
PHOTOCUBE:
A MULTI-DIMENSIONAL
IMAGE BROWSER

Hlynur Sigurþórsson
Master of Science
Computer Science
June 2011
School of Computer Science
Reykjavík University

M.Sc. RESEARCH THESIS
ISSN 1670-8539

PhotoCube: A Multi-Dimensional Image Browser

by

Hlynur Sigurþórsson

Research thesis submitted to the School of Computer Science
at Reykjavík University in partial fulfillment of

the requirements for the degree of
Master of Science in Computer Science

June 2011

Research Thesis Committee:

Björn Þór Jónsson, Supervisor
Associate Professor, Reykjavík University

Laurent Amsaleg
Research Scientist, IRISA-CNRS

Hannes Högni Vilhjálmsson
Associate Professor, Reykjavík University

Marta Kristín Lárusdóttir
Assistant Professor, Reykjavík University

Copyright
Hlynur Sigurþórsson

June 2011

PhotoCube: A Multi-Dimensional Image Browser

Hlynur Sigurþórsson

June 2011

Abstract

As the scale of personal photo collections keeps growing, the simple methods
commonly used today for photo browsing quickly become inadequate. We
describe PhotoCube, a novel three dimensional (3-D) photo browser, based
on the recently proposed ObjectCube data model. The data model allows
users to seamlessly involve a large number of meta-data dimensions in each
browsing session and captures a rich set of browsing actions. The architec-
ture of PhotoCube is highly extensible, as different browsing modes are used
to define the potential actions to take in many circumstances, e.g., when ag-
gregating a large set of photos for display, or when examining a set of photos
in detail. In this thesis, we describe the architecture of the prototype in de-
tail, as well as its current state. We then present results from a preliminary
user study, which indicate that while experienced computer users find the
prototype interface to have a somewhat steep learning curve, they are excited
about the potential of the underlying data model.

PhotoCube: Fjölvíður myndaskoðari

Hlynur Sigurþórsson

Júní 2011

Útdráttur

Þar sem stærð persónulegra myndasafna fer ört vaxandi verða þær aðferð-
ir sem við þekkum í dag til að skoða myndasöfn ófullnægjandi. Við lýsum
PhotoCube, nýjum þrívíðum myndaskoðara sem byggir á ObjectCube gagna-
líkaninu sem nýlega var sett fram. Með þessu líkani geta notendur beitt vídd-
um sem byggðar eru á lýsigögnum mynda við skoðun þeirra. Uppbygging
PhotoCube býður upp á viðbætur, þar sem mismunandi skoðunarhamir eru
notaðir til þess að skilgreina mögulegar aðgerðir við fjölbreyttar kringum-
stæður, til dæmis við samþyrpingu á stóru mengi mynda fyrir birtingu eða við
nákvæmari skoðun á völdu myndamengi. Í þessari ritgerð munum við lýsa
uppbyggingu frumgerðar PhotoCube og lýsa ástandi hennar. Við munum
einnig birta niðurstöður úr notendaprófun, sem gefa til kynna að reyndum
notendum finnst frumgerðin hafa bratt lærdómsferli en að þeir sjái mikla
möguleika í undirliggjandi líkani.

Fyrir Thelmu.

vii

Acknowledgements

I would like to thank Björn Þór Jónsson, Laurent Amsaleg and Kári Harðarson for the
collaboration on this project.

Grímur Tómasson, author of ObjectCube, for short notice bugfixes, comments and help
with almost everything in this project. His input into the work that this thesis stands for is
invaluable.

Hannes Högni Vilhjálmsson and Marta Kristín Lárusdóttir for input and instructions on
the user evaluation part of this project.

Oddur Kjartansson and Helgi Þ. Möller, for constructive criticism on the text and keeping
me on track.

viii

ix

Publications

A demonstration was presented at the ACM International conference on Multimedia Re-
trieval (ICMR11) (Sigurþórsson, Tómasson, Jónsson, & Amsaleg, 2011). Part of the
material in this thesis has also been submitted to an international conference. Co-authors
of both are Grímur Tómasson (Reykjavík University), Björn Þór Jónsson (Reykjavík Uni-
versity) and Laurent Amsaleg (IRISA- CNRS). While my co-authors contributed signif-
icantly to the writing of both papers, the implementation and user evaluation is entirely
my work.

x

xi

Contents

List of Figures xiv

List of Tables xvi

1 Introduction 1
1.1 Browsing Scenarios . 2
1.2 PhotoCube . 2
1.3 Thesis overview . 3

2 Background 5
2.1 Image Meta-Data . 5
2.2 Current Image Browsers . 6
2.3 Research Prototypes . 8

2.3.1 Scenique . 8
2.3.2 Camelis . 10

2.4 Multi-Dimensional Image Browsing . 12

3 ObjectCube 13
3.1 The Data Model . 13

3.1.1 Objects . 14
3.1.2 Tags . 14
3.1.3 Tag-Sets . 14
3.1.4 Hierarchies . 15
3.1.5 Filters . 15
3.1.6 Data Model Summary . 16

3.2 ObjectCube Architecture . 17
3.2.1 Python Interface . 17
3.2.2 Data Stores . 18
3.2.3 Plug-Ins . 18

xii

3.2.4 Multi-Dimensional Views . 19
3.3 ObjectCube Performance . 20

4 PhotoCube 23
4.1 Design Goals . 23
4.2 Architecture . 24

4.2.1 Browsing Modes . 24
4.2.2 Action Traces . 25
4.2.3 Thumbnail Creation . 25
4.2.4 Image Loading . 25

4.3 Implementation . 26
4.3.1 Package Structure . 27
4.3.2 User Interface . 28
4.3.3 Browsing Modes . 29
4.3.4 Cube Mode . 30
4.3.5 The Mode API . 33
4.3.6 Dependent Libraries . 34

4.4 Browsing scenarios . 34
4.4.1 Browsing Scenario 1 . 34
4.4.2 Browsing Scenario 2 . 35

4.5 Summary . 36

5 User Evaluation 39
5.1 Experimental Setup . 39

5.1.1 User Sample . 40
5.1.2 Image Collection . 40
5.1.3 Browsing Tasks . 41

5.2 Experimental Process . 42
5.2.1 Task Performance . 42
5.2.2 Usability Factors . 42
5.2.3 Interview . 43

5.3 Task Performance . 43
5.4 Usability Factors . 44
5.5 Participant Interviews . 45

5.5.1 Comments on the Interface . 45
5.5.2 Comments on the Model . 46
5.5.3 Comments on New Features . 46
5.5.4 Discussion . 47

xiii

5.6 Summary . 47

6 Future Work 49
6.1 User Interface Improvements . 49
6.2 Model Improvements . 50
6.3 Further User Evaluations . 51

7 Conclusions 53

Bibliography 55

Bibliography 55

A Usability Factors data 57

xiv

xv

List of Figures

2.1 Screen capture of Scenique during a browsing session 9
2.2 Screen capture of Camelis during a browsing session 10

3.1 “People” tag-set . 15
3.2 Tag-based “Family” hierarchy created within the “People” tag-set 16
3.3 Entity-Relationship diagram for the ObjectCube model 17
3.4 Overall architecture of ObjectCube prototype implementation 18

4.1 The overall architecture of PhotoCube 26
4.2 Screen capture of PhotoCube’s interface 29
4.3 Image representation in Cube mode . 30
4.4 Image representation in Card mode . 31
4.5 Interpretation of the Panda3D coordinate system in PhotoCube 32
4.6 Browsing Scenario 1 in PhotoCube . 35
4.7 Browsing Scenario 2 in PhotoCube . 36

5.1 Results from the usability questionnaire 45

xvi

xvii

List of Tables

5.1 Participant background: Demograpic Information 40
5.2 Participant background: Image collections and browser usage 41
5.3 Task performance results . 43
5.4 Meaning of performance indicators . 44

A.1 Data gathered from the usability questionnaire 57

xviii

1

Chapter 1

Introduction

Photography is the art of creating images using a radiation-sensitive medium, practiced
by people around the world. The first photographs were made using a light-sensitive
emulsion of silver salts applied to glass plates. Subsequently, the photographic film was
invented in 19th century by George Eastman, the founder of the Eastman Kodak Com-
pany (Mulligan & Wooters, 2005). Photographic films were used throughout the 19th
century and are still used by many photographers today. Now, however, photographs
are typically created using digital cameras with electronic image sensors based on the
principle of converting light into electrons using a charge-coupled device (CCD) or a
complementary-metal-oxide semiconductor (CMOS). How photography is used varies
from one person to another, but the objective is typically the same, namely to transform
moments into photographs.

Personal photo collections can quickly become large, as people tend to take hundreds or
thousands of photos every year; for the most enthusiastic, collections can grow orders of
magnitude larger. Thus, a good organization is a prerequisite for finding photographs of
interest in such collections.

Before the advent of digital photography, photographs were typically stored in photo al-
bums or (shoe)boxes, often labeled with time periods, locations or event names for photo
content indication. Browsing then involved digging through a pile of albums or a stack of
boxes.

Today, photographs are stored as files on computers and are viewed using image brows-
ing applications. This digital switchover enabled us to move our photographs, from the
cumbersome albums and shoeboxes, onto computers to exploit their power and flexibility
to organize and browse photo collections in a better manner.

2 PhotoCube: A Multi-Dimensional Image Browser

1.1 Browsing Scenarios

Despite this digital switchover, finding images in a large collection can still be a difficult
and frustrating task. Let us consider two plausible browsing scenario that we might want
to solve, using an image browser. In these scenarios, assume that we possess a relatively
large image collection.

