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Abstract

Real-time strategy (RTS) games are partially observable environments, re-
quiring players to reason under uncertainty. The main source of uncertainty
in RTS games is that players do not initially know the game map, including
what units the opponent has created. This information gradually improves,
in part by exploring, as the game progresses. To compensate for this uncer-
tainty, human players use their experience and domain knowledge to estimate
the combination of units that opponents control, and make decisions based on
these estimates. For RTS game AI to mimic this behavior of human players,
a suitable knowledge representation is required. The order in which units can
be created in RTS games is conditioned by a game specific technology tree
where units represented by parent nodes in the tree need to be created before
units represented by child nodes can be created. We propose the use of a
Bayesian Network (BN) to represent the beliefs that RTS game Al players
have about the expansion of the technology tree of their opponents.

We implement a BN for the RTS game StarCraft® and give several exam-
ples of its use. In particular, we evaluate our design by improving strategy
prediction under uncertainty from previously reported work [37]. Using our
BN, we are able to increase the precision of strategy prediction up to 56%.
These results show that the proposed BN can be used to infer creation time
values for unobserved units in RTS games and that BNs are a promising ap-
proach for RTS game Al to represent and reason with uncertainty in RTS
games.



Medhondlun 6vissu i rauntima herkaenskuleikjum
Bjorn Jonsson

Januar 2012

Utdrattur

Rauntima herk@nskuleikir (RHL) hafa pann eiginleika ad umhverfi peirra
er ad hluta til hulid. Pessi eiginleiki krefst pess af spilurum ad peir geti
framkvemt dkvardanatoku undir 6vissu. Adal orsok dvissunnar i RHL er
ad spilarar hafa ekki yfirsyn yfir umhverfid sem spilad er 1 og vita pvi ekki
hvernig her métherjans er samsettur. Til ad vega upp 4 moti pessari ovissu
nota mennskir spilarar reynslu sina og pekkingu & reglum leiksins til pess
a0 meta liklega samsetningu herafla moétherjans hverju sinni og byggja ak-
varQanir sinar { leiknum 4 pessu mati. Til pess a0 RHL armadur gaeddur
gervigreind eigi moguleika 4 pvi ad herma eftir haefileikum mennskra spilara
til a0 medhondla 6vissu i RHL parf ad nota hentuga pekkingartdknun. Vid
stingum upp 4 Bayesian netum (BN) sem pekkingartidknun fyrir tiltrd RHL
armanna 4 samsetningu herafla métherjans.

Vid ttferum BN fyrir rauntima herkenskuleikinn StarCraft® og synum fram
4 ymsa notkunarmoguleika pess. Sér 1 lagi skodum vid hvernig utfersla
okkar getur batt ndkvemni { spagildum um hvada leikkerfi métherjinn er
ad spila. Betingin sem nadist i spagildum med notkun Bayesian neta var
allt ad 56% yfir 40ur birtar nidurstodur [37]. Pessar nidurstodur syna ad BN
er dhrifarik pekkingartdknun fyrir RHL og ad notkunarmoguleikar pess eru
miklir.
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Chapter 1
Introduction

Real-time strategy (RTS) games are complex domains with huge decision and state spaces.
They are non-deterministic, partially observable and real-time [5, 28]. These characteris-
tics present a major challenge for RTS game Al and offer a large variety of fundamental
research problems. One particular challenge is handling the partial observability of the
environment. Bayesian Networks (BN) [29] have in recent years been successfully ap-
plied to create consistent probabilistic representations of uncertain knowledge in many
different kinds of domains. They are particularly effective for modelling situations where
some information is already known and new data is uncertain or partially unavailable, as

is the case in RTS games.

In an ongoing RTS game only partial information, acquired from scouting the environ-
ment, is available about what units and buildings your opponent has constructed. The
order in which a player can construct units and buildings in RTS games is represented
with a technology tree (tech tree)!. Expert human players use knowledge from previously
played games to infer the probability of particular units or buildings existing at a given
time, from observed evidence of other units or buildings. They make a mental model
of how they believe their opponents are expanding their tech tree and make decisions
based on this mental model. In this report we propose the use of a Bayesian Network
to represent the beliefs that Al players have about the expansion of the tech tree of their

opponents.

The concepts of prior and posterior probabilities and evidence used in Bayesian ap-
proaches fit well to our problem. We can use RTS game logs to find prior probabilities

of different units and buildings being built at each time in a game and we can update

A tech tree in RTS games describes in what order units and buildings can be constructed. A more
detailed description is found in Chapter 2.1.1
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the corresponding network in real-time with evidence about observed units and buildings.
We believe that our approach, using BNs, mimics well the assessment that human players
make about how their opponents have expanded their tech tree, for which most of their
in-game decisions are based upon. Another strong point in favor of this approach is that
the underlying data structures for both RTS game tech trees and BNs are directed acyclic
graphs (DAG). This results in BNs that are both easy to construct and intuitive to work
with.

Our approach of using a BN to represent uncertain knowledge has the potential to improve
RTS games in various ways. We give an overview of several such directions, including
work we have done towards using BNs in case-based reasoning and in-game commentary
assistance. However, our main use case will be to improve strategy prediction. For this
purpose, we compare classification results for the task of predicting opponent strategies
in StarCraft games, with and without estimations from a BN. By training the network on
a large collection of game logs we can use probabilistic inference algorithms to infer the
probabilities of unobserved units and buildings, given observed evidence for a particular
game, and use this information to augment the feature vectors used in the strategy pre-
diction with the corresponding estimations from the network. We report results of around

60% increase in the precision of strategy prediction.

1.1 Problem Statement

RTS games are domains with interesting challenges for Al. One of the main reasons for
this is that game playing agents in RTS games have to reason with uncertain knowledge
that originates from the fact that they operate in a partially observable environment. With

this in mind we aim to answer the following questions in this work:
e Is a BN an appropriate model to represent uncertain knowledge in RTS games?
e How can it be designed to give useful probabilistic inferences for the RTS domain?

e [s it possible to use the network to improve other Al techniques, and in particular

to improve strategy prediction?

1.2 Goals and Contribution

The goal of this project is to establish BNs as a viable approach for representing uncer-

tain knowledge in RTS games. We show how a BN can be constructed from RTS game
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logs and used to improve the precision of strategy prediction in an imperfect information
environment. Both the data used and the BN component will be made available to the

community.

1.3 Overview of Report

We start by providing the necessary background information for RTS games in Chapter
2, describing the mechanics of RTS games and the challenges that they provide for Al
research. We then cover the basics of BNs. In Chapter 3 we describe the process of
constructing a BN from StarCraft game logs, discussing the reasoning and motivation
for using BNs to represent tech trees in RTS games and describing an implementation
of a BN from StarCraft game logs. Chapter 4 discusses the possible applications for
the proposed BN, with specific sections for in-game commentary assistance, case based
reasoning and strategy prediction. In Chapter 5 we then present a thorough case study on
improving strategy prediction in imperfect information environments. We conclude our

overall findings and results in Chapter 6.






Chapter 2

Background

2.1 Real-Time Strategy Games

From the inception of the field of artificial intelligence (AI), over half a century ago, clas-
sical games have played an important role as a test-bed for the advancement in the field.
Some examples of how Al agents have surpassed human capabilities are from Chess,
Checkers and most recently IBM’s Watson’s victory over current Jeopardy champions
[10]. Lately, with advancements in computing, complex computer games like RTS games
and massively multi-player online role-playing games (MMORPG) have become one of
the largest sector of the entertainment industry. These games are particularly appealing
for Al research as their characteristics make them a virtual environment that is in many
ways similar to the real world. RTS games are complex domains with huge decision and
state spaces. They are non-deterministic, partially observable and real-time [5]. These
characteristics present a major challenge for RTS game Al and offer a large variety of
fundamental research problems, including decision making under uncertainty, opponent

modeling, learning and adversarial real-time planning [6].

