patterns, there are many other combinatorial classes
for which combinatorial exploration could be automated. For example, as a BSc project
that I supervised, Helgason and Robb [32] applied the CombSpecSearcher algorithm to two
different combinatorial classes. The first was sets of binary string that avoid consecutive sub-
strings. The second was pattern avoiding set partitions, using the definition given by Jelínek,
Mansour, and Shattuck [35]. This is preliminary work but shows that the CombSpecSearcher
is ready to be applied to other combinatorial classes.

7.3 Open questions
This section acts as a glossary for conjectures and questions asked throughout this thesis.



7.3. OPEN QUESTIONS 67

Every polynomial permutation class has a Struct cover by Theorem 2.4.1. Therefore, it
follows that the Struct algorithm will theoretically terminate. However, the size of the peg
permutations is not known and therefore whether running the Struct algorithm will terminate
in a reasonable amount of time.

Question 7.3.1. Every polynomial permutation class is a disjoint union of peg permutations
with filling vectors by Theorem 2.4.2. Is there a bound on the size of the peg permutations
needed in this theorem?

A bound implies there is a bound on the size of Struct rules required in a Struct cover for
a polynomial permutation class.

In Chapter 4, the theory of gridded permutations and tilings were developed. In Sec-
tion 4.2, we found two tilings whose obstructions were minimal with respect to containment
but defined the same set of gridded permutations.

Question 7.3.2. Does there exist a meaningful canonical form for a tiling? Moreover, if it
exists, how can it be computed?

Lemma 4.1.1 partially answers this question as it provides a possible canonical form
for the set of requirements. However, it is not clear what the canonical form for the set of
obstructions is if it exists.

In Chapter 5 we used the CombSpecSearcher, introduced in Chapter 3, to find the
insertion encoding and enumerate permutation classes that have a regular insertion encoding.
Theorem 5.1.1 shows it can be seen from the basis of a permutation class as to whether or not
it has a regular insertion encoding. In Section 5.2 we extended the algorithm to the separation
insertion encoding that allows us to say which slots in a configuration must be inserted into
first. In Section 5.3, we added another generalization, the top and bottom insertion encoding
that allowed for inserting from both the top and bottom in a configuration.

Question 7.3.3. Does there exist a condition such as the one in Theorem 5.1.1 that charac-
terizes the bases that will terminate with the separation insertion encoding? What about the
top and bottom insertion encoding? If there is an answer to both of these questions, what
about the separation top and bottom insertion encoding?

In Section 6.5 we introduced the notion of an elementary permutation class. Theo-
rem 6.5.2 shows that this definition is same as permutation class being a disjoint union of
valid generalized peg permutations. If follows that all polynomial permutation classes are
elementary, Corollary 6.5.3.

Question 7.3.4. Which permutation classes are elementary? It is clear that an elementary
permutation class’ generating function will satisfy an algebraic system of equations with
respect to the generating function of some its subclasses, but does it follow that the elementary
permutation class has an algebraic generating function?

In Section 6.7 we defined a combinatorial system to be any set of combinatorial rules
and showed how Tilescope can find a combinatorial system that can be used to enumer-
ate Av(1243, 1234, 1324, 1423, 2134, 2314) , but Tilescope could not find a combinatorial
specification.

Question 7.3.5. When can a combinatorial system can be used to enumerate a permutation
class? Each combinatorial rule corresponds to an equation on the level of generating functions
so that the question is the same as, when does a certain variable have a solution in a system
of equations?
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It would be more interesting if something can be said combinatorially. With this, it may
make searching for combinatorial systems a less arduous task.
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