Browsing scenario 1. We want to browse all images that were a) taken somewhere in

Europe, b) include our friends and c) have a brightness value in a certain range.

This scenario might be interesting if we recently traveled through Europe with our friends
and we only want to view images from Europe that include our friends and are neither
over- nor underlit.

Browsing scenario 2. We want to browse all images of our family members containing at

least one parent and one child, regardless of the time period, grouped by parents, children

and the location where the photos were taken.

This scenario might be interesting if we want to view family images, categorized by loca-
tion and which family members are on each image.

Today’s image browsers are equipped with many well accepted methods for organizing
and browsing images. These methods, however, lack flexibility and power when used in
solving browsing scenarios such as Scenarios 1 and 2. The reason is threefold:

1. They do not support browsing by more than one categorization at once;

2. They do not support image aggregation; and

3. They have limited, or no, support for value range filtering.

What is needed are browsers with new browsing strategies with support for the above
mentioned features.

1.2 PhotoCube

In this thesis we present PhotoCube, a novel 3-D image browser which is flexible and
expressive enough to handle the browsing scenarios above, as well as many other similar
scenarios. PhotoCube has the following key properties:

Hlynur Sigurþórsson 3

• The graphical user interface supports three browsing dimensions, some or all of
which can be used simultaneously. The interface supports basic image tagging,
through automatic image analysis and user tagging.

• It is based on the recently proposed multi-dimensional data model, ObjectCube,
which allows users to seamlessly involve a large number of meta-data dimensions
within the 3-D browsing environment.

• The data model captures a rich set of browsing actions, such as applying various
filters to dimensions to focus on particular sets of images, drilling down (or rolling
up) through tag hierarchies, and pivoting dimensions on and off the screen.

• The architecture of the PhotoCube browser is highly extensible, as different brows-
ing modes are used to define the potential actions to take in many circumstances,
e.g., when aggregating a large set of images for display, or when examining a set of
images in detail.

We also present results from a preliminary user study, which indicate that experienced
computer users find the data model of PhotoCube both useful and engaging while they
find the user interface rather raw and complicated.

1.3 Thesis overview

This thesis is structured as follows. In Chapter 2 we discuss state-of-the-art image brows-
ing tools and the origins of multi-dimensional image browsing. In Chapter 3 we discuss
the ObjectCube model and describe the components used in PhotoCube. In Chapter 4 we
then discuss PhotoCube, its architecture and implementation. In Chapter 5 we discuss our
user evaluation and its results. We then discuss future work in Chapter 6 and finish with a
conclusion in Chapter 7.

4

5

Chapter 2

Background

In this chapter, we consider the state-of-the-art in image browsing tools. We start by
describing the various meta-data types that can be associated with images, and hence po-
tentially used in browsing scenarios (Section 2.1). We consider both commercial/freeware
browsers (Section 2.2) and research prototypes (Section 2.3), before briefly introducing
the origins of the multi-dimensional data model used by PhotoCube (Section 2.4).

2.1 Image Meta-Data

“A picture is worth a thousand words” is an old saying, often used to remind one of
the power of images. This saying works the other way around as well, as images can
be described rigorously using various image meta-data attributes. These attributes are
commonly categorized by their origin as follows.

Photo Header Attributes: Camera settings and scene information are often recorded by
cameras and are written into the image header. Examples of such information are
shutter-speed, date and time, focal length, exposure compensation, metering pat-
tern, and flash usage, to name a few.

Calculated Attributes: Various attributes can be calculated directly from images. These
include extraction of elementary characteristics of images such as shapes, colors,
and texture, as well as more advanced analysis methods such as object recognition
or face recognition.

User-Generated Attributes: These are attributes that a user relates to the image content.
The typical form of such attributes is a text tag, that may be linked to the image or

6 PhotoCube: A Multi-Dimensional Image Browser

a part of the image. This type of attribute, along with some of the photo header
attributes, is most commonly used in today’s image browsers.

Turning back to the browsing scenarios in the introduction, we observe that the first two
conditions of Scenario 1 involve attributes that may either be user-generated or calculated
(location could be based on GPS coordinates supplied in the image header). Neither
condition, however, refers directly to particular tags, but rather to a higher-level concept
(Europe or friends). The last condition of Scenario 1, however, refers directly to a range
of values for a photo header attribute. Scenario 2 refers to similar attributes, but focuses
in grouping of images based on those attributes.

2.2 Current Image Browsers

Myriad commercial/freeware image browsers have been developed to help people with
browsing and managing their personal image collections. In this discussion, we divide
these browsers roughly into simple browsers and advanced browsers.

We use the term simple image browsers for those that merely offer browsing of file sys-
tem folders and viewing of images within them. In these browsers, images can only be
categorized by a single criterion; this categorization is performed outside the browser by
storing images in folders. Image collections are most often browsed using the folder tree
and images are presented on a two dimensional grid. Examples include early versions of
several photo-specific browsers, as well as traditional file-system browsers. It is clear that
Scenarios 1 and 2 cannot be served by simple browsers, as they only allow browsing by
a single categorization whereas both of the browsing scenarios require browsing by two
categorizations at once.

We use the term advanced image browsers for commercial or free-ware browsers that
offer more effective strategies for organizing and browsing. Many of them allow appli-
cation of tags and other meta-data to images. Some also offer construction of virtual
folder hierarchies within the browsers without modifying the underlying folder structure
of the images. Furthermore, some more advanced browsers offer automatic analysis of
the content, such as face recognition and geographical tagging. Most of these browsers
allow users to search for images using user-generated tags and meta-data information, as
well as using automatically generated tags. Images are most often presented in a similar
fashion as in the simple browsers, namely using a two dimensional grid, but many offer
time line browsing and slide show generation as well.

Hlynur Sigurþórsson 7

Examples of advanced browsers are ACDsee1, Adobe LightRoom2, iPhoto3 and Google
Picasa4. Despite their advanced features, none of these browsers adequately support the
browsing scenarios above, for the following reasons.

First, although images of friends can be tagged with their names, there is no support
for describing relationships between tags. The concept of a friend is thus not implicitly
understood; what is needed is some means to organize tags into concept hierarchies. An
industrious user can try to get around this limitation, for example by adding specific tags
to encode the hierarchy of friends and adding these to all images containing any friends,
or by embedding a hierarchy within the textual tags. Such attempts, however, are labor-
intensive and rarely sustainable.

Second, in Scenario 1 we are filtering on a specific numerical value range. This is not
supported in these browsers as they only support searching for specific tags. Again, an
industrious users may list all tags in the range to retrieve the correct set. This might be
viable for small ranges, but it is impractical for large ranges and impossible for irrational
values.

Finally, none of these browsers adequately support grouping of images based on con-
tents. Some might support grouping based on a single concept, but Scenario 2 requires
three-dimensional grouping, including the use of two different parts of the same attribute
hierarchy.

In most recent operating systems, such as in Microsoft Windows 7, more sophisticated
image browsing features have been added to the built-in file browser. These improve-
ments include image tagging, grouping by a single tag and sorting images within folders
by a single primitive image attribute or user-defined tag. Such file browsers can hardly
be described as simple image browsers since these features belong to the advance im-
age browsers category. Nevertheless, these browsers do not introduce any new methods
over the advanced image browsers described above and therefore share the same limita-
tions.

1 http://www.acdsee.com/
2 http://www.adobe.com/products/photoshoplightroom/
3 http://www.apple.com/ilife/iphoto/
4 http://picasa.google.com/

8 PhotoCube: A Multi-Dimensional Image Browser

2.3 Research Prototypes

Many research projects have considered image browsing and have proposed many inter-
esting methods related to that subject. We now review the most relevant research proto-
types.

PhotoMesa (Bederson, 2001) provides a zoomable interface to multiple directories of
images at once, grouping the images from the folders into clusters for maximal use
of the screen. With PhotoMesa, however, both browsing scenarios are impossible, as
the browser operates solely on the folder structure and only allows filtering by people
tags.

Scenique (Bartolini & Ciaccia, 2009) is conceptually the most similar browser to Photo-
Cube, as it allows browsing images by orthogonal dimensions (called facets) in 3-D
browsing rooms.

Camelis (Ferré, 2007) uses co-occurrences of tags in images, via logical relations, to de-
duce relationships, and uses them to facilitate browsing. In Camelis, images are browsed
and searched using logical formulae.

Since Scenique and Camelis share some similarities with the browser we present in this
thesis, we discuss these two browsers in more depth.

2.3.1 Scenique

Scenique is a multi-faceted image browser that allows images to be searched and browsed
by facets. The system offers two types of facets:

Semantic Facets: Facets consist of tag hierarchies where node labels are tags and the
root node represents the facet name. Tags can appear in different facets as well
as in different levels in the same facet. This allows discrimination between the
different usages and meanings of tags.

Visual Facets: Facets consist of hierarchies based on image similarity. The nodes are
automatically constructed by calculating image characteristics using low-level fea-
tures. Visual features that are available in Scenique are face recognition, color
similarities and shape detections.

Figure 2.1 shows a screen capture of Scenique during a browsing session. In Scenique,
users can select facets of interest and view them in a 3-D browsing room. Selected facets
are viewed as orthogonal coordinate axes and image boxes of selected representatives are

Hlynur Sigurþórsson 9

Figure 2.1: Screen capture of Scenique during a browsing session

placed at relevant coordinates with respect to the selected facets. Through the interface
users can inspect facets further by selecting nodes within its hierarchical structure in the
facets menu (located on the right side in the interface).