RTS games are popular as an e-sport, with hundreds of professional players that compete
in tournaments all over the world. Recent interest in Al research for RTS games has
materialized in a StarCraft Al competition that is held in connection with the Artifical
Intelligence for Interactive Digital Entertainment (AIIDE) conference each year. The
competition is a forum for universities and independent researchers to bring their Al bots
and let them compete against each other. In 2011 over 30 teams registered to participate

in the competition.
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2.1.1 The RTS Domain

Real-Time Strategy (RTS) is a category of strategy games that usually focuses on military
combat. RTS games such as StarCraft require the player to control armies (consisting of
different types of units) and defeat all opposing forces that are situated in a virtual battle-
field (a map) in real-time. Players on different sides gather resources to build structures,
produce units and research technology upgrades with the aim of attacking and eliminating
their opponents. Resources are mined from specific map locations and hence controling
and harvesting from as many resource locations as possible is vital for success in the
game. In most RTS games, the key to winning lies in efficiently collecting and manag-
ing resources, and appropriately distributing these resources over the various game action
elements [30].

In general, there are two main competencies that RTS game play requires [38]. The
first competency is micromanagement, which is the task of controlling individual units
in combat scenarios in order to maximize the utility of a squad of units. The second
1s macromanagement or strategy selection, which is the task of determining what types
of units to produce and which upgrades to research. This area of expertise focuses on
planning and opponent modeling, and involves formulating strategies in order to counter
opponent strategies. The unit types and buildings in RTS games are defined by a tech
tree, which is a DAG that models the possible paths of research a player can take within
a game. Strategies within RTS games largely revolve around executing different build
orders, which define the order in which a player expands the tech tree. There are many
types of strategies but the two most common categories are [35] rush strategies, that try
to overwhelm the opponent with inexpensive units early in the game, and timing attacks,
where the opponent is engaged based on a trigger event or estimation that maximum dam-
age will be inflicted by attacking at that time. What kind of strategy is executed therefore
often depends on how the player believes his opponent has expanded his tech tree. Since
RTS games enforce a partially observable environment, there is always some uncertainty

about how the opponent has expanded his tech tree at a particular moment.

In RTS games an action can be viewed as an atomic transformation in the game situa-
tion. Typical game actions in RTS games include constructing buildings, researching new

technologies, and coordinating units in combat.
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The action space in RTS games, which is defined as the set of possible actions that can be

executed at a particular moment can be estimated as [3]:
O(2“(A* P)+2"(D+S)+ B(R+(C)) 2.1

Where:
e w = current number of workers
e A = number of assignments workers can perform

e P =average number of workplaces

T' = number of troops

e [ = average number of directions that a unit can move
e S = choice of troops stance (stand, patrol, attack)

e 3 = number of buildings

e [? = average choice of research objectives at a building
e (' = average choice of units to create at a building

To get a feeling for the vast complexity of RTS games, one can imagine playing chess on
a 512 x 512 tile board with hundreds of pieces moving simultaneously in real-time. Early
game decision complexity for RTS games is according to this estimation around 1.5 x 103,
which is substantially higher than the average number of possible moves in most board

games (e.g., for chess, this is approximately 30).

2.1.2 Al Research for RTS Games

RTS game developers working in the industry commonly use simple techniques like fi-
nite state machines, fuzzy state machines, scripting, expert systems and other rule-based
approaches for the Al they require [9]. While these approaches have been proven to
be successful for the industry, they are limited in terms of adaptability and dealing with
uncertainty. Using these techniques often leads to game-playing agents that become pre-
dictable and less enjoying for the user to interact or compete with after playing the par-
ticular game for a while. Other less deterministic techniques such as neural networks,
evolutionary computation, hierarchical task networks and BNs have a much greater po-
tential to deliver better and more adaptable solutions that will provide the user with a

consistently challenging experience. These approaches are however often not used in
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practice because the agents behavior has been viewed as unreliable and these techniques

are much more computationally expensive than traditional rule based ones.

Along with the lack of CPU resources, the game industry focus on graphics technology
has probably played the biggest role in holding back commercial game Al development.
Since graphics processing has moved to specialized graphics hardware and graphics have
now reached near photo-realistic experiences, game developers are increasingly looking
towards Al as key features in future games and the main area of innovation and excitement

within the industry.

In summary, the term game Al is used differently by game developers and academic
researchers [30]. Academic researchers restrict the use of this term to refer to intelligent
behaviours of game characters that are mostly the result of using techniques from machine
learning and automated planning [30]. In contrast, for game developers, game Al is used
in a broader sense to encompass techniques such as pathfinding, animation systems, level

geometry and overall behavior of non-playing characters or gameplaying agents.

Setting these differences aside, the main arguments in favor of RTS game Al research are

[6]:

e RTS games constitute well-defined environments to conduct experiments in and

offer straight-forward objective ways of measuring performance

e RTS games can be tailored to focus on specific aspects such as how to win local
fights, how to scout effectively, how to build, attack and defend a base, etc.

e Strong game Al will likely make a difference in future commercial games because

graphics improvements are beginning to saturate.

As stated before RTS games provide many challenges for Al research, in part because
they feature hundreds or thousands of interacting objects, require simultaneous moves of
these objects in real-time and enforce imperfect information through a concept called "fog

of war".
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This results in a multi-agent, real-time and partially observable task environment. Given
these properties three key areas of RTS game AI where research is needed have been
identified [6]:

e Adversarial planning under uncertainty

Because of the huge number of possible actions at any given time and their mi-
croscopic effects in RTS games, agents cannot afford to think at the game action
level. Instead, abstractions of the world state have to be found that allow programs
to conduct forward searches in abstract spaces and to translate found solutions back

into the original state space.
e Learning and opponent modeling

One of the biggest shortcomings of current RTS game Al systems is their inability
to learn quickly. Human players only need a couple of games to form accurate

hypotheses about their opponents playing styles and weaknesses.
e Spatial and temporal reasoning

Understanding the importance of static terrain features like choke points and dy-
namic spatial properties such as visibility and enemy influence is crucial for gen-
erating successful plans in RTS games. Another important aspect is the temporal
relationship among actions and the temporal reasoning needed to guide decisions

in RTS games.

There are other areas of research in RTS game Al, such as research into the use of multi-
agent potential fields [13], cognivite architectures [39] and many more. But these three
key areas encompass the bulk of RTS game Al research. New efficient machine learning

techniques have to be developed to tackle these important problems.

2.1.3 StarCraft

StarCraft: Brood War is a canonical RTS game, as Chess is to board games. It was
published in 1998, has sold over 10 million copies and has numerous international com-
petitions like the World Cyber Games. The single objective of players is to destroy all
opponents in a military scenario. There are three races in StarCraft (Terran, Protoss and
Zerg) that have different units, tech trees and thus gameplay styles. We decided to use
StarCraft in our work because it is the most active RTS research platform, with Al com-

petitions, open source bots and publicly available game log data.
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2.2 Bayesian Networks

A Bayesian network (BN) [29] is a probabilistic graphical model that represents a set of
random variables and their conditional dependencies via a directed acyclic graph (DAG).
A BN reflects the simple conditional independence statement that each variable is inde-
pendent of its nondescendents in the DAG given the state of its parents. Each node in
the DAG represents a random variable and is associated with a probability function that
takes as input a particular set of values for the node’s parent variables and gives the prob-
ability of the variable represented by the node. In many cases this is represented with
a conditional probability table (CPT) for each node. The joint probability distribution
(JPD) of a collection of variables can be determined uniquely by these local CPTs and
the corresponding reduction in the number of parameters that are required to characterize
the JPD provides an efficient way to compute the posterior probabilities of a subset of
variables given evidence about other variables in the distribution [29]. Bayesian networks
are generally used for modeling knowledge and performing probabilistic reasoning with
uncertain information. These networks are particularly effective for modeling situations
where some information is already known and incoming data is uncertain or partially
unavailable. BNs are currently the dominant uncertainty knowledge representation and

reasoning technique in Al [12].

To a large extent, BNs are a marriage between probability theory and graph theory [18],
in which dependencies between random variables can be expressed graphically. We begin

by briefly discussing these foundations of BNs.

2.2.1 Probability Theory

Probability theory deals with the formal foundations for discussing estimates of the degree
of confidence that an event of an uncertain nature will occur, and the rules that these
estimates obey. We denote (2 as the space of possible outcomes that an event can take and
we assume that there is a set of measurable events S to which we are willing to assign

probabilities.

For o € S as a subset of (2, the probability P(«) quantifies the degree of confidence that
a will occur. If P(a)) = 1, we are certain that one of the outcomes in « occurs, and if

P(a) = 0, we consider all of them impossible.

