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Abstract

The rapid growth of the web, and the increased use of weblseagines,
places heavy demands on the efficiency of the underlyingnmdtion re-
trieval algorithms. Studying long-term efficiency issugs;h as buffer man-
agement policies is thus important. The major search eadiaee access to
extensive user traces but only short traces have been matleghy avail-
able. Performance studies require long user traces foregititesting, lead-
Ing to growing demand for easier accessability for the netefield. We
therefore propose a methodology for a) learning user behaaitterns from
the available short traces and b) generating extensive geeiuences based
on those behavior patterns in order to simulate actual Beargine users. In
a detailed performance study, we show that our methodologylates the
original trace quite well, both in terms of user behaviotgs and in terms
of basic search engine performance metrics.
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Utdrattur

Or voxtur vefsins, og aukin notkun & vefleitarvélum, leggukler kvadir &
skilvirkni i undirliggjandi teekni. Rannsoknir a adferdurhad tryggja skil-
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Chapter 1
Introduction

The rapid growth of the web, and the corresponding increaseaf web search engines,
places heavy demands on the efficiency of the underlyingnméition retrieval algorithms.
Studying long-term efficiency issues, such as buffer mamagée, CPU cache utilization,
and distributed processing, is thus important. Doing sayewer, requires extremely
long query traces in order to reach a processing equilibanohget meaningful results.
In addition, because these search engines are geared soavgeheral user population,
those query traces must be “realistic”, i.e., represergati actual usage.

1.1 Query Traces

Query traces are log files of queries and interactions tresusave submitted from web
search engines or other type of text search systems. Quagstusually consist of in-
formation such as identification (typically anonymized battit cannot be traced back
to an actual user), the search query, and the time of sulmmis€ither information may
vary depending on the type of system. Obtaining realistergiraces is not trivial. Re-
searchers working for the large search engine companiesthaadvantage of access to
the actual traces from their respective search engines.tdsecurity reasons, however,
only short traces with limited information have been madblipally available and can
be used by the general academic. These short traces camnreécbe repeated, but such
cyclic query traces will not properly exercise some impatr&spects of query processing,
such as buffer management policies. Furthermore, using greees from a short period
may result in homogeneous queries from fairly few users,tduke temporary attention
to a particular topic that was in the news at the time.
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The obvious alternative is random query generation. Siheequery distribution is
skewed, however, there are extremely many terms (e.g.,narees and misspellings)
which occur only in a few documents, leading to abnormally luffer utilization and
short query execution times. A known method of compensasion reduce the scope of
the random term selection (Tomasic & Garcia-Molina, 1988j,it is difficult to tune the
choices of the lower and upper bounds. It is unlikely thatamly generated queries can
exercise the query processing engine in a similar mannestaalaisage.

There is thus a dire need for a methodology to generate eglydong sequences of re-
alistic queries, in particular for the general academit do&s not have access to the long
search engine traces. The generated query sequences heetessarily be realistic in
the sense that all the queries would make sense for actual. usstead, it is more im-
portant that the overall characteristics of the queriesass® the query processing engine
in a realistic manner, thus resulting in meaningful perfance results. In this thesis we
propose a methodology for the generation of such query segse

1.2 Contributions

In this thesis, we make the following three major contribos:

e First, we describe a methodology for a) analyzing user behaatterns of the
available short search engine traces, and b) using thoseioepatterns to generate
extensive query sequences in order to simulate actuallseagine users. Note
that this query generation methodology was originally desd informally by E.
Tryggvason (2002), but has been formalized as a Markov ¢hdims thesis.

e Second, we propose three different methods to select thaldetms of the gener-
ated queries. The terms are chosen with an aim towards defivhe same query
characteristics as in the original traces and towards riegua similar effort from a
search engine.

e Third, in a detailed performance study, we show that our oulogy is able to
simulate the original trace quite well, both in terms of usehnavior patterns and in
terms of basic search engine performance metrics.