Scenique has the following key properties:

• Automatic extraction of low level features from images that can be used for search-
ing and browsing.

• Text-based search and browsing by tag hierarchies.

• Integration of both visual facets and semantic facets by grouping the image results.

Going back to our browsing scenarios from the introduction, Scenique may not be able to
handle Scenario 1 as there is no mention of range filtering. In Scenario 2 we are required
to group by the same hierarcical categorization twice and view them at a different levels.
In Scenique this is impossible, as a given facets can only be viewed once in a single
browsing session.

10 PhotoCube: A Multi-Dimensional Image Browser

Figure 2.2: Screen capture of Camelis during a browsing session

2.3.2 Camelis

Camelis is an implementation of a logical information system (LIS) which is based on
Formal Concept Analysis (FCA). LIS was introduced by the authors of Camelis to com-
bine searching and browsing of data5. Figure 2.2 shows a screen capture of Camelis
during a browsing session.

In Camelis, images are stored in a logical context, along with a mapping of their proper-
ties such as location, time taken and events. A logical context is defined as follows.

Definition 1 (Logical context). Let L = (L,v) be a logic, where L is a partially ordered

set of properties by a subsumption relationv. A logical context is a tripletK = (O,L, D)

whereO is a set of object identifiers and D is a mapping from objects to their description

as a set of logical properties.

5 Camelis can handle any media types that can be described by their properties.

Hlynur Sigurþórsson 11

Note that Definition 1 contains two parts; first it defines a logic L where properties are
partially ordered by a subsumption relations. Secondly it defines logical context.

Objects can be in the extent of a property without having it explicitly in their description.
Property extent are defined as follows:

Definition 2 (Extent). Let p be a property, such that p ∈ L. The extent of property p is

defined by the set of objects whose description entails p by:

extent(p) = {o ∈ O | ∃d ∈ D(o) . d v p} (2.1)

Logical properties can be combined with the three well known boolean operators: ∨, ∧
and ¬. Their extent are defined recursively as follows. Let q1 and q2 be logical formulae
that can be constructed by the binary operators ∨, ∧ and ¬, then

extent(q1 ∨ q2) = extent(q1) ∩ extent(q2)

extent(q1 ∧ q2) = extent(q1) ∪ extent(q2)

extent(¬q1) = O \ extent(q1)

In Camelis, logical formulae can be constructed using a formulae builder or users can
type them themselves into a text box directly. Properties for a given query are displayed
as a tree based on its relations. The images returned appear in a linear fashion in the
interface.

Applying logic on image properties and their relations for searching and browsing image
collection is a neat and powerful approach but can have some drawbacks. First, this
approach is only suitable for individuals who know how logical operators work. Despite
the fact that simple formulae are created through the interface by clicking on available
properties, more complex queries must be handwritten by users.

Second, the implementation of Formula 2.1 can be computationally expensive when the
system has many images and properties relations. This is acknowledged by the authors,
who state that Camelis is efficient only up to 10, 000 images (Ferré, 2007), which would
be considered rather small by photographers, let alone enthusiasts.

Finally, Camelis does not support range filters. They can be emulated by creating long ∨
formulae, containing all the values within the range, but that would only work for a small
set of values.

12 PhotoCube: A Multi-Dimensional Image Browser

Camelis cannot handle the browsing scenarios described in the introduction. The logical
formula People ∧ Europe would return the images that we are looking for in Scenario 1,
but we cannot filter out the ones that have the brightness value in a certain range.

Scenario 2 is also impossible in Camelis. In that scenario we wanted to group by three
dimensions of interest, but as we stated above image presentation in Camelis is linear (see
Figure 2.2) and thus no image grouping is offered in Camelis.

2.4 Multi-Dimensional Image Browsing

Together, the image meta-data attributes can be considered to define a multi-dimensional
image hyperspace. Selecting dimensions, and placing them together for viewing inter-
secting images, is called multi-dimensional browsing. The earliest mention of multi-
dimensional image browsing that we are aware of was by Harðarsson and Jónsson (2007).
In that work, the authors presented a very limited 3-D image browser prototype based
on the Partiview browser (Surendran & Levy, 2004), which was originally developed to
browse images of galaxies. Embedding Partiview gave them a simple platform to dis-
play images in a 3-D environment and controls to navigate around the images. However,
Partiview inhibited the addition of new features to their prototype, which lead them to the
conclusion that it should be abandoned.

In the future work section of (Harðarsson & Jónsson, 2007), however, a wish list of
browsing features was presented; most of these features correspond to operations used
in on-line analytical processing (OLAP) applications, in the area of business intelligence.
The ObjectCube data model, which is built on the traditional OLAP data model, was
developed in (Tómasson, 2011). In that work, the aim was to create an efficient multi-
dimensional data model, and a browsing engine that could be used as a back-end for
multimedia browsers, such as image- or file-browsers. Since the ObjectCube model is the
foundation of PhotoCube, we present the ObjectCube model in some depth in the next
chapter.

13

Chapter 3

ObjectCube

ObjectCube is a generic multi-dimensional data model1 and a browsing engine based on
the concepts of the well known multi-dimensional analysis (MDA). In the ObjectCube
data model, browsing operations are used to zoom into the media collection and construct
multi-dimensional browsing sets, or cubes, similar to OLAP cubes but with objects, such
as images or sound files, instead of numerical facts. These cubes are then displayed using
the PhotoCube interface.

In this chapter we discuss the ObjectCube model. ObjectCube is formally defined in Tómas-
son (2011), but in the following discussion we review the model and the browsing engine
architecture, focusing on the core aspects that are necessary for understanding the Photo-
Cube prototype (Section 3.1). We then discuss the architecture of a prototype imple-
mentation of the ObjectCube model (Section 3.2) and briefly discuss the results from a
performance evaluation that was performed on that prototype (Section 3.3).

3.1 The Data Model

The core concepts of ObjectCube are objects, tags, tag-sets, hierarchies, and filters. To-
gether, these concepts are used to construct multi-dimensional browsing cubes. We now
describe these concepts to give a better understanding of the ObjectCube model.

1 Although we focus on image browsing, ObjectCube is not bound to any specific media type.

14 PhotoCube: A Multi-Dimensional Image Browser

3.1.1 Objects

An object is any entity that one might be interested in storing in ObjectCube for later
retrieval. This can be any file type that can be described by meta-data. The actual data is
not stored as a part of the object, only a reference to it. In PhotoCube, objects reference
images files on disk.

3.1.2 Tags

A tag is any meta-data that can be associated with an object. For instance, we might have
tags for individuals in a given photo or its brightness value. The ObjectCube prototype
provides the following tag types:

Alphanumerical Tag: Alphanumerical tags consist of a string of letters, numbers and
special characters. An example of alphanumerical Tag might be “Hlynur Sigurþórs-
son”, “Canon 20D” or “Adobe Photoshop CS5”.

Numerical Tag: Numerical tags consist of a single integer. This type of tag is useful for
anything from ISO-speed to number of individuals in a given photograph.

Time Tag: Time tags consist of four integer values which represents a time stamp. This
type of tag is useful for storing, for example, the last modified time or the length of
a given sound file.

Date Tag: Date tags consist of three integer values which represent a date. This type of
tag is useful for storing anything from the last modification date to the date when a
given photo was shot.

3.1.3 Tag-Sets

A tag-set groups together tags that are in some way cohesive; we can think of a tag-set as
a category for tags. In a tag-set named “People”, for instance, the tags can be the names
of people. Figure 3.1 shows an example of a “People” tag-set.

Tag-sets give context to their tags and thereby reduce ambiguity greatly by allowing us to
distinguish between synonymous tags in multiple tag-sets. For instance, the tag “Mouse”
might occur in the two separate tag-sets “Computer equipment” and “Animals”.

Hlynur Sigurþórsson 15

Hlynur

Málfríður

Sigurþór

Vilborg

Family
Dad Children

Mom

Friends

Oddur

Figure 3.1: “People” tag-set

The ObjectCube prototype provides tag-set types for the four tag types mentioned above.
Note that tag types cannot be mixed in tag-sets; a tag-set instance can only contain tags
of the same type.

3.1.4 Hierarchies

A hierarchy is a tree structure that adds organization to a (non-strict) subset of the tags
in a given tag-set. Each hierarchy belongs to one tag-set and can only use tags from that
tag-set. One tag from the tag-set is selected as the root node, whereas other tags from the
same tag-set can be used to extend the tree.

Figure 3.2 is an example of a hierarchy within a “People” tag-set. Tag-sets can contain
infinitely many hierarchies; thus this tag-set could also contain the “Friends” hierarchy
from browsing scenario 1. Both hierarchies and tag-sets are dimensions in the ObjectCube
model and can be used as a dimension when constructing browsing cubes.

3.1.5 Filters

In ObjectCube, a filter is a very important concept. Filters are used to constrain the object
set returned to the user. ObjectCube provides three types of filters, namely tag filters,
range filters, and hierarchical filters. A filter can be applied to any dimension, tag-set or
hierarchy, regardless of whether it is being shown or not.

16 PhotoCube: A Multi-Dimensional Image Browser

Family

Mom

Málfríður

Dad

Sigurþór

Children

Hlynur Vilborg

Oddur

Friends

Figure 3.2: Tag-based “Family” hierarchy created within the “People” tag-set

Applying a tag filter constrains the set of objects retrieved to only those associated with
the particular tag that the tag filter encapsulates. Applying a tag filter to the tag “Vilborg”
in the “People” tag-set would retrieve only images tagged with “Vilborg”.