A probability distribution P over (£2,S) is a mapping from events in S to real values that

satisfies the following conditions:
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o Pla) >0,VaeS
e P() =1
o Ifa, € Sandan B =0, then P(aU B) = P(a) + P(5)

The above discussion of probability distributions deals with events. We often want to refer
to attributes of events in a clean mathematical way. The formal machinery for discussing

attributes and their values in different outcomes are random variables.
Using the notion of random variables we call:

e P(X = x;), the marginal probability of X = z;

e P(X =u;,Y =y;), the joint probability of X = z; and Y = y;

e P(X = uz;|Y = y;), the conditional probability of X = x; given Y =y,

Independence and conditional independence between random variables can be defined as:

Definition 1. (X and Y are independent)
P(X =z,Y =y) = P(X =2)P(Y = y)(Vz,y).

Definition 2. (X and Y are conditionally independent, given 7 )
PX=ua,Y=ylZ=2)=PX=2x|Z=2)P(Y =y|Z =z2)(Vz,y, 2).

The difference between these definitions is very important, the first says that knowing
the value of X tells us nothing about the value of Y, while the second is saying that
if we know Z, then knowing X tells us nothing more about Y, that is, even though X
and Y may be dependent, their dependence is entirely "explained" by Z. If we skip
using the cumbersome notion of P(X = z) and instead simply write P(X) to denote
the distribution over the random variable X, we can write the two fundamental rules of

probability theory in the following form.
The Rules of Probability

(sum rule)
P(X) = ZP(X, Y) (2.2)

(product rule)
P(X,Y)=PY|X)P(X) (2.3)
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Here P(X,Y) is a joint probability and is verbalized as "the probability of X and Y.
Similarly, the quantity P(X|Y’) is a conditional probability and is verbalized as "The
probability of X given Y, whereas the quantity P(X) is a marginal probability and is
simply "the probability of X". These two simple rules form the basis for all of the prob-
abilistic machinery that is used in this report. From the product rule, together with the
symmetry property P(X,Y) = P(Y, X), we immediately obtain the following relation-
ship between conditional probabilities:

(Bayes Theorem)

PY|X)P(X)

P(XY) = =555

(2.4)

In Bayes theorem, each probability has a conventional name:

e P(X) is the prior probability or marginal probability of X. It is prior in the sense

that it does not take into account any information about Y.

e P(X|Y) is the conditional probability of X, given Y. It is also called the posterior

probability because it is derived from or depends upon the specified value of Y.
e P(Y]|X) is the conditional probability of Y given X. It is also called the likelihood.
e P(Y) is the prior or marginal probability of Y, and acts as a normalizing constant.

As we will see, Bayes theorem is the foundation of learning and inference in Bayesian

Networks.

2.2.2 Graph Theory

The cornerstone of BNs is the representation of a probability distribution using a graph
as a data structure. The underlying directed acyclic graphs (DAG) in BNs not only allows
the user to understand which variables affect others, but also serves as the backbone for
efficiently computing marginal and conditional probabilities that may be required for in-
ference and learning in BNs. For our purposes, a brief definition of a DAG is sufficient.

For a full background on graph theory see [2].

Definition 3. (Directed Graph)
A directed graph G = (N,E) is a set N of nodes and a set £ of ordered pairs (i,j) where
i,jeEN i #].
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Definition 4. (Directed Acyclic Graph)
A cycle in G is a directed path Ny, ..., N, where N = N. A Directed Acyclic Graph
(DAG) is a directed graph with no cycles.

2.2.3 Representation

In general the goal of a BN is to represent a joint distribution over some set of random vari-
ables X = X4, ..., X,,. Even in the simplest case where these variables are binary-valued,
a joint distribution requires the specification of 2" — 1 numbers, namely the 2" different
assignments of values z1, ..., z,,. For all but the smallest n, the explicit representation of
the joint distribution is unmanageable from every perspective. Computationally, it is very
expensive to manipulate and generally to large to store in memory. Cognitively, it is in
most cases impossible to acquire so many numbers from a human expert; moreover, the
numbers are very small and do not correspond to events that people can reasonably con-
template. Statistically, if we want to learn the distribution from data, we would in most
cases need very large amounts of data to estimate this many parameters robustly. BNs
overcome these problems by exploiting the structure of the underlying DAG and using
independence properties in joint probability distributions to represent them much more

compactly [29].

Definition and Properties

If for the following we let G = (N, &) be a directed acyclic graph and let X be a set of
random variables. Then X is a Bayesian network with respect to G if it satisfies the local
Markov property, each variable is conditionally independent of its non-descendants given
its parent variables. Every entry in the corresponding joint probability distribution can be

computed from the information in the BN by the chain rule:

P(Xy, .., X,) = ﬁ P(X;|Parents(X;)) (2.5)

=1

Following the above discussion, a more formal definition of a BN can be given [11]:

Definition 5. (Bayesian Network)

A Bayesian network B is an annotated acyclic graph that represents a joint probability
distribution over a set of random variables X. The network is defined by a pair B = (G, ©)
where G is the directed acyclic graph whose nodes N1, Ns, ..., N, represents random vari-
ables, and whose edges represent the direct dependencies between these variables. The

graph G encodes independence assumptions, by which each variable X; is independent



14 Representing Uncertainty in RTS Games

of its nondescendents given its parent in G. The second component, ©, denotes the set of
parameters of the network. This set contains the parameter O, . for each realization x;
of X; conditioned on m;, the set of parents of X; in G. Accordingly, B defines a unique

Jjoint probability distribution over X, namely:

i=1 i=1
Constructing Bayesian Networks
To construct a BN, for a set of variables X = X, ..., X,,, we first develop a directed
acyclic graph G such that we believe X satisfies the local Markov property with respect
to G. We then ascertain the conditional probability distributions of each variable given its

parents in G.
Judea Pearl presented an algorithm for the construction of a BN [29]:
e Choose the set of relevant variables X that describe the domain.
e Choose an ordering for the variables, X1, ..., X,
e While there are variables left:
1. Add the next variable X, to the network.

2. Add arcs to the X; nodes from some minimal set of nodes already in the
net, Parents(.X;), such that the following conditional independence property is
satisfied:

P(X;| Xy, ..., X,n) = P(X;|Parents(X;))
where X1, ..., X, are all the variables preceding X; , including Parents(X;).

e Define the conditional probability table (CPT) for X;

As described above, the nodes in G represent random variables and are usually drawn
as circles labeled by the variable names. The edges represent direct dependence among
the variables and are drawn by arrows between nodes. In particular, an edge from node
X; to node X represents a statistical dependence between the corresponding variables.
Thus, the arrow indicates that a value taken by variable X; depends on the value taken by

variable X; , or roughly speaking that variable X; "influences" X;.
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2.2.4 Learning

In many practical settings the BN is unknown, so one needs to learn it from data. This
problem is known as the BN learning problem, which can be stated informally as follows:
Given training data and prior information in the form of expert knowledge or causal re-
lationships, estimate the graph topology and parameters of a joint probability distribution
in the BN.

In general, we can divide learning in BN into four cases, depending on the observabil-
ity of the variables in the network and if the network structure is known. For our pur-
poses only the two simpler cases where the network structure is known and the observ-
ability of the variables is full or partial needs to be considered. For parameter learning
with known structure and full observability, the goal is to find the values of the BN pa-
rameters that maximize the log likelihood of the training data. Given a training dataset
Y = {z1,...,Tm}, where x; = (zy1,...,23,)7, and the parameter set © = (6, ...,0,),
where 6; is the vector of parameters for the conditional distribution of variable X;, the

loglikelihood of the training dataset is a sum of terms, one for each node.

logL(B]Z) = > > " logP(xy|m:, 0;) (2.7)
For parameter learning with latent variables the Expectation Maximization (EM) algo-
rithm [7] can be used to find an (locally) optimal Maximum Likelihood Estimate (MLE)
of the parameters. The basic idea behind EM is that, if we knew the values of all the
nodes, learning (the M step) entails finding the maximum likelihood estimation of the
conditional probability distribution (CPD), that is the CPD that maximizes the likelihood
of the training data. So in the E step, we compute the expected values of all the latent
variables using an inference algorithm, and then treat these expected values as though
they were observed. Given the expected counts, we maximize the parameters, and then
recompute the expected counts, etc. This iterative procedure is guaranteed to converge to
a local maximum of the likelihood surface. In any case, we see that inference becomes a
subroutine which is called by the learning procedure; hence fast inference algorithms are

crucial.