The methodology does not currently capture all aspects wiamibehavior. More work
is required, for example, to accurately emphasize the pastessing effort of various
search engines, such as page ranking, and to simulate tipertaindrift of attention be-
tween hot topics of the day. We believe, however, that ouryggeneration methodology
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can serve as a solid foundation for query generation foeka@ale query processing stud-
ies. Researchers at the large search engine companies fuyuddample, tune a query
generation engine to match the characteristics of thensum®d open the generation soft-
ware to the general academic, rather than the actual quaargdr

1.3 Overview of the Thesis

In Chapter 2 we review basic concepts of Information Retriewad in Chapter 3 we
describe some related work. In Chapter 4 we describe the abavimr model proposed in
this thesis and in Chapter 5 we describe the proposed tergtisal@olicies. In Chapter 6
we evaluate the query generation methodology. We conchalthesis and propose some
future work in Chapter 7.






Chapter 2
Information Retrieval Background

The concept of information retrieval (IR) dates back to thé(9 The science of IR con-
sists of searching document collections for documentsraiodnation within documents.
IR also concerns metadata of documents and searchingorelatiatabases. IR touches
on many areas of science such as computer science, matbgnsatistics and library
science among other areas. The first IR systems, howeves,imtenduced in the 1950s
and 1960s (Singhal, 2001; Luhn, 1957). Web search engieehamost visible IR ap-
plications. When the web search engines became common, tO8@s, the need for
large-scale web information retrieval became obviousayp@oogle is the most popular
search engine, but there are many competitors such as Yahdding (Comscore.com,
2011).

This chapter reviews some information retrieval (IR) topicat are necessary for the
understanding of our proposed query generation methogoWg review how traditional
IR systems operate (e.g., see Baeza-Yates and Ribeiro-NgG98)(for a detailed survey)
and briefly discuss some additional processing performechagy of the web search
engines.

2.1 Queries and Query Refinement

Information retrieval systems typically usatural languagetechniques (also known as
vector space modgl A natural language query consists of a list of terms (wpnehs
plicitly connected by the/ operator); any document which contains one or more of the
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terms is perceived to be relevanDocuments areankedby perceived relevance to the
user query (see below). Additionally, most systems restinie answer to the few most
relevant documents.

Query refinementis an important search behavior in IR sys(€idel, 1991; Koenemann,
Quatrain, Cool, & Belkin, 1994; Jansen et al., 2000). When aedtist of documents
does not match what the user had in mind, the user refines #rg Qu adding or remov-
ing terms, and resubmits it. This may occur repeatedly) theiuser is satisfied with the
returned results.

2.2 Ranking of Documents

Many systems accomplish the ranking of documents usasine similarity(or variants
thereof). Using the cosine similarity measure, the peezkielevance of documeditto

queryq is:
Zt Wqt + Wet
Wi

wherewg, is the “weight” of termt in d, w,, is the weight of in ¢, andIV, is the “vector

length” of document:
Wd = \/Et U}it (22)

The productw,; - w,; is called thepartial similarity of documentd due to termt. The
weight oft in d is defined by:

relevanceg,; = : (2.1)

Wqt = fd,t : @dft (2-3)

wheref,; is the number of occurrencestah d andidf, is theinverse document frequency
of the term¢. An analogous formula applies to,,, althoughf, ; is typically 1. The
inverse document frequency is defined as:

idf; = l092(N/ft) (2.4)

whereN is the number of documents in the collection, gpht the number of documents
in which term¢ appears at least once. The relevance of a document to a gusgyoi if
the document has no relation to the query and would be eltedaom the list of result
documents when using a search engine. High value of thearatey indicates that the
document and the query have more terms in common and docuvoeitd appear high
11n many systems, additional operators, such as proximigyatprs, which restrict the location of terms

in the documents, are provided. According to (Jansen, Sgiraracevic, 2000) such operators are used
in less than 20% of the queries. Therefore, this work doesosider such operators.
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up in the list of result documents. The inverse documentueaqy assigns a high value
to terms that are found only in few documents in the collexgtiout a low value to the

more common terms; it is used by many query evaluation dlyuos to decide the order
in which terms are processed.

2.3 Query Processing

The most commonly used index structure is thverted index It has onenverted list
for each terny, in a document collection where all(d, f,;;) entries (required for rank-
ing) are stored. The term “inverted” is drawn from the factttthe document collection
is inverted from being a collection of documents that cdesid terms to being terms
with a collection of documents. Query processing is typygaeérformed by scanning the
inverted lists and accumulating (partial) scores for doents. Since IR systems do not
return a single correct answer, IR researchers have dectlopsafe(or approximatég
query evaluation algorithms, which improve the response tf the system at the cost
of a potential degradation in retrieval effectiveness. 8amsafe optimizations achieve
significant improvement in response time for individual ge®, while maintaining ac-
ceptable retrieval effectiveness.