A range filter constrains the set retrieved to only those objects with one or more tags with
a value within the value range of the filter. For Scenario 1, we must apply a range filter
with suitable boundary values to the “Brightness” tag-set.

A hierarchical filter on a node in a hierarchy selects the entire subtree of the node, and
constrains the set retrieved to only those objects associated with one or more tags in the
subtree. For Scenario 1 we must apply a hierarchical filter to the “Location” hierarchy,
selecting the node “Europe”.

3.1.6 Data Model Summary

We have discussed the core concepts of the ObjectCube model individually. Let us discuss
how these concepts interconnect. Figure 3.3 shows an Entity-Relationship (ER) diagram
of the ObjectCube model. Note that this figure has been simplified to focus on the core
concepts of the model.

The Hub module in ObjectCube serves as a service layer on the model and is used to fetch
objects, tag-sets, hierarchies and to apply/remove filters.

Hlynur Sigurþórsson 17

Hub

has

0..*

Tagset

1

has
0..*

Hierarchy
1

has
0..*Tag 1

has

0..*

Object

0..*

has
1

0..*

Figure 3.3: Entity-Relationship diagram for the ObjectCube model

In the figure we can see that a Hub can have zero or more objects. Objects can have zero
or more tags applied to it which reside in tag-sets. A tag-set can contain zero or more
tags, all of the same type. Tag-sets can then have zero or more hierarchies defined within
them.

3.2 ObjectCube Architecture

A prototype of the ObjectCube model has been implemented. This implementation was
written entirely in the C++ programming language with speed and efficiency in mind.
Figure 3.4 depicts the overall architecture of the implementation. The architecture of the
prototype is fully explained in (Tómasson, 2011), but we now discuss a few important
aspects of the prototype which we utilize in PhotoCube.

3.2.1 Python Interface

The Python interface is a thin wrapper on top of ObjectCube using Boost Python. This
layer allow us to easily interface with ObjectCube from Python code. This is convenient
since the PhotoCube image browser is written entirely in the Python programming lan-
guage.

18 PhotoCube: A Multi-Dimensional Image Browser

Figure 3.4: Overall architecture of ObjectCube prototype implementation Tómasson
(2011)

3.2.2 Data Stores

The prototype implementation enables developers to select their own data storage. By
default, the prototype supports two data storage implementations, namely for SQLite2

and MonetDB3. If developers wish to use another data storage, then they must provide the
data-storage implementation.

3.2.3 Plug-Ins

The prototype implementation provides a powerful plug-in architecture which allows de-
velopers to add automated analysis methods to ObjectCube. This operates as follows.
When images are added to ObjectCube, they run through a pipeline of plug-ins. These
plug-ins have access to the raw data of the image and can perform any analysis provided

2 http://www.sqlite.org/
3 http://monetdb.cwi.nl/

Hlynur Sigurþórsson 19

by the developer. ObjectCube then annotates the image with all tags returned by plug-
ins.

An example is a plug-in for face recognition. When images pass through the plug-in,
a face recognition algorithm would be executed and recognized faces tagged with the
appropriate tags defined by the plug-in.

The plug-in architecture adds a rich flexibility the ObjectCube model where any image
analysis method of interest can relatively easily be added to the model.

3.2.4 Multi-Dimensional Views

With ObjectCube, users select dimensions of interest, either hierarchies or tag-sets, and
use them to construct image cubes. The model supports construction of cubes with infinite
number of dimensions, but in the current version of PhotoCube we use at most three
dimensions.

When a given cube has been constructed, a Multi-Dimensional View (MDV) can be re-
quested. An MDV is a simple data structure which represents a cube as a collection
of cells, indexed by their positions in the cube. A cell c in a given cube has the posi-
tion:

c = (p1, p2, . . . , pn)

where n is the dimensionality of the cube and p1, p2, . . . , pn are the numerical positions
of the intersecting tags where the cell resides.

Objects are then placed into appropriate cells in the MDV. Appropriate means that all the
tags which make up the cell have been associated with the object (or tags of a lower level
in a hierarchy if using a hierarchical dimension in the cube).

We use the MDV to calculate positions for images in PhotoCube. Therefore we find
it imperative to describe the MDV in more depth to give better understanding of how
it is utilized in PhotoCube. The aim of the following discussion is to define how the
appropriate cells for each image are determined. For the following discussion, we define
three functions:

• D(t, i): Returns a set of tags with two properties. First, the tags are all part of
the i’th dimension of the cube. Second, if we are working with an hierarchical
dimension, then there is a path from the node for each tag in the set to the node
which represents t.

• A(I, t): Returns > iff tag t has been applied to image I , ⊥ otherwise; and,

20 PhotoCube: A Multi-Dimensional Image Browser

• T (c, i): Returns the tag at position i in cell c.

We then define the a ppropriate cell for image in a given MDV as follows.

Definition 3 (Appropriate cell for image in MDV). Let c = (p1, p2, . . . , pn) be a cell in

an MDV. Then the cell c is an appropriate placeholder for image I iff:

∀j∃t.[t ∈ D(T (c, j), j) ∧ A(I, t)]

Definition 3 states that a cell c is appropriate for image I if and only if all the tags that
make up c have been applied to it, or if there exist some lower layer tags within the
dimension hierarchical structure that have been applied to it. Note that a given image
I can have more than one appropriate cell position. When this occurs in ObjectCube,
images are replicated into many cells in the cube.

The main advantages of MDV are that it:

• Facilitates cube handling;

• Positions images into correct cells in the constructed cubes; and

• Offers support for removing empty slices from the cube.

Originally, the MDV was part of the PhotoCube interface, but for efficiency reasons we
decided to move it to the ObjectCube prototype.

3.3 ObjectCube Performance

A performance evaluation of the ObjectCube prototype was reported in (Tómasson, 2011).
In this evaluation image retrieval was measured for the three available filter types, namely
tag-filter, range-filter and hierarchical filter, to uncover any scalability or query complex-
ity weaknesses of either the prototype or underlying data stores.

Three different data stores were considered: SQLite, MonetDB and a widely used com-
mercial database system. Since MonetDB performed the best of the data stores, we only
discuss those results here. The threshold for acceptable performance was set at one sec-
ond. Note that only the meta-data was retrieved, as the retrieval time for the images is
independent of the method used for meta-data retrieval.

Even when using very high selectivity of 10%, the prototype performed acceptably for
40-50,000 images. All filter types performed similarly and the overhead the prototype

Hlynur Sigurþórsson 21

imposes on the underlying data store was measured to be 140 ms or less for 1,000 retrieved
images.

The key result, however, was that the performance was more dependent on the number
of objects retrieved than on the size of the data-set. Using a very reasonable selectivity
of 1%, the prototype performed acceptably for data-sets of over 100,000 images. Note
that even 1,000 images may be an unreasonably large number of images for a user to
assimilate on screen at once.

22

23

Chapter 4

PhotoCube

As discussed above, today’s photo browsers do not provide an acceptable solution to
image browsing, as they lack categorization and browsing by more than one criterion, as
well as extensible image grouping. In this chapter we discuss PhotoCube, a novel multi-
dimensional image browser built on-top of the ObjectCube browser engine, which takes
these issues into account.

This chapter is organized as follows. In Section 4.1 we discuss important design goals for
PhotoCube. In Sections 4.2 and 4.3 we describe the architecture and implementation of
PhotoCube, focusing on currently available browsing modes. In Section 4.4 we return to
the two browsing scenarios from the introduction and show how they can be solved with
PhotoCube. Finally, in Section 4.5 we discuss how well PhotoCube currently meets our
design goals.

4.1 Design Goals

At the beginning of this project we set forth the following design goals for PhotoCube.

• Efficiency
The browser must be efficient, both in retrieving and presenting image information.
This goal was one of the most important factors in our design. For efficient im-
age presentation, e.g., we implemented asynchronous image loading and an image
storage manager. As we mentioned earlier, ObjectCube is used as a back-end for
PhotoCube. The prototype implementation of ObjectCube has been proven to be ef-
ficient in retrieving and calculating image informations for reasonably large number
of images (see discussion on ObjectCube performance evaluation in Section 3.3).

24 PhotoCube: A Multi-Dimensional Image Browser

• Ease of Use
The browser interface must be easy to understand and easy to use. Though we
are implementing a prototype, we wanted it to be usable and not overwhelmingly
complicated in use. Therefore, we outlined the interface as a “point and click”
application with as few keyboard shortcuts as possible.

• Portability
The browser must be able to run on the major operating systems. PhotoCube is
entirely written in Python and uses the Panda3D game engine1 for 3-D processing.
Both Python and Panda3D are available for the major operating systems, such as
Linux, Mac OS X and Microsoft Windows. ObjectCube, however, is currently only
available for Linux and Mac OS X. We intend to create a branch for Microsoft
Windows in the future.

• Ease of Distribution
It must be easy to install PhotoCube, along with ObjectCube, on end-users’ com-
puters. The installation process has not been implemented, but there are well known
methods to distribute Python applications, including Panda3D, as stand-alone exe-
cutable files.

• Configurability
PhotoCube possesses many features that are configurable, either through a config-
uration file or settings dialogs. For this we implemented a singleton configuration
manager that is available for all modules within the browser. Great care was taken
in the implementation to make PhotoCube as configurable as possible.