2.2.5 Inference

Because a BN is a complete model for the variables and their relationship, it can be used

to answer probabilistic queries about them. For example, the network can be used to find
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out updated knowledge of the state of a subset of variables when other variables (the ev-
idence) are observed. This process of computing the posterior distribution of variables
given evidence is called probabilistic inference. In general, the objective of inference in
BN is to calculate P(X|Y'), the posterior probabilities of query nodes X, given some
observed values of evidence nodes Y. Inference is just answering queries using the dis-
tribution as our model of the world. Inference algorithms compute the posterior proba-
bility of some variables given evidence on others. For these kinds of queries, inference is
generally orders of magnitude faster using a BN than manipulating the joint distribution

explicitly.

For the problem of performing inference in a graphical model like BN, the structure of the
network, both the conditional independence assertions it makes and the associated factor-
ization of the joint distribution, is critical for our ability to perform inference effectively.
Although there exist polynomial time inference algorithms for specific classes of BN, ie.,
trees and singly connected networks, in general both exact and approximate inference in
the networks is NP-hard [12]. Approximate BN inference algorithms include stochastic
simulation algorithms, model simplification methods, search-based methods and loopy

belief propagation. These algorithms are not used in this work.

Exact Inference

The most popular exact BN inference algorithm is the clique-tree propagation algorithm
[19]. It first transforms a multiply connected network into a clique tree by clustering
the triangulated moral graph of the underlying undirected graph, then performs message
propagation over the clique tree. The clique propagation algorithm works efficiently for
sparse networks, but its complexity is exponential in the size of the largest clique of the
transformed undirected graph. In our work we are using a variant of the clique-tree al-
gorithm called Hugin or Junction Tree Algorithm (JTA) [15]. The JTA is a method to
extract marginalization in general graphs. In essence, it entails performing belief propa-
gation on a modified graph called a junction tree. The basic premise is to eliminate cycles

by clustering them into single nodes. The JTA can be stated as follows:
e If the graph is directed then moralize it to make it undirected

e Introduce the evidence

Triangulate the graph to make it chordal

Construct a junction tree from the triangulated graph

Propagate the probabilities along the junction tree (via belief propagation)

For further background knowledge on exact inference in BNs see [18].
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2.3 Related Work

Bayesian Networks

Dynamic Bayesian Networks are used by Albrecht et al. [4] to predict the next actions
and locations of a player in a multi-user dungeon game. Their results show that Dynamic
Bayesian Networks are promising behavior models when the causal structure of the net-
work can be identified. Bayesian Grid Models are used by Jensen in [16] to identify the
opponent strategy when given the positions of opponent units on the game map. Synnaeve
et al. [34] used a Bayesian model with a variable exploiting the structure of the build tree
to reduce the effects of unobserved values. They then use provided and their own labels to
learn the parameters of this model, which in turns predicts the distribution on strategies.
Ethan et al. [8] use hidden Markov models for strategy discovery from StarCraft game
logs, seeking to avoid any potential biases of engineered (rule based) labels. They do not

provide any evaluation of their approach using imperfect information.

Strategy Prediction

There are several techniques reported for strategy prediction in RTS games. Some re-
searchers refer to predicting the strategy of an opponent as opponent modeling, plan
recognition or behavior recognition. Weber et al. [37] examine strategy prediction us-
ing various supervised learning techniques on StarCraft game logs to classify build orders
according to a set of rule based labels. They provide a novel representation of encoding
the game logs and evaluate their approach for both perfect and imperfect information en-
vironments. Schadd et al. [32] implemented a hierarchical opponent model in the RTS
game Spring, classifying opponents playing style (aggressive/defensive) at the top level
and specific strategies at the bottom level. Their approach is rule based, using oppo-
nent unit counts. Kabanza et al. [17] use hidden Markov models for plan recognition
in PHATT, an agent architecture used for opponent modeling, by encoding strategies as
hierarchical task networks. Several papers report on related work using case-based rea-
soning [3, 14, 28]. Hsieh et al. [14] use a case-based reasoning approach using StarCraft
game logs to evaluate and learn decisions and behaviors of human players and to train
their system to predict player strategies. Their model cannot predict timings of past or

future events becouse they do not use any notion of time.
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Chapter 3

Constructing a Bayesian Network from
RTS Game Logs

In this chapter we will show how Pearl’s algorithm can be used to construct a Bayesian
Network (BN), from RTS game logs, that is capable of representing uncertainty about
an opponents tech tree expansion in RTS games. We start by discussing the motivations
for using BNs and then we describe the overall design of the proposed network. Details
for a StarCraft specific implementation are given in Section 3.2 and evaluations of the

implemented network are provided in Section 3.3.

3.1 Design

A major strategic element in RTS games like StarCraft is build order, which defines the
order in which a player expands their tech tree. Estimating the expansion of the tech tree
of your opponent is a necessary part of expert gameplay in all RTS games, since most of
the decisions made by a player are based on his belief of how the tech tree of the opponent
has been expanded at each time or will be expanded at some specific time in the future.
An expert human player uses knowledge from previously played games to infer the prob-
ability of particular units or buildings existing at a given time, from observed evidence
of other units or buildings. He makes a mental model of how he believes his opponent is

expanding his tech tree and makes decisions based on this mental model.

We propose the use of a BN to represent the beliefs that an Al player has about the expan-
sion of the tech tree of his opponent. A BN can be used to find out updated knowledge

of the state of a subset of variables in the network when other variables (the evidence)
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is observed. This process of computing the posterior distribution of variables in the net-
work given evidence is called probabilistic inference. The concepts of prior and posterior
probabilities and evidence used in Bayesian approaches fits well to our problem. We can
attain the prior probabilities of different units and buildings being built at each time in a
game from game logs and then use that model in real-time to predict the likelihood of the
existence of other buildings given that one or more buildings or units have been observed

in an ongoing game.

3.1.1 Network Structure and Parameters

To see what is needed to construct the proposed network it is intuitive to follow Pearls
algorithm for the construction of BN from the perspective of our RTS game require-

ments:
e Choose the set of relevant variables X that describe the domain.
e Choose an ordering for the variables, X1, ..., X,
e While there are variables left:
1. Add the next variable X; to the network.

2. Add arcs to the X; nodes from some minimal set of nodes already in the
net, Parents(.X;), such that the following conditional independence property is
satisfied: P(X;| Xy, ..., X;n) = P(X;|Parents(X;)) where X1, ..., X,,, are all
the variables preceding X; , including Parents(X;).

e Define the CPT for X;

For RTS games the variables are units and buildings of interest that sufficiently describe
the domain. Selecting which units or buildings to include as variables in the network
is optional as different selections are optimal for different purposes. The order of the
selected units and buildings is decided by the tech tree and temporal constraints in the
particular game. If building A is needed to construct building B, then A has higher order
then B. If more than one unit or building of any type is included in the network then the
order in which they are built is the order of the corresponding variables. The arcs between
nodes are causal relationships between buildings and units in the particular RTS game. If
building C' produces units of type D, then an arc from C' to D is added to the network.
Also, an arc from the first unit produced of type D to the second unit produced of type
D is added if more than one unit of that type was selected to be in the network. Finally,

to set the parameters of the network (the CPT for each node) we use data extracted from
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Figure 3.1: Histogram for Terran marine creation times using 20 states and state intervals
of 480 frames.

game logs about the creation time of each unit and building. This allows the networks to

be trained on general game logs from expert matches or specific known opponents.

This design captures the probabilistic relationships between unit and building creation
times in RTS games. If we know the creation time of a building £ then this information
can change the probabilities for different creation times of building F', depending on the

data used to train the network.

In our design, nodes represent discrete random variables. The state space for each node
has a finite number of states, and both the number of states and their interval length can
be decided when the network is constructed. In Figure 3.1 we can see an example of a
histogram for the distribution of marine creation times for the RTS game StarCraft, using
state intervals of 480 frames and 20 states. The semantics of arcs in the network is that
the incoming arcs represent probabilistic dependency, in that the distribution of a node
is conditionally independent of all non descendants of the node given its parents. The
quantitative part of the relationship between a node and its parents is represented with the
CPT for the node.