2.4 Web Search Engines

Modern web-search engines, such as Google, are designedstalable search engines
that avoid all disk accesses (Brin & Page, 1998; Kleinber®8)19They typically use a
lexicon, containing a list of available terms, along witlk thverted index that the lexicon
points to, to answer user queries. Pages are downloadegl distnibuted crawlers (also
known as spiders), which store them into a repository. Aexed then stores information
about each web page, including the link structure, in an anfike. This anchor file is
then used to calculate page rankings in a post-processpg where the link-structure
of the documents is used to find good candidates for retunairige user. Since these
algorithms are complex and usually proprietary, and we aseenmterested in the user
behavior patterns, we have omitted these post-procestpg from our current work.
Extending our work to generate query results with a readerfalper-structure is a very
interesting path for future work.






Chapter 3

Related Work

We are not aware of any work that uses traces to generate gaguences, as we do.
Web query traces have, however, been analyzed in various. Wagisen (2006) provides
an extensive overview of a search log analysis. He desaibearch log, its existence and
the different levels of analysis. He explains why it is cotex, how it is used and can be
used, along with an overview of what has already been doreS@atea of research.

A very large search engine log was analyzed by Silversteiarald, Henzinger, and
Moricz (1999). They show that queries are typically shod aeldom modified. They
also show that query terms are frequently constituents cdg@s, meaning that search
engines might consider search terms as parts of phrase# évemser did not explicitly
specify them as such.

Ozmutlu, Spink, et Ozmutlu (2002) use Poisson sampling &dyae a search log from
Excite {wwv. exci t e. com), they show how a sample set can represent the characteris-
tics of the entire search log.

A time analysis on a trace was performed by Beitzel, Jenseny@hary, Grossman, and
Frieder (2004). The analysis was performed on a very largeygiog and shows how
traffic and topical categories fluctuate between hours witlalys. Some categories seem
to fluctuate considerably while others are stable all dayg.dinhe research offers valuable
input into the aspect of search engine performance testgayding indexing, routing and
caching algorithms.

Transaction logs from nine different search engines wengpawed by Jansen and Spink
(2006). They compared the difference of usage betweentseagines. The results were
that web searching is performed in a similar way, regardtésshat search engine is
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being used. We hence conclude that an analyzed trace frorseameh engine is suitable
for generating a query trace to test another search engine.

Web queries can be categorized into three broad categorieanational queries, naviga-
tional queries and transactional queries (Jansen, BootlpigkS2008; Rose & Levinson,
2004). Informational queries are queries that cover a bigaeland return many relevant
results (e.g., Colorado or trucks). Navigational queriek sesingle page (e.g., youtube
or delta airlines). Transactional queries arise when tlee i$ends to perform an action
such as purchasing a car or downloading a program. Zhangedaand Spink (2009)
analyzed a web search engine transaction log and showehtisajueries belong to the
informational query category, and that the rate of thoseigsevaried during different
time periods, while the other two categories were more stabhe proportion among
these categories was about 12:2:1 (informational:traimsed:navigational).

The study most similar to ours, is the one by Zhang et al. (20080 performed a time
and pattern analysis of a web search engine transactionitbgawaim towards building
a model of user interactions. They analyze various chaiatits of the transaction log
but do not look into each detailed action such as adding gping a term. They used a
transaction log from the Dogpile web search engimew. dogpi | e. con) and showed
that time series analysis can be used to predict some usavibebuch as that users who
enter the shortest queries are more likely to click the rsgheted results. Among other
interesting results were that people seem to use the babis@ach engines more, rather
than using search engine variant that focuses on findingfgpie types such as images
or audio files. The average query length was about 2.9 terchseanains stable for the
duration of the log.