4.2 Architecture

In this section we discuss the key features of the PhotoCube architecture. The aim of
these features is to make the browser efficient and to provide users with a flexible and
extensible browsing platform.

4.2.1 Browsing Modes

Browsing modes are the bread and butter of PhotoCube. They can be considered as visu-
alization plug-ins on images returned from ObjectCube. The basic browsing mode is the

1 http://www.panda3d.org

Hlynur Sigurþórsson 25

3-D visualization of the cube; another potential browsing mode is a slide show. Within a
browsing session, the PhotoCube architecture allows for easy transitions between brows-
ing modes, where cells in one mode can be taken into another mode with a different
presentational view.

Each browsing mode supports a well-defined API and new browsing modes can be added
relatively easily to PhotoCube, making the prototype very extensible.

When a given browsing mode is enabled, it gets access to the state of the current cube.
The mode can then take action and present the cube, or fraction of the cube, by its def-
inition. Modes have access to the Panda3D library and common functionality within
PhotoCube.

4.2.2 Action Traces

Since browsing essentially boils down to adding and removing filters, as well as determin-
ing dimensions to visualize, it is easy to store action traces for a given browsing session.
These traces can subsequently be read from disk and replayed, similar to an animated
slide-show or to do an undo, or redo on actions within a given browsing session.

Actions that are performed in PhotoCube are stored in a singleton action manager dur-
ing execution. This manager can then save applied actions to disk and replay them on
demand.

4.2.3 Thumbnail Creation

When images are added to PhotoCube, a thumbnail of the original image is created and
stored to disk. When a given image is requested, the thumbnail version is loaded first.
This is done so the cube can be presented as fast as possible. If further inspection of
images is requested, the thumbnails are replaced with the original images. Modes can
decide which version of images is shown.

4.2.4 Image Loading

One of the main criteria in our architectural design was that images should be presented
as fast as possible to users. For this purpose, we implemented the thumbnail mechanism
mentioned above, as well as image buffering and asynchronous image loading.

26 PhotoCube: A Multi-Dimensional Image Browser

Figure 4.1: The overall architecture of PhotoCube

All images are fetched through a singleton image manager. A buffer of a predefined size
is initialized and the image manager keeps the most used images in memory, based on
retrieval frequency.

When images are fetched, the image manager is notified and starts loading the images
asynchronously into memory. It takes into account that images from a previous browsing
session might be in memory and avoids reloading them.

4.3 Implementation

We now go through the implementation of the prototype version of PhotoCube. Figure 4.1
depicts the overall architecture of the implementation. The architecture can be divided
into three parts.

First we have a core, which we call “Browser”. This module is the browsing platform
of PhotoCube and provides functionality for browsing modes. This module consists of a
number of Python packages which have isolated purposes within the platform and provide
a service layer to its functionality. The platform also implements PhotoCube’s graphical
user interface, using Panda3D for graphical management.

Hlynur Sigurþórsson 27

Second, we have the browsing mode implementations (depicted as shaded boxes in Figure
4.1). Browsing modes utilize the platform for carrying out their tasks. As stated above,
the purpose of browsing modes is to implement the presentation of images in browsing
sessions.

Last we have ObjectCube. As Figure 4.1 shows, the platform communicates with the
ObjectCube prototype through a Python layer which resides on top of the ObjectCube
C++ implementation. ObjectCube handles communications with external data storage.

Together these three artifacts—the platform, the browsing modes and the ObjectCube
model—form PhotoCube.

The rest of this discussion is structured as follows. In Section 4.3.1 we describe the pack-
age structure the browsing platform in more depth and discuss the role of each package
individually. In Section 4.3.2 we present PhotoCube’s user interface. In Sections 1 and
4.3.4 we discuss the implementation and functionality of the available browsing modes.
In Section 4.3.5 we discuss the browsing mode API and how it is used to develop new
browsing modes for PhotoCube. We then finish in Section 4.3.6 by discussing dependent
libraries.

4.3.1 Package Structure

As stated above, the implementation of the browsing platform consists of a number of
Python packages. Figure 4.1 depicts the package structure within the Browser core. We
now describe these packages in terms of their purpose.

• Mode
The Mode module handles all communications with external browsing modes. The
functionality of this module is twofold. First, it provides interfaces for developing
new modes for the browser. Second, it handles registration of new browsing modes,
as well as a transition service for swapping modes during browsing.

• ObjectCube
The ObjectCube module is a service layer on top of the ObjectCube Python layer.
All communication with ObjectCube goes through this module.

• Cube
This module handles MDVs returned from ObjectCube and converts them into cube
data structures that are defined in the platform. This conversion is done for conve-
nience and adds more information which can be used by browsing modes.

28 PhotoCube: A Multi-Dimensional Image Browser

• Dialogs
The Dialogs module contains dialog management in the browser. The module con-
tains a number of pre-defined dialogs that other modules can use, as well as inter-
faces for browsing modes to create new dialogs.

• Common
The Common module contains common code that is shared within the platform.
Common contains, e.g., the browser configuration manager, system logging and ac-
tion trace management. This module also contains methods which browsing modes
can use to calculate positions for images on screen and to do simple animations for
images.

• Devices
The Devices modules handles all peripheral device communication. This module
offers a rich service layer for registering mouse- and keyboards events as well as
interfaces for other devices.

4.3.2 User Interface

Figure 4.2 shows a screen capture from PhotoCube’s user interface. When PhotoCube
is started it enables Cube mode (see Section 4.3.4) where users can construct browsing
cubes. On the right side of the interface we have three menus. The top menu shows
visible dimensions in the currently active cube. The middle menu is the dimensions menu.
This menu contains all available dimensions in ObjectCube that can be used to construct
a cube. As was mentioned in Chapter 3, tag-sets and hierarchies are both treated as
dimensions; thus they can both appear in the dimension list. The bottom menu shows the
currently active filters in a browsing session.

Cubes are constructed by selecting viewing orientation for dimensions in the dimensions
menu. Available orientations are “front”, “up” and “in”. We use these names for the axes
instead of x, y and z as this is a natural order for adding dimensions, but they roughly
correspond to x, z and y.

Filters are added from context menus which appear when a given dimension from the
dimensions list is selected.

In this project we were mainly focusing on the browsing part of PhotoCube. However,
a usable browser must provide more than only browsing. To be usable and competitive
against today’s browsers we must implement features for tagging and searching images
as well as constructing hierarchies and tag-sets. Today, there is limited support for these

Hlynur Sigurþórsson 29

Figure 4.2: Screen capture of PhotoCube’s interface

crucial operations but we outline ideas effective tagging in our discussion of future work
in Chapter 6.

4.3.3 Browsing Modes

Currently, there are three browsing modes available for PhotoCube. We now discuss these
modes and their behavior.

1. Cube Mode
This mode is a direct 3-D representation of the ObjectCube data model and is Photo-
Cube’s main browsing mode. Figure 4.3 shows a screen capture of the image rep-
resentation by this mode. In Cube mode, dimensions are presented as orthogonal
axis in a coordinate system which are built using the features supported by Object-
Cube, such as filtering, pivoting, drill-down and roll-up. As Cube mode is the main
browsing mode in PhotoCube, we describe its implementation in more depth in
Section 4.3.4.

2. Card Mode
This mode is used to view images from selected cells in more detail. In this mode,
images are presented as a row of standing cards which can be easily browsed. Fig-
ure 4.4 shows a screen capture of the Card representation. Browsing is done by

30 PhotoCube: A Multi-Dimensional Image Browser

Figure 4.3: Image representation in Cube mode

flipping through the cards using either the mouse or the keyboard arrows. In the
current version of the mode, image cards are ordered by the image creation date.

3. Shooter Mode
This mode allows users to take selected cells from a cube into a simple shooting
game. This mode was developed as a proof-of-concept mode for PhotoCube’s ar-
chitecture to demonstrate its extendibility.

4.3.4 Cube Mode

Cube mode is a direct 3-D representation of the ObjectCube data model. In this mode
users can construct a browsing cube from available dimensions and apply all the features
supported by ObjectCube, such as filtering, pivoting, drill-down and roll-up.

When a cube is constructed, the following steps are performed in PhotoCube.

1. PhotoCube notifies ObjectCube that the user wants to construct a new cube with the
currently selected dimensions.

2. ObjectCube returns the MDV for the new cube.

3. The platform then converts the MDV into a cube data structure which is defined
within PhotoCube. Candidate images for each cell in the cube are selected2. The

2 Currently these candidates are selected randomly but there is support for adding new candidate selec-
tion algorithms.

Hlynur Sigurþórsson 31

Figure 4.4: Image representation in Card mode

platform then notifies the image manager which starts loading the selected images
from disk into memory asynchronously.

4. The platform then enables the Cube mode which presents the cube on the screen.

As stated above, PhotoCube uses Panda3D for 3-D management. Before we describe how
Cube Mode presents the cube in step 4, let us briefly describe how the 3-D environment is
set up and how it is used. As in other 3-D environments, Panda3D provides us with a three
dimensional coordinate system and support for drawing primitive elements, such as dots
and lines, or complex 3-D models into the coordinate system. Panda3D possesses many
convenient artifacts which make 3-D programming easier for developers, such as:

• A camera that can easily be controlled within the environment;

• A scene graph which handles painting objects into the environment and culling of
objects that are not in camera scope; and

• Support for altering object position and orientation within the environment.