In summary, we are going to let the RTS game tech tree and temporal constraints for unit
and building construction specify the structure of the BN and use data extracted from RTS

game logs to learn the parameters of the network.
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3.1.2 Functionality Provided by the Design

The following functionality is possible using the proposed BN:

e Updating the network when new units or buildings are discovered in a game

As an RTS game progresses, more and more information about the opponent be-
comes available. In order for the network to use this information, when inferring
probabilities of the existence for units or buildings that are still unobserved, it needs
to be entered as evidence into the network. We can accomplish this by providing
the name and id of the particular unit or building observed and the current game

time to the network.

Getting the probability of units existing at the current time or at some time in
the future

A common consideration for expert RTS human players is estimating when an op-
ponent will get a particular unit or building. For example, estimating when an
opponent will get units or buildings capable of detecting cloaked units, can be vital
when deciding when to attack with an army of cloaked units. If provided with the
name of the unit and the specified game time, the BN can be used to get the proba-
bility of that unit existing at that time, given what other units or buildings have been

observed in the game.

Getting the estimated creation time values for unobserved units and buildings
For many purposes, it can be convenient for a RTS game Al to have an estimation
of the creation time of units and buildings that are represented by nodes in the
network and have not yet been observed in an ongoing game. These estimations
can be used in state representations for other Al techniques. This functionality is
possible, by e.g. using the expected value of the corresponding random variable for

the particular unit or building.

Clear all observations and inferred values to start a new game
To start a new game without constructing and training the network all over again,
our design allows all evidence entered to be retracted and the network potentials

cleared to start a new game.
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3.2 StarCraft Specific Implementation

In this section we will discuss how to implement our proposed BN from StarCraft game
logs. The game log data we will be using is provided by Weber et al. [37] and can be
downloaded from [26]. Although we are focusing on StarCraft the same construction
process applies to any RTS game with the canonical gameplay of gathering resources to
extend a technology tree and produce military units. We used the Hugin Decision Engine
[15] for Java to create our proposed Bayesian Network. The Hugin engine employs an
exact and efficient algorithm for updating probabilities [19]. The Hugin API also con-
tains a high-performance inference engine that can be used as the core of systems built
using BNs. Using Hugin, it is possible to build models from data and/or probabilistic de-
scriptions of causal relationships in the domain and given this model the Hugin inference

engine can perform fast and accurate reasoning.

Network Structure

The network structure can be described with an adjacency matrix, adding the requirement
that the matrix represents a DAG and the columns are always numbered in topological
order, i.e., ancestors before descendants. An example of such a description can be seen in

Figure 3.2.

We will be using data for the Terran race in StarCraft, so for constructing the adjacency
matrix representation for the network structure we need domain specific information
about the StarCraft Terran tech tree that can be found on the BWAPI repository [25].
The game log data we are using is on tabular format where each column represents a unit
or building for the Terran race and each row represents the chosen information extracted
from one game log. To construct the adjacency matrix we begin by writing down the
order of the units and buildings for each column in the data set and then look up the tech
tree requirements to see how to write the corresponding line in the adjacency matrix for
each unit or building. A part of the network structure for the game log data used is shown

in Figure 3.3.
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Figure 3.3: A part of the network structure for the StarCraft Terran race
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Table 3.1: A subset of StarCraft training data. Creation time values are in game frames
TerranCommandCenter TerranSupplyDepot TerranRefinery TerranRefinery02

1 1398 2806 12830
1 1435 2805 10405
1 1465 2550 22220
1 1395 2565 14405
1 1520 2170 18485
1 1485 2635 15855
1 1638 2470 16492
1 1455 2665 15755
1 1450 5165 14700
Training the Network

StarCraft and most RTS games provide a tool to record game logs into replays that can
be re-simulated by the game engine. This replay feature can be used to extract players
actions and process them into data to train a BN with. The replays have to be converted
from a proprietary format (that contains only user interface actions performed by each
player but no game state) into a log of game actions, or simulated in the game engine, to
get the actual training data. Several websites, such as GosuGamers.net, TeamLiquid.net
and ICCup.com are dedicated to collecting and sharing StarCraft replays. We use the data
set provided by Weber et al. [37]. The focus in the data set is on one-versus-one matches
and the goal was to gather enough matches to be able to develop an opponent model that

is not limited to a single type of player, set of maps or style of gameplay.

Simple preprocessing is needed to transform the game log data into our tabular format re-
quired for training the network. The algorithm chosen to be used for learning the network
parameters is the EM algorithm. The conditional probability distribution learned for each
node is represented with a CPT that has a number of parameters that is exponential in the
number of parents of the node. So for example, if a node has three parents each with 80
states and the node also has 80 states then the size of the table will be 80* = 4096 x 10%.

Parts of the training data are shown in Table 3.1.

Figure 3.4 shows the UML class diagram for the BNManager class, which encapsulates
the functionality of the BN. The code for the BN component is open source and available
online [22], so any modifications or additions that are needed can easily be implemented
and added to the component. After creating an instance of the BNManager class the
Bayesian Network is constructed and ready to be used. Connecting the network to a game
engine and the game Al is done by using the exposed methods on the BNManager class

in the appropriate game loop events or Al decision processes.
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',:'.:' eisbot.opp. bn.BENManager

BMMadel model
. BMManager(int states, int interval)
void enterEvidence(String name, intid, int currentTime)

void dearEvidence()

woid enterLikelihood(int currentTime)

double getProbabilityOfExistance(String unitiame, int currentTime)
HashMap «5tring,Double > getProbabilityOfExistance(int currentTime)
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Figure 3.4: UML class diagram for the BN Manager class
3.2.1 Provided Game Logs to Train the Network

As a part of this project we implemented a web crawler and downloaded 8364 game logs
from previously played professional StarCraft games. We simulated these game logs in
the StarCraft game engine using the BroodWar API and extracted 1.2 TB of data. Al-
though not used, as part of this work, the data may prove useful for future research pur-
poses. It can be downloaded from an online repository [27]. In Table 3.2 the information

that was recorded for each game is described, the data is provided in text format.

Table 3.2: Information in provided StarCraft simulation data

Information Specific timings Sample timings (2x per sec)
Map Unit production time Position of each unit/building
# players Building construction time State of each unit/building

Rep ID Research timings Hit points of each unit/building
Races Destruction timings Status of special abilities
Players Morph timings Type and side of each unit

Resource status for players

3.3 Evaluation

We can evaluate our implementation by setting up an experiment where we use game logs
from StarCraft matches (a disjoint set of game logs to the set used to train the network),
where we remove information about the creation time of n units or buildings, enter the
remaining units and building creation times into the network and return the n units and
buildings from the network that have the highest probability of existing at the current time.
We can then compare the units and buildings returned from the network with the actual

units and buildings removed from the original game log to get a precision value for the
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Figure 3.5: Precision of existance prediction for unobserved units and buildings

BN estimations. Figure 3.5 shows the results of our experiment using a subset of the game
logs (Terran vs. Protoss matches) from [37] in a ten-fold cross validation setup for game
times set at 2,000, 6,000 and 10,000 frames. The results show that using the BN, one
can expect high precision rates for estimations about which unobserved opponent units
and buildings exist for the first 10,000 frames. The precision values will depend on the
origins of the game logs used as well as other factors. The results should only be viewed
as indicative of the capabilities of the implemented BN. Our main results are presented in
Chapter 5.
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Chapter 4
Bayesian Networks in RTS Games

In this chapter we discuss possible applications for a Bayesian Network (BN) constructed
from game logs in RTS games. We investigate three uses; in-game commentary assis-
tance, extending case-based reasoning and improving strategy prediction. In summary,
we believe that a BN can be used in all of the above suggested applications. Providing
information that assist human players in their decision-making, decreasing the noise in
the retrieval stage of the case-based reasoning process when opponent information is in-
cluded in the case representation and making Als more effective and enjoyable to play

against by improving strategy prediction in RTS games.