The model presented in this thesis was originally proposedripggvason (2002). We
have refined the model with respect to users dropping temtreduced the formal nota-
tion used in this thesis, and added policies for selectimggdor the generated sequences.
The software used for the experiments in this thesis wasailyg created by Bodvarsson
(2006) and Berghreinsson (2007). The software was imprdvegever, as the perfor-
mance was greatly improved and errors removed, and the niwiggand methods were
added.
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Chapter 4
A Model of User Behavior

The basic search engine user actions are fairly simple. $hesiarts by writing a few

terms, and then submits the query. Based on the outcome, ¢henay choose to refine
the query or to end the session. During query refinement,sbeaan add terms and/or
drop terms, and then submit the refined query. There may,wkepbe arbitrarily many

refinements. The size (or the length) of the session depentteamumber of refinements
made by the user. For each time the user clicks the searambatiquery is stored in a
search engine log and is also known as the query trace as we ogeexperiment. Our

goal is to simulate the process described by the query trace.

The query generation is performed in two steps. The first istép generate aaction
sequencdhat imitates the overall user behavior of adding termspplirg terms, and
submitting queries. The second step is term selection, eviier actual terms of the
queries are chosen. Splitting the procedure into two stegkeait possible to use different
term selection methods for the same action sequence, matimpgarison and evaluation
more precise and efficient.

In this chapter, we first propose a simple Markov chain for eliog user behavior (Sec-
tion 4.1). We discuss how trace analysis can yield proldghiilues for the parameters
of this model (Section 4.2) and how the model is used to gémeaiion sequences (Sec-
tion 4.3). We propose two refinements to the model to morerately capture the evo-
lution of model parameters during the query refinement @®¢8ection 4.4). Finally, in
Section 4.5 we discuss an improved model to distinguiskebegtweernidd and drop
actions. The improved model was used to partially generetierasequences. Term
selection policies are then described in Chapter 5.
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0.46

0.6
0.4
Add/

Figure 4.1: The basic Markov chain

4.1 A Basic Model

A Markov chain (MC) is a mathematical framework for modelimgrisitions from one
state to another. The next state depends only on the cumtiaetand not on previous
states or transitions. The model is often described as etddgraph, where the edges are
labeled with the probability of each transition. A MC is a seqce of random variables
X1, Xo, X3, ... with the Markov property, namely that, given the presenesthe future
and past states are independent. Formathy(X,,.; = x| X; = 21, X5 = 29, ..., X, =
z,) = Pr(X, +1 = z|X,, = z,). The possible values oX; form a countable sef
called the state space of the chain.

As discussed above, a user can add or drop terms, submit éng gad end the session
and these are the possible transitions using the MC modeadwiise, in this simple model,
the set of states iS = {initial, add/drop submitdong. The name of state indicates
the last action made by the user. Figure 4.1 illustratestiess and possible transitions,
along with probability for the user behavior using MC mddsurprisingly, a transition

1 the probabilities shown are actual numbers from our arglysi
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Query User Query

1 1 program

2 1  certify program

3 2 inform certify require employee
4 3  certify program

5 3  certify employee

Table 4.1: Example of a search engine query trace

is possible from thenitial state to thesubmitstate, resulting in an empty quéryThe
transitions that lead to the staddd/dropcan either be to add or drop a term; MC distin-
guish between these actions in code. The high re-submititegis because users click
a link that views the next ten results and by doing that, theesguery is re-submitted
with different page numbers. These re-submissions couddyelae removed from the
guery trace, but we decided to leave them in as they may bahalio search engine
optimizers. More precisely, the possible transitions are:

Pr(X,., = add/drop
Pr(X,,+; =submit | X, = initial)
Pr(X,,+, = add/drop | X, = add/drop

| X, =initial)

|

I
Pr(X,;+; =submit | X, = add/drop

|

|

|

Pr(X,.; =add/drop | X, = submi}
Pr(X,,1 =submit | X, = submi}
Pr(X,.; =done | X, = submi}

4.2 User Behavior Analysis

The probability of each transition is calculated by anailgzn existing query trace, which
represents a set of typical user behaviors. The analystepsasteps through the existing
guery trace using the MC. For each term added or dropped atioans made and also
for each submission and an end of a session. During the amahes transitions and
the visitations to each state are counted and proportiamédd the probability of each
action. For further illustration we use a simple example.

2 Most of the empty queries in the search trace used in the iexgefs arise due to a cleaning process
that removes terms that are not in the document collectiomptiz queries may, however, arise in practice
and search engines treat those queries differently: GaagleBing do nothing, while Yahoo! shows a
special page with a demonstration video.
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State X,
initial add