The coordinate system in Panda3D is a right handed z-up coordinate system. This means
that the x-axis is to the right, the y-axis is into the screen and the z-axis is up. As stated
above, we abstract the coordinate names to front, up and in. Figure 4.5 depicts how the
coordinate system of PhotoCube is represented in Panda3D.

We now return to our discussion of Cube mode. When the mode receives a new cube
it begins by drawing axis lines for its dimensions. The length of each axis is calculated
by the number of labels on the axis, the image scaling factor and the size of the space
between images in the environment. The image scaling factor is a constant, which is used
to scale the images that are presented. The scaling is done with respect to the image
ratio. Each label on the axis represents a tag in the dimension. The length of the lines is

32 PhotoCube: A Multi-Dimensional Image Browser

front

up

in

(a) PhotoCube coordinate system

x

z

y

(b) Panda3D coordinate system

Figure 4.5: Interpretation of the Panda3D coordinate system in PhotoCube

calculated as follows. Let γ be the image scaling factor, σ be the image spacing length and
C = (cx, cy, cx) be number of labels on a given axis. Then the axis length L = (lx, ly, lz)

is defined as:

lx = (cxγ) + ((cx − 1)σ)

ly = (cyγ) + ((cy − 1)σ)

lz = (czγ) + ((cz − 1)σ) (4.1)

The initial camera position is then computed based on L.

Next, the mode displays the candidate images for each cell. The screen position of each
image is decided by its cell value from the MDV returned from ObjectCube, the image
scaling factor and the image spacing length. The following formulae are used to map im-
age cell position into a screen positions. Let P = (px, py, pz) be a triplet which represents
the cell value for a given image, γ be the image scaling factor and σ the image spacing
length. Then the screen position will be the triplet S = (sx, sy, sx) where each component
is defined as:

sx = px(γ + σ)

sy =
γ

2
+ py(γ + σ)

sz = pz(γ + σ) (4.2)

The formula for sy is different from that for sx and sz as the thickness of the image is
taken into account.

When images are scaled, the image scale factor and the image spacing size are changed.
We alter the values for σ and γ and recalculate the positions of all visible images using

Hlynur Sigurþórsson 33

Formulae 4.2 and redraw the axis. Note that in Formulae 4.1 and 4.2 we are always
considering three dimensional browsing. When a given dimension is not used the values
for its formula are set to 0.

Figure 4.3 showed a screenshot from PhotoCube in Cube mode viewing three dimensions.
As we can see, images are placed within the coordinate system by their appropriate label
using the formulae above and the positions from MDV. Note that if an image has been
tagged with more than one tag from the same dimension, the image will appear in more
than one place in the coordinate system as was stated in our discussion on ObjectCube’s
MDV in Section 3.2.4.

Cube mode support many features for working with the cube as well, such as support for
scrolling through images in a given cell, rotating the cube, scaling the cube and flying
around it using the Panda3D camera. Image cells can be selected and taken into other
available browsing modes, such as the Card mode, for inspection.

4.3.5 The Mode API

In this section we will briefly describe the browsing mode API in PhotoCube. As we
stated above, new browsing modes must implement an interface from the Mode package
from the browsing platform. This interface is named AbstractMode and has the pack-
age location browser.mode.AbstractMode within the platform. The functions that a new
browsing modes must implement are the following:

• initialize()
This function is called when the mode is registered to PhotoCube. In this function
the mode should load all the resources that they might need during their execution.

• def load(cube)
This function is called when the mode is enabled during a browsing session. The
mode service passes the active cube to the mode. From the cube, the mode can
get a variety of information such as selected cells, currently visible images and all
the available cells within the cube. In this function the presentation of the mode is
implemented.

• disable()
This function is called when the mode service disables the mode. Here the mode
must release all resources which it might have been using during its execution and
clean the drawing scene for the next mode. The cleanup is also done by the mode
service before the next mode is enabled if this is not implemented in the mode.

34 PhotoCube: A Multi-Dimensional Image Browser

from browse r . mode import modeServ ice
newMode = package . p a t h . newmode . NewMode (’NewMode ’)
modeServ ice . r e g i s t e r _ m o d e (newMode)

Listing 4.1: Registering new mode to the mode service

Modes are registered by creating an instance and passing it to the mode service (see
Listing 4.1). Modes can then be enabled through a context within the interface or by
requesting it through the mode service by its name.

4.3.6 Dependent Libraries

PhotoCube uses Python Imaging Library (PIL)3 for image processing, such as scaling, and
Panda3D for 3-D management. Both PIL and Panda3D have a permissive free software
license.

4.4 Browsing scenarios

We now describe how Scenarios 1 and 2 are solved in PhotoCube.

4.4.1 Browsing Scenario 1

In Scenario 1, we were interested in images of our friends, taken in Europe, that had
a suitable brightness value range. This is done by selecting these three dimensions in
cube mode, namely the people hierarchy and the location hierarchy, and drilling down
to “Friends” and “Europe” (thus adding hierarchical filters). Finally, a range filter can
be added on the exposure tag-set, resulting in the correct set of images. For experienced
users, this is an easy task.

Figure 4.6(a) shows the result of the first step; there we have placed the friend hierarchy
on the front axis. We can see that images of our friends appear on the front axis.

Figure 4.6(b) shows the result of the next step; there we have placed a location hierarchy
on the up axis. We can see that our images have been taken in two continents, namely in
“Europe” and in “America”. We can also see that our friends from America never appear
on images from Europe.

3 http://www.pythonware.com/products/pil/

Hlynur Sigurþórsson 35

(a) Friend hierarchy on front axis

(b) Location hierarchy on the up axis

(c) Exposure tag-set on in axis with range filter

Figure 4.6: Browsing Scenario 1 in PhotoCube

Figure 4.6(c) show the final step; there we have placed the Exposure tag-set on the in axis
and added a range filter for the values of interest.

4.4.2 Browsing Scenario 2

In Scenario 2, we were interested in family photos, organized by parents, children, and
location. In this case, we must add the “Location” hierarchy to one browsing axis and the
“Family” hierarchy to the remaining two axes. Then, we must drill down into the Family
hierarchy, in one case to the children, and in the other to the parents. The images will then
automatically be grouped appropriately on screen. Figure 4.7 show the resulting browsing
from PhotoCube.

36 PhotoCube: A Multi-Dimensional Image Browser

Figure 4.7: Browsing Scenario 2 in PhotoCube

4.5 Summary

We have achieved many of the goals that we set forth at the beginning of this project,
while some will need deeper consideration to be fulfilled.

• Efficiency: We have carefully considered efficiency in our implementation. Despite
that, ObjectCube can handle vastly large image collections which our implementa-
tion cannot not handle at present. Thus finding methods to handle such cases is
needed to fulfill our efficiency goal. We outline a number of ideas for this subject
as future work.

• Ease of Use: In this project we decided to focus more on implementing features
and pay less attention to the user interface. In chapter 5 we present a user evalua-
tion where the results clearly indicate that we must pay more attention to the user
interface to make it more usable and easier to use.

• Portability: As we stated above, PhotoCube is entirely written in Python and de-
pends on two major libraries, namely Panda3D and PIL. Both Python interpreters
and these two libraries exists for all the major operating systems. The browser is
therefore highly portable between different operating system. At this time, however,
ObjectCube is only available on Unix-related operating system.

Hlynur Sigurþórsson 37

• Ease of Distribution: The aim is to create a Microsoft Windows branch for Object-
Cube. Parallel to that work, we will consider distribution of the browser for all ma-
jor operating systems as well, making the project open source for other developers
to take part in the project.

• Configurability: A careful attention was paid to the configurability in the browser,
where almost all aspects of the browser can be configured through a simple config-
uration file or using a settings dialog within the browser interface.

38

39

Chapter 5

User Evaluation

PhotoCube is not like a traditional image browser, as it offers a completely different
browsing model which might not seem natural at first to many users. Therefore we found
it imperative, and at the same time interesting, to do a user evaluation on PhotoCube. The
research questions of interest were:

1. How well do users like to use the ObjectCube browsing model when browsing an

image collection?

2. Would they like to use a similar model to browse and manage their own image

collection?

In this chapter we describe the user evaluation process and its outcome. We start by
describing the experimental setup (Section 5.1) and experimental process (Section 5.2).
We then discuss the results (Section 5.3 through 5.5) and end with a summary (Sec-
tion 5.6).

5.1 Experimental Setup

In this experiment we considered a narrow set of users: experienced computer users. The
reason for using such a skewed sample was twofold. First, the focus of this experiment
was on the model, rather than on the user-interface, and more experienced computer users
are more likely to understand the difference between these two concepts. Secondly, we
believe that this sample of users is more likely to have used more advanced image brows-
ing tools and we were interested in getting a comparison to the browsers they might have
used.

40 PhotoCube: A Multi-Dimensional Image Browser

Participant Gender Age Background Computer use

1 Male 30 M.Sc student - Software Eng. 5+ hours/day
2 Male 26 M.Sc student - Software Eng., Pro-

fessional Photographer
5+ hours/day

3 Male 27 M.Sc student - Computer Sci. 5+ hours/day
4 Male 24 M.Sc student - Computer Sci. 5+ hours/day
5 Male 43 Software Developer 5+ hours/day

Table 5.1: Participant background: Demograpic Information

5.1.1 User Sample

In this experiment we got five advanced computer users to participate in our research.
Four participants were graduate students of computer science or software engineering at
Reykjavik University, whereas one participant has more than a decade’s experience with
software development. All participants are thus experienced computer users, but their
experience with image browsers is varied. One participant did not possess any digital
images, three participants owned between 500 and 10, 000 images, but one participant is a
professional photographer and estimated his collection at about 200, 000 images. All par-
ticipants were males and the average age was around 30 years. Table 5.1 contains answers
from participants regarding their age, background, and computer usage and Table 5.2 con-
tains their answers regarding their image collection and image browser usage.