4.1 In-Game Commentary Assistance

Intelligent commentary assistance software can be used in several ways to assist human
players in competitive games. The trend in on-line poker, for example, is to use various
poker commentary assistance software to model your opponents and prevent them from
being able to model you [33]. In StarCraft, our BN can allow players an overview of
likely units and buildings that an opponent has constructed in an ongoing competitive
game. Assisting them in their strategic decision making. To show an example of this
we embedded our BN in a open source StarCraft bot called EISBot [21] that connects
to the StarCraft game engine through the BroodWar API library [23]. Figure 4.1 shows
a graphical user interface with information from the BN on the right of the screen. By
seeing the probabilities of different units and buildings existing at a given time and for the
observed evidience in the on-going game, an expert player can predict the most possible
strategies that his opponent is executing and react accordingly. Another possible use for

the same BN would be as commentary assistance to spectators of StarCraft tournaments.
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Giving the spectators hints as to what are the most likely possible future situations for the

game they are watching.
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Figure 4.1: A screenshot of our GUI implementation of BNs for commentary assistance

in RTS games




Bjorn Jénsson 31

4.2 Extending Case-Based Reasoning with Bayesian Net-

works

In this chapter we will discuss Case-bsed Reasoning techniques, their application in RTS
games and how Bayesian networks can possibly be used to increase their effectiveness in

imperfect information environments.

4.2.1 Case-Based Reasoning

Case-based reasoning is a problem solving paradigm that in many respects is funda-
mentally different from other major Al approaches. Instead of relying solely on general
knowledge of a problem domain, or making associations along generalized relationships
between problem descriptors and conclusions, CBR is able to utilize the specific knowl-
edge of previously experienced, concrete problem situations (cases). A new problem is
solved by finding a similar past case, and reusing it in the new problem situation. A
second important difference is that CBR also is an approach to incremental, sustained
learning, since a new experience is retained each time a problem has been solved, making
it immediately available for future problems. The CBR field has grown rapidly over the
last few years, as seen by its increased share of papers at major conferences, available

commercial tools, and successful applications in daily use.
Excerpted from Aamodt, A., & Plaza, E. (1994).

Case-based reasoning (CBR) techniques revolve around the idea of solving new problems
based on the solutions of similar past problems. Popular examples of humans using case

based reasoning are:

e An auto mechanic who fixes an engine by recalling another car that exhibited simi-

lar symptoms
e A lawyer who advocates a particular outcome in a trial based on legal precedents

Case-based reasoning has been formalized for purposes of computer reasoning as a four-

step process [1]:

e Retrieve the cases from the case-base whose problem is most similar to the new

problem

e Reuse the solutions from the retrieved cases to create a proposed solution for the

new problem
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e Revise the proposed solution to take account of the problem differences between

the new problem and the problems in the retrieved cases

e Retain the new problem and its revised solution as a new case for the case-base if

appropriate

The retrieval process is the most relevant part of the CBR cycle, for our purposes, since it
is in that part of the cycle that a Bayesian Network could potentially be used to increase
the effectiveness of case-based reasoning techniques for RTS game Al. The CBR cycle

can be seen in Figure 4.2.

4.2.2 The Retrieval Process

The purpose of the retrieval process is to retrieve the most effective/similar case or cases
for the current situation from a case library. Typically it consists of nearest neighbour
approaches using for example the euclidian distance between all, or a subset of all case
variables as a distance metric. Retrieving a case starts with a (possibly partial) problem de-

scription and ends when a best matching case has been found. The subtasks involve:
e identifying a set of relevant problem descriptors;

e matching the case and returning a set of sufficiently similar cases (given a similarity
threshold)

e selecting the best case from the set of cases returned.

Nearest neighbor approaches utilize cases with a feature vector representation. Given a
query, nearest neighbor retrieves the nearest case within the feature space. Similarity be-

tween cases is computed using a distance function where the general form for computing

Retrieve

- ‘ — l

Figure 4.2: The Case-based reasoning cycle
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the distance between a query q, and a case c, is defined by the L, norm:

1/p

d(g.c) = | D lg; — ¢l 4.1)
j=1

where ¢; and c; are features and n is the number of features in the case description.

Common L, norms are L, the Manhattan distance, and L, the Euclidean distance.

4.2.3 Applications in RTS Games

CBR is one of the most popular technique used in connection with RTS game Al research
[3, 35, 28]. Almost all the work related to case based reasoning in RTS games report
success rates and methods for perfect information environments, if information about the
opponent is included in the case representation . In fact, most work does not even include
any information about the opponent in the case representations, since this increases the

noise when performing retrieval in imperfect information environments [36].

In general, when the case base is constructed from RTS game logs, we have perfect in-
formation about the opponent. We can therefore use any information we like in the case
representation of the cases to be stored in our case library. An example of this kind of
information would be to include variables like number of existing buildings of type X or
unit type Y for the opponent. At retrieval time we only have partial information about the
opponent. If this possibly missing information was included in the case representations,
retrieving the most similar cases for the situation from the case library becomes much
harder from a similarity measurement point of view. On the other hand, not including
information about the opponent in case representations could result in retrieval and adop-
tion of a case that is far from being the best case in the case library for the situation at
hand. In [36] it is stated that increasing the number of features that describe the opponent
increases noise when performing retrieval. Using a BN to estimate the values of the op-
ponent features could decrease this noise and allow for many more opponent features to

be included in the case representations used.

In summary, when a RTS game Al that is using CBR related techniques is faced with the
problem of retrieving the most effective case for the current situation from a case library
that includes opponent information in case representations and the Al is operating in an
imperfect information environment, we believe that using BNs for state estimations can
increase the effectiveness of the Al and the reported success rates. The general idea is
that including estimations from a BN for unobserved variables that are included in case

representations will make case based reasoning related techniques more effective by de-
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creasing the noise in similarity computations during the retrieval stage of the CBR cycle.
We corresponded with the authors of Darmok 2 (D2), an on-line case-based planning
framework, to incorporate a BN into D2. The initial design is ready, but not implemented

as it is outside the scope of this project.

4.3 Strategy Prediction

Strategy prediction in RTS games like StarCraft can be described as the process of iden-
tifying the order in which opponents will expand their tech tree. At the beginning of a
StarCraft game, each player decides a build order (strategy) to use based on the opponents
race, map features and other preferences. Build orders are sequences of actions that are
executed and expand the tech tree of the player in a particular order. As a StarCraft game
progresses, players need to adapt their strategy to counter the strategy being executed by
the opponent. The sooner a player can predict the strategy being executed by the oppo-
nent, the sooner he can react and adapt his strategy in the best possible manner. Not only
does strategy prediction allow the Al to counteract with known effective counter strate-
gies, making it more competetive, but it also opens up the possibility of more interesting
gameplay for human opponent matches. As an example, we can consider a RTS game
Al that is capable of strategy prediction an has a set of strategies it can execute along
with data about how effective they are against commonly observed strategies. This would
allow the Al to pick a counter strategy to the strategy being exectuted by the human oppo-
nent based on the level of challenge desired, adapt poorly for week players and effectively
for strong players. If the strategy prediction is extended to work in imperfect information
environments, handling the partial observability in RTS games, a human player can try to
hide units and buildings and influence the information available to the Al opponent. This
would hinder the Al in its ability to make precise predictions and allow the human player
to use the essential game elements of "bluffing" and "surprise". In summary, predicting
strategies of opponents effectively is an essential part of a competetive RTS game Al and
also has the potential to increase the entertainment value of playing against the computer

in RTS games.

In the next chapter we examine in more detail how BNs can be used to improve strategy

prediction in StarCraft.
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Chapter 5

Case-Study: Improving Strategy

Prediction in StarCraft

In this chapter we will show how a Bayesian Network (BN) can be used to improve strat-
egy prediction under uncertainty in the RTS game StarCraft. We show this by comparing
classification results for the task of predicting strategies in StarCraft, with and without
estimations from a BN for uncertain (unobserved) features. By training the network on
a large collection of game logs we can use probabilistic inference algorithms to infer the
probabilities of unobserved units and buildings, given observed evidence for a particu-
lar game, and use this information to augment the feature vectors used in the strategy
prediction with the corresponding estimations from the network. As we will show, this
greatly increases the effectiveness of strategy prediction in imperfect information envi-

ronments.