5.1.2 Image Collection

The image collection used in the evaluation contained images from a five day trip along
the well-known Laugavegur hiking trail in Iceland. The hiking group consisted of 9 adults
and 9 kids from 5 different families. The collection consisted of 1, 140 images. Aside
from 19 meta-data tag-sets extracted from the photo headers, there were 126 tags in 7

tag-sets with a total of 7 hierarchies (one user-generated tag-set had no hierarchies, while
one tag-set had two). The tag-sets were:

• Events

• Days

• Locations

• People

• Objects

Hlynur Sigurþórsson 41

Participant # Image collection est. Size Image browsers

1 Yes 500 Picasa, Gimp, Photoshop
2 Yes 200.000 LightRoom
3 Yes 10.000 iPhoto, Photoshop
4 No - -
5 Yes 5.000 Picasa, Photoshop

Table 5.2: Participant background: Image collections and browser usage

• Animals

• Impression1

The reason for using this set, although it was not familiar to the participants, is that it
was used recently for a demonstration and was therefore well tagged (Sigurþórsson et al.,
2011).

5.1.3 Browsing Tasks

The participants were asked to perform the following tasks:

1. Show images of kids by location.

2. Show images that contain a sheep.

3. Show image that contain hiking shoes and have Aperture value in the range 4 - 5.

4. Show images of people playing football.

5. Show images which contain Björn Þór, grouped by F-number, ISO-Speed and lo-
cation.

6. Show me some images which you think are cool.

The purpose of the final task was to allow the users to “play around” with the prototype
on their own. We believe that these task cover most of the features in ObjectCube where
users must apply all the core functionality in the PhotoCube to achieve them.

The task are ordered roughly by level of difficulty. Tasks 1 and 2 can be achieved simply
by viewing a number of dimensions. In Tasks 3 and 4, users must apply filters to archive
a task and in Task 5 we added grouping by dimensions.

1 The tag-set Impression contained the single tag “beautiful”.

42 PhotoCube: A Multi-Dimensional Image Browser

5.2 Experimental Process

The experiment was executed as follows. In the beginning, each participant was asked
to fill in a consent form and a background questionnaire. The background questionnaire
asked, in addition to basic demographic questions, whether users owned a digital image
collection. If so, they were asked whether they used any browsing applications to man-
age and browse this collection, and asked to state the pros and cons of these browsing
applications.

5.2.1 Task Performance

Participants were given a short presentation of the ObjectCube data model and the Pho-
toCube prototype, and shown how to apply PhotoCube for browsing. Then, participants
were asked to solve the predefined tasks above using the prototype. The performance on
the tasks was noted by the experimenter.

5.2.2 Usability Factors

Once the participants finished the tasks, they were asked to fill in a usability questionnaire,
which asked whether they found the prototype to be (on a scale of 1 to 7):

• Comfortable: For this factor, 1 means uncomfortable and 7 means comfortable.

• Enjoyable: For this factor, 1 means unsatisfying and 7 means enjoyable.

• Easy to use: For this factor, 1 means difficult and 7 means easy.

• Complicated: For this factor, 1 means complicated and 7 means simple.

• Appealing: For this factor, 1 means boring and 7 means fascinating.

• Pliable: For this factor, 1 means rigid and 7 means pliable.

• Encouraging: For this factor, 1 means discouraging and 7 means inspiring.

• Imaginative: For this factor, 1 means traditional and 7 means imaginative.

• Useful: For this factor, 1 means unsuitable and 7 means useful.

Hlynur Sigurþórsson 43

Participant Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

1 B B B A A A
2 B B A A A A
3 A A B A A A
4 C B A A A A
5 C C A B A A

Table 5.3: Task performance (see Table 5.4 for explanation of performance indicators)

We believe that all good applications have these qualitative, thus we found it imperative
to use these usability factors in our user studies. The questionnaire that was used in our
experiments was based on Attrakdiff2.

5.2.3 Interview

Finally, a short discussion session was held where the experimenter asked the following
questions:

1. Do you find this model comfortable for browsing images?

2. What do you think are the main advantages and disadvantages of the ObjectCube
model?

3. Would you consider using a similar model to browse your image collection?

4. If you were given the opportunity to alter the model, what would you change?

5.3 Task Performance

Table 5.3 shows the outcome of the task performance evaluation. Each row contain
the task performance of one individual participant. Four different values were used for
the performance, namely A, B, C and F ; the meaning of these values is shown in Ta-
ble 5.4.

Table 5.3 shows that all participants, except for participant 3, experienced some difficul-
ties with the first two tasks. This is most likely due to the learning curve of the model
and the prototype. Two users experienced significant difficulties with the first tasks and
had to ask for clarifications. The instructions they received, however, consisted solely of
reminding users of functionalities of the model, available operations in the browsers and

2 http://www.attrakdiff.de/

44 PhotoCube: A Multi-Dimensional Image Browser

Indicator Meaning

A Participant was able to finish the task with no problems.
B Participant was able to finish the task but with multiple tries.
C Participant was able to finish the task with minor help from the instruc-

tor.
F Participant was not able to finish the task.

Table 5.4: Meaning of task performance indicators used in Table 5.3

information about the dataset. No direct help instructions were given; yet we do not see
any F labels in the table. In the table we see an interesting pattern emerging. Overall,
participants experienced the most difficulties with Task 1, where only one user was able
to finish this task without problems. In Task 2 the performance is slightly better, but still
only one user is able to finish the task without any problems. In Task 3 the performance
improves further, as now two users were able to finish the task without problems and the
others without any assistance. By Task 5 all the participants were able to complete the
task without any problems, even though that is a relatively difficult task.

These results indicate that there is a learning curve for the browser, but that perhaps a few
browsing sessions are sufficient to overcome it.

5.4 Usability Factors

Figure 5.1 shows the results from the usability questionnaire. The x-axis shows the mea-
sured usability factors, whereas the y-axis shows the average score across all participants.
This figure also shows the range of the scores (the minimal and maximal scores). The
usability factors are ordered from the lowest score to the highest score.

Overall, we observe that the scores are rather high across the board, ranging from 4.8 to
6.6. There are notable difference between the score for different factors, as the scores can
essentially be divided into two groups. The factors on the left side, Simple, Pliable, Easy

to use, Comfortable and Encouraging all have a comparably low average score, ranging
from 4.8 to 5.6, with a wide range of scores. The widest range is for the Simple factor,
where the average value is the lowest, as the scores range from 3 to 7. On the other
hand, the factors on the right, Enjoyable, Imaginative, Useful and Fascinating, all have
comparably high average scores of 6.2 through 6.6. Furthermore, the participants all seem
to agree on these values, as the range of scores is quite narrow.

Hlynur Sigurþórsson 45

 1

 2

 3

 4

 5

 6

 7

Simple Pliable Easy to use Comfortable Encouraging Enjoyable Imaginative Useful Fascinating

Av
er

ag
e

Sc
or

e
(M

in
/M

ax
)

Usability Factors

Figure 5.1: Results from the usability questionnaire

These results indicate that our participants find the prototype rather complicated and cum-
bersome to use, while finding it at the same time highly enjoyable, imaginative, and
useful. The reason for the lower average values for the factors on the left side can be
explained by the status of the prototype. The focus was to get most of the features of
interest into the prototype at the cost of a poorer user interface. These features, on the
other hand, might be the reason for such high values for the factors on the right side, as
they can be considered exotic and innovative. The detailed data behind Figure 5.1 can be
found in Appendix A.

5.5 Participant Interviews

Many useful and interesting points were brought forward in the interviews. Overall, the
participants made 19 different comments on the advantages and disadvantages of the pro-
totype. Of these, 11 comments were positive and 8 comments were considered critical, but
in a constructive manner. Here we list some of the comments made by our participants.
We group the comments into categories based on their focus.

5.5.1 Comments on the Interface

1. Aggregation is convenient, particularly when multiple dimensions are viewed

2. The axis are convenient to understand image properties

46 PhotoCube: A Multi-Dimensional Image Browser

These two points indicate that the multi-dimensional model is suitable for image brows-
ing.

3. It can be hard to distinguish the difference between tag-sets and hierarchies

This reason for this might be twofold. First, the users might have misunderstood these
two concepts. Secondly the difference of these two concepts might not be adequately
differentiated in the interface.

4. The user interface is raw and cumbersome

We are presenting a prototype and we are aware of number of issues related to our inter-
face; Fixes for the user interface is part of our future work.

5.5.2 Comments on the Model

5. The underlying model is closely tied to the interface, which makes it complicated
to use; The model should be abstracted better in the interface.

6. There is a steep learning curve in the application.

The current version of PhotoCube reflects the ObjectCube model. At the beginning of this
project this was part of the design. But at later stages of the development this has been
considered and will be made more comfortable in next version of the browser.

5.5.3 Comments on New Features

Many interesting comments on new features came from participants during the interview.
We now state some of the ideas and discuss how they might fit into ObjectCube.

7. Save browsing scenarios

This is one of the features that we have implemented at lower levels in the browser and is
part of the architecture. No controls have been added to the interface which allows users
to use this feature yet. But this is one of the first features that we will add in the next
version of the browser.

8. Implement color coding and allow users to tag images by colors

In fact, this is possible in the current version of the browser. Users can create a color
tag-set which contains a tag for each color of interest. The users would never see the

Hlynur Sigurþórsson 47

actual colors, only tag strings. A plug-in can easily be implemented to automate the color
analysis.

9. Add drop-down list with tags and allow users to type in text to add tag-filters

This is a great comment and would make our user interface more useful for users, as in
the current version adding filters is still rather primitive. This is something that we will
definitely look into doing in the next version of PhotoCube.

5.5.4 Discussion

Many of the comments confim the results of both the task performance and the usability
evaluation. Some participants stated that there was a steep learning curve when solving
the initial tasks. They also said that they found it difficult to distinguish the concepts of
tag-sets and hierarchies, but after a number of tries these concept became clearer to them.
This mirrors the results of the task performance evaluation.

Also, participants commented on the user interface. These comments were mostly on
user controls, location of components and lack of action feed-backs. This confirms the
low value of the factors that are related to the user experience, such as user enjoyment and
usability. Many of the comments from the participants were also on how much they liked
the browsing model, the representation of the images and how well the browser showed
the connection between images and their attributes. This explains the high average values
of the usability factors that focus on enjoyment and usefulness. At the end of the interview
participants were asked whether they would like to use this model, or a similar model, to
browse their own image collection; they all answered positively.

5.6 Summary

Today we have a working prototype which contains a large number of the features that
we were interested in implementing, but this user evaluation has shown that the interface
requires significant work. The research questions put forth, however, focused on the data
model; how well users liked using the model, and whether they would like to use a sim-
ilar model for their own collection. The user sample is skewed towards computer-savvy
participants, and hence the research questions cannot be answered for general users. The
evaluation results indicate, however, that the model has significant potential to improve
the state-of-the-art in image browsing, which is very encouraging for our future work on
PhotoCube.

48

49

Chapter 6

Future Work

For PhotoCube we see myriad of potential future work into many directions. In this
chapter we discuss a number of ideas that we find interesting to look into in the further
development of PhotoCube. We begin by discussing user interface improvements (Section
6.1). We then discuss ideas on how the ObjectCube model could be better implemented
in the browser and outline additional improvements (Section 6.2). We then finish by
discussing further user evaluations (Section 6.3).

6.1 User Interface Improvements

From our user evaluation, specially in the discussion session with our participants, we
learned that many aspect of PhotoCubes’s user interface needed refinement and alter-
ations. First, we need to make the distinction of tag-sets and hierarchies either more
clearer in the interface, or try to abstract the difference between them better. One possible
solution would be to present tag-sets as hierarchies with one level.

Second, add a better functionality for adding tag filters. One suggestion which we got
from one of our participant was to add an autocomplete text-box to the interface. Users
could then type in tags which they would like to filter by. Synonymous tags could then
be distinguished by showing their tag-set as well. This is a good idea which we would
like to see in our interface and would without a doubt be a excellent addition to the
browser.

At last, the most frequent comments by participants were on the GUI controls used in the
interface. Currently, we are extending the GUI components from Panda3D, with a number
of modifications. These controls are rather primitive and cumbersome to use, compared

50 PhotoCube: A Multi-Dimensional Image Browser

to regular components, such as the ones found in today’s operating systems. We would
like to move our GUI components from Panda3D and use more natural components in
the browser. We have been experimenting with the wxWidgets1 GUI framework and
we we will most likely integrate it into PhotoCube for handling GUI components in the
future.

Many other lines of work can be mentioned for the graphical representation such as adding
more flexible movements of the camera during a browsing session and adding smoother
movements of images. Such features would provide a more interesting and more enter-
taining browsing experience for users.

6.2 Model Improvements

As we stated earlier the focus in this project was on the browsing process of the browser
and creating a visual representation of the ObjectCube model where we were able to vi-
sualize dimensions, navigating hierarchies, applying filters and presenting images. This
alone is only one aspect of the whole story. Users must be able to maintain the cube, add
new photos, create tag-sets, construct hierarchies and apply tags to images. All this has
been implemented into the browser, but the implementation is rather limited and cumber-
some to use.

One line of work involves implementing a comfortable processes where these aspects
are considered. For tagging we see great potential in integrating state-of-the-art image
analysis methods, such as face recognition; careful handling of image meta-data dimen-
sions containing date and time information; and effective implementation of tag-set and
hierarchy management. It would also be an interesting approach to utilize the nature of
multi-dimensional analysis in image tagging where cells could be dragged around and
placed within cube locations for tagging.

Though searching an browsing are two different concepts in many contexts, such as on the
web, they can be smoothly integrated in image browsers. For such integration in Photo-
Cube we see potential in adding dimensions based in image similarity, which in turn
would be based on calculated image characteristics using low-level image features. Con-
sider an example of a usage in a browsing session in cube mode: a given image is selected
as the image to search by, and all similar images, based on some image characteristics,
would float towards it with the final distance based on their similarity ranking.

1 http://www.wxwidgets.org/

Hlynur Sigurþórsson 51

While piling images on the screen is one thing, finding an understandable presentation of
large image collections is another. Another line of work involves developing methods for
effectively handling large image collections. While the ObjectCube model may, in many
cases, return a very large set of images, a user can probably only handle a few hundred
at a time at most and we have limited resources when presenting such a large collection
of images. How to aggregate the information of large sets is a very interesting open
question. One way of handling large collection might be limiting the details of images
and only showing a limited amount of color aggregation. Then users can analyze large
sets based on most frequent colors in the image set.

6.3 Further User Evaluations

Finally, for evaluations we see many avenues of potential future work. In our user eval-
uation, participants were all browsing the same collection and solving the same task,
whereas in personal browsing the image collection used plays a major role and to yield
unbiased results the image collection must be different for each user. Executing another
user evaluation experiment where image sets from the users themselves are used might
give a better idea of the usability of PhotoCube. The most interesting line of work for
further user studies is to distribute the browser to a number of people, get them to use
PhotoCube on their image collection for some time and then invite them to participate
in a larger user evaluation for the browsers. It might also be interesting to do a field
experiment to see how users use PhotoCube in the comfort of their own home.

52

53

Chapter 7

Conclusions

In this thesis, we have presented PhotoCube, a novel 3D photo browser based on the
recently proposed ObjectCube data model. The data model allows users to seamlessly
involve a large number of meta-data dimensions in each browsing session and captures
a rich set of browsing actions. The architecture of the PhotoCube browser is highly ex-
tensible, as different browsing modes can be implemented and the user can easily switch
between browsing modes. In this thesis, we described the architecture of the prototype
in detail, as well as its current state. We then presented results from a preliminary user
study, which indicate that while experienced photo browser users find the prototype inter-
face to have a somewhat steep learning curve, they are excited about the potential of the
underlying data model.

54

55

Bibliography

Bartolini, I., & Ciaccia, P. (2009). Integrating semantic and visual facets for browsing
digital photo collections. In Proceedings of the Italian Symposium on Advanced

Database Systems (SEBD). Camogli, Italy.
Bederson, B. B. (2001). PhotoMesa: A zoomable image browser using quantum treemaps

and bubblemaps. In Proceedings of the ACM Symposium on User Interface Soft-

ware and Technology (UIST). Orlando, FL, USA.
Ferré, S. (2007). CAMELIS: Organizing and browsing a personal photo collection with

a logical information system. In Proceedings of the International Conference on

Concept Lattices and Their Applications (CLA). Montpellier, France.
Harðarsson, K., & Jónsson, B. Þ. (2007). Breaking out of the shoebox: Towards having

fun with digital images. In Proceedings of the International Workshop on Computer

Vision meets Databases (CVDB). Beijing, China.
Mulligan, T., & Wooters, D. (2005). A history of photography from 1839 to the present.

Taschen.
Sigurþórsson, H., Tómasson, G., Jónsson, B. Þ., & Amsaleg, L. (2011). PhotoCube:

Effective and efficient multi-dimensional browsing of personal photo collections.
In Proceedings of the ACM International Conference on Multimedia Retrieval

(ICMR). Trento, Italy.
Surendran, D., & Levy, S. (2004). Visualizing high dimensional datasets using Partiview.

In Proceedings of the IEEE Symposium on Information Visualization (INFOVIS).

Austin, TX, USA.
Tómasson, G. (2011). ObjectCube: Multi-dimensional model for media browsing. M.Sc.

research thesis, Reykjavik University.

56

57

Appendix A

Usability Factors data

This appendix contains the detailed answers from the user evaluation.

Participant
Usability Factor 1 2 3 4 5

Uncomfortable (1) Comfortable (7) 5 6 6 5 5
Unsatisfying (1) Enjoyable (7) 6 7 6 6 6
Difficult (1) Easy to use (7) 5 4 7 6 5
Complicated (1) Simple (7) 4 3 7 6 4
Boring (1) Fascinating (7) 6 7 7 7 6
Rigid (1) Pliable (7) 5 6 5 5 4
Discouraging (1) Encouraging (7) 6 4 6 6 6
Traditional (1) Imaginative (7) 6 7 6 6 7
Unsuitable (1) Useful (7) 6 6 7 7 6

Table A.1: Data gathered from the usability questionnaire

58

School of Computer Science
Reykjavík University
Menntavegi 1
101 Reykjavík, Iceland
Tel. +354 599 6200
Fax +354 599 6201
www.reykjavikuniversity.is
ISSN 1670-8539