5.1 Background

One of the main challenges for game designers is creating adaptive Al opponents that
react to player actions. For RTS games, an intelligent Al opponent should be capable
of responding to a player’s strategy with a counter-strategy. For this to occur, the Al
opponent must first identify the players strategy. RTS games are imperfect information
environments, where the Al has partial information about the game state. In order to be
adaptive, an RTS game Al therefore has to recognize strategies under uncertainty before

effective counter-strategies can be executed.
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Weber et al. [37] present a data mining approach to strategy prediction, where expert
gameplay was learned by applying machine learning techniques to a large collection of
game logs. This approach enables domain independent supervised learning algorithms
to acquire StarCraft domain knowledge and allows for the classification of feature vec-
tors representing the game state into different strategies before they are executed. The
approach was evaluated in perfect and imperfect information environments and the re-
sults showed that it had higher predictive capabilities then both state lattice and exact rule
based classifiers. We improve upon their approach by augmenting the feature vectors with

estimations from our BN for uncertain features, before classification.

5.2 Game Logs

We use the data set extracted from StarCraft game logs by Weber et al. [37]. This data
will be used to train both the classifiers responsible for strategy prediction and the BNs

used to infer the probabilities of unobserved units and buildings.

5.2.1 Encoding Replays as Feature Vectors

Weber’s approach encodes the game logs as feature vectors, where each feature describes
when a unit or building was first produced (see Table 5.1). The goal of this representation
is to capture the timing aspects of a players strategic decisions in a game, enabling the
prediction of distinct strategies. Each feature vector contains temporal features, in the
unit of frames, that record when a player expands different branches of the tech tree and
represents a single players actions for an entire game.

Formally, the feature vector for a player P is defined as follows:

t : time when x is first produced by P

F(zx) = 5.1
0 :x was not (yet) produced by P

where x is a unit type, building type or unit upgrade.

5.2.2 Labeling Replays

The game logs are labeled with a strategy using rules based on analysis of expert game
play. Each rule set was designed to capture middle game strategies and different rule sets

are used for each race in StarCraft. The rule sets label logs with strategies based on the
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Table 5.1: A subset of an example feature vector

Feature Frame nr.
Terran Command Center 1
Terran Supply Depot 1398
Terran Refinery 2806
Terran Barracks 2012
Terran Marine 3264
Terran Medic 0
Terran Firebat 0
Terran Bunker 6212
Terran Academy 14170
Terran Stem 0
Terran Comsat Station 15992
Terran Engineering Bay 7218

order in which building types are produced. Six strategies were defined for each race,
and if a game does not fit into any of them, it is labeled as unknown. The rule set for
the Terran race is shown below. The six strategies are Standard, Vulture Harrass, Siege
Harrass, Fast Dropship, Bio and Unknown.

Opening Strategy

Barrack

e Factary

(B1OY)
Starport Expansion
. . F
(Fast Dropship) (5ige Harrass) RELRS
Vulture Tank
(Vulture Harras) (Standard)

Figure 5.1: Rule set for labelling Terran strategies. The tree is traversed by selecting the
first building produced in the child nodes.
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5.2.3 Representing Cases for Training the Bayesian Network

To learn the parameters of the BN described, we structure the feature vectors extracted
according to the specifications described in Chapter 3, where each game log represents a

single case used for learning in the network.

5.2.4 Overview of the Data Used

Using the game logs gathered we have prepared both labeled and unlabeled data sets
to be used by supervised learning methods for strategy prediction and by unsupervised
learning methods to infer the probabilities of the existence of unobserved units and build-

ings.

5.3 Strategy Prediction Under Uncertainty

5.3.1 Methodology Used for Classification

We represent strategy prediction in StarCraft as a multi-class classification problem. The

classification algorithms used were:
e J48 - C4.5 decision tree [31]
e NNge - Non-nested generalized exemplars [20]

We used the implementations of these algorithms provided in the Weka machine learning
library [40], using the default settings and performing ten-fold cross validation for all our

experiments.

The algorithms were evaluated at different time steps throughout each game, where dif-
ferent time steps where simulated by setting all features with a value greater then the
current game time to 0. This transformation was applied to the training data and test data.
To test the effects of imperfect information on the classification algorithms, features in
the feature vector to be classified from the test set where randomly set to 0, based on a
missing feature probability. This follows the exact methodology used by Weber et al. [37]
and simulates a player that is unable to scout some part of the environment in StarCraft.
Setting unknown entries to O instead of marking them as unknown may potentially ad-

versely affect some classifiers that treat it as any other numerical value. We did, however,



Bjorn Jénsson 39

not experiment with alternative ways of representing unknown values as for comparison

purposes we chose to follow the exact representation used by Weber et al. [37].

5.3.2 Methodology Used for Bayesian Feature Estimations

For the following discussion, we refer to our implementation of the BN described in Chap-
ter 3, and focus specifically on the additions and methodology needed for our strategy
prediction case study. To estimate the time value for buildings and units that correspond
to features that where set to 0, as a part of the classification methodology to simulate the
fog of war in RTS games, we have to map the probabilities in the BN into time estimations
for these features. We do this by using the expected value of the random variables in the
network, after propagating the evidence for the current game, that correspond to missing

features in the feature vector to be classified.

EIX] =Y a; x P(X = ;) (5.2)

Since the variables in our network are discrete, the number of states and interval size for
the states in the variables will effect the accuracy of the estimated time values. We did
not fine tune these parameters for our evaluations, since our main focus was on proof of
concept. For the same reason, we begin by only putting time estimations for features, in
the feature vector to be classified, that we know where set to 0 to simulate imperfect in-
formation about the environment. The alternative is to get the probability that the variable
in the network that corresponds to the feature in question represents a unit or building that
has been constructed at the given game time, and then decide upon a threshold value for
setting an estimation for that feature in the feature vector. Evaluation of this approach is

discussed specifically in Section 5.4.4.

For each classification where Bayesian feature estimations are used, we perform the fol-

lowing steps in the network:
1. Clear all potentials and evidence in the network to start a new inference cycle

2. Enter as evidence into the network the currently non-blank features in the test vector

to be classified

3. Propagate the supplied evidence and infer the new marginal distributions for vari-

ables in the network

4. Calculate the expected values for variables corresponding to blank features in the

test vector and put the inferred expected values into the test vector to be classified
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Table 5.2: Precision of strategy prediction for games at 5 minutes and 10 minutes

5 minutes 10 minutes
NNge J48 Boosting NNge J48 Boosting

Protoss vs. Protoss  0.50 0.44 0.49 0.81 0.82 0.85
Protoss vs. Terran  0.69 0.63 0.56 0.89 0.92 091
Protoss vs. Zerg 0.63 0.63 0.66 0.85 0.88 0.88
Terran vs. Protoss 0.76 0.66 0.61 0.82 0.81 0.92
Terran vs. Terran 0.82 0.76 0.54 0.85 0.82 0.90
Terran vs. Zerg 0.92 0.89 0.90 0.95 0.92 0.89
Zerg vs. Protoss 0.54 0.56 0.60 0.84 0.85 0.83
Zerg vs. Terran 0.53 0.50 0.46 0.87 0.91 0.84
Zerg vs. Zerg 0.83 0.83 0.85 0.94 0.96 0.94

Since we are typically using hundreds of test vectors, ten-fold cross validation and both
multiple data sets and classifiers in our case-study, this process is repeated many hundred

thousand times in our evaluations.

5.4 Evaluation

To show that BN can be used to improve the accuracy of strategy prediction under un-
certainty in RTS games, we compare the precision of the classification algorithms versus
game time and ratio of missing features, for feature vectors with and without estimations
from a BN. Effectively comparing the method used in [37], with our proposed method
using BNs.

5.4.1 Replication of Previously Reported Results

To verify our implementation and experimental setup we begin by replicating the results
from [37]. Table 5.2 shows the precision for strategy prediction with perfect information
for games at 5,000 and 10,000 frames. We use frames instead of minutes as we do not
know the exact conversion rate used in [37] and to eliminate the possibility of errors
resulting from game logs being played at different frame rates per second (this is a public
setting in StarCraft). Figure 5.2 shows the results for strategy prediction, with perfect
information, of Protoss versus Terran games for NNge, Boosting and J48 from 0O to 12,000
frames. Figure 5.3 shows precision in an imperfect information environment for ratios of

missing attributes from O to 0.5.
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Figure 5.2: Precision of strategy prediction for Protoss vs. Terran in perfect information
environments

1,00

x

0,90

¥

080 \\

0,70

0,60
0,50 sl N ge

(=]

-

5

== Boosting
e |48

ion of Strategy Prediction

(=]
w
=]

¥

0,20

Prec

0,10

0,00
0 01 0,2 0,3 0,4 0,5
Ratio of Missing Attributes

Figure 5.3: Precision of strategy prediction in an imperfect information environment. The
missing attribute ratio specifies the probability that an attribute will be set to 0. The results
are for Protoss vs. Terran games at 10,000 frames.
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Figure 5.4: Known Opponent: Precision results when using and not using a BN for
different values of the ratio of missing attributes. The results are for Terran vs. Protoss
games at 10,000 frames.

We see that precision decreases linearly with increased ratio of missing attributes for
imperfect information environments, as expected. This result replicates that of Weber et
al. [37] and serves the purpose of verifying that our implementation is consistant with
theirs. This is important as we use their results as our baseline in further experiments,

where we use a BN to predict values for some of the missing attributes.

5.4.2 Predicting a Known Opponent

In this section we show results for predicting a known opponent, using the same data set of
1139 previously played StarCraft games from Terran vs. Protoss matches to train both our
BN and classifiers. This is justifiable since other opponent Al bots are often available to
train on. Many of these bots use a combination of predefined strategies that can be learned
from playing enough matches against the bot before a competition match. Although the
simulation for a known opponent is idealistic, there is no chance of overfitting to the
training data and it has a valid appeal to a real task, as described above. We use J48
and NNge for our comparison. Figure 5.4 shows the precision of strategy prediction for
both classifiers with ratio of missing attributes from 0.0 to 0.5, with and without using
estimations from the BN. In both cases, the precision rate clearly improves when using
BN estimations and the precision values decreases at a slower rate, with increasing ratio

of missing attributes, then when BN estimations are not used.
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Figure 5.5: Known Opponent: Comparison of results for NNge precision with and with-
out using a BN when the ratio of missing attributes equals 0.3
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It is intuitive to look at how the difference between using and not using a BN evolves over
time. Figure 5.5 shows the evolution of strategy prediction precision from 2,000 frames
to 10,000 frames. The precision of strategy prediction increases linearly with increasing
information about the opponent, up to around 6,000 frames. After 6,000 frames it starts to
decrease slightly. This is because the feature vector used to classify includes a greater total
number of features and consequently has more blank features. Using the BN increases
the precision of strategy prediction for all time points (frame counts), with a maximum
difference of 0.3 at 6,000 frames. This corresponds to a 63% increase in the precision
value. It is also clear from this that the best time to predict strategies is at around 6,000
frames. Figure 5.6 shows the Mean absolute error for BN estimations used with the same
experimental setup as was used to get the precision results in Figure 5.5. The state interval
size used for the discrete nodes in the network was 480 frames, so the estimations from
the network typically fall within two states from the correct value. As mentioned before,

this was not fine tuned.

Figure 5.7 shows the evolution of precision of strategy prediction over time, for different
values of missing attributes and using estimations from the BN. We see how the trend on
results with a BN is persisted with increasing number of missing attributes in the feature
vector to classify. The trend is less obvious in Figure 5.8 from using ratio = 0.1 to ratio =
0.5. Comparing Figure 5.7 and Figure 5.8, we see that using a BN improves the precision

of strategy prediction for both all time and ratio of missing attribute values.
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Figure 5.9: Unknown Opponent: Precision results when using and not using a BN for
different values of the ratio of missing attributes. The results are for Terran vs. Protoss
games at 10,000 frames.
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Figure 5.10: Unknown Opponent: Comparison of J48 results for simulations of a known
and unknown opponent with ratio of missing attributes set at 0.3

5.4.3 Predicting an Unknown Opponent

In this section we run selected experiments as in the previous section, except that now we
train the BN on a different data set then used to train the classifiers. We use the Terran
vs. Terran and Terran vs. Zerg data sets to train the Bayesian Network and as before
we use the Terran vs. Protoss data set for classification. This simulates an opponent that
the AI has never played against before and is therefore less likely to have seen the exact
build order used. If we compare the results in Figure 5.9 with those for simulating a
known opponent (Figure 5.4) we see that the precision of strategy prediction decreases
only slightly in the case of an unknown opponent. Figure 5.10 compares the results over
time and shows the same slight decrease in precision values. In general the interpretations
for the results of simulating a known opponent are all valid for the simulations for an

unknown opponent.

5.4.4 Selecting Features to Estimate

In previous experiments, we used time estimations from the BN to replace the exact fea-
tures that where set to zero when transforming the test set to simulate an imperfect infor-
mation environment. In this section we generalize and do not use knowledge of which
features where set to zero. This means that the method is suited to be used as is for
in-game Al, given unit creation times. The problem of selecting which features to use

estimations for introduces both the possibility of wrong estimations, where a feature is
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Figure 5.11: Known Opponent, Selected Estimations: Precision results when using
and not using a BN for different values of the ratio of missing attributes. The results are
for Terran vs. Protoss games at 10,000 frames.

selected for estimation that was not set to zero when transforming the test set, and missed
estimations, where a feature where set to zero when transforming the test set but not
selected for estimations. As described in Chapter 3, we can use the BN to get the proba-
bilities of a unit or building corresponding to a feature in the feature vector existing at the
particular time. We can then decide a threshold value for which to put estimations from
the BN into the feature vector. In our evaluation we used 0.8 as the threshold value. This
value was selected after iterating over different values for Terran vs. Protoss games at
10.000 frames. It is not fine tuned and the value that gives the best results will generally
vary depending on the data used and particular game time. For each feature vector, the
features that correspond to units or buildings in the network, that have a higher probability

then the threshold value of existing, are estimated.

Using expert domain knowledge about StarCraft and trial and error experience of the se-
lection process, it is in our opinion possible to increase the precision of strategy prediction
considerably from our results. For example, not using estimations for units or buildings
that are known to give a bad estimate or given the time at which the prediction is to be
made, have predifined rules about what features to use estimations for. It was our choice
not to use any specific rule based domain information in our evaluations. We can see from
Figure 5.11 that adding the complexity of selecting which features to use estimations for
decreases the precision of the strategy prediction when using BN. We can also see that for

the ratio of missing attributes higher then 0.1 it is better to use a BN for strategy prediction
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then not to use it. With a maximum difference of 0.17 at a ratio of 0.5 missing attributes

for NNge, a 56% increase in precision value.
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Chapter 6
Conclusions

We have proposed, implemented and tested a Bayesian Network (BN) to represent uncer-
tain knowledge for the real-time strategy game StarCraft. Using game logs to find prior
probabilities and in-game observations as evidence, we show that a BN is an appropri-
ate model to represent uncertain knowledge in RTS games. By constructing the network
to mimic the structure of the game-specific technology tree, we have found that useful
probabilistic inferences can be made about the RTS domain. This approach also results in
BN that are easy to construct and intuitive to work with. Our evaluations of using the BN
to improve strategy prediction showed an increase in the prediction precision for almost
all combinations of the ratio of missing attributes and different game times used in our
experimental setup. The precision of strategy prediction generally decreased linearly with
increased ratio of missing attributes, but at a slower rate than when not using a BN. The
increase in precision values was up to 56% over previously published work [37]. This
clearly shows that BNs can be used to improve other Al techniques and that they are a

promising approach to represent and reason with uncertainty in RTS games.

There are many ways in which this work can be refined and extended. We limit our presen-
tation to the Terran race in StarCraft and the first 10,000 game frames (around 10 minutes
of game time). This can be extended to capture full StarCraft games, using other races or
tech trees from other RTS games, including more units and buildings in the network and
using more game logs to train on. Although not necessary for our evaluations, an effective
method to estimate creation times for observed units is needed. Domain knowledge can
be incorporated into both the BN and the techniques used for classification to get higher
precision values for strategy prediction in different situations. Investigating related ap-
proaches such as Influence Diagrams and Tree Augmented Naive Bayes Classifiers for

the RTS game domain is an interesting direction for future research and so is extending
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Case-based Reasoning techniques with BN, as described in Section 4.2. Finally, a Brood
War Bayesian Network (BWBN) library similar to the Terrain Analyzer (BWTA) library
[24], that abstracts away most of the details of constructing and updating the BN and
allows game Al developers to use BNs in their bots could be created.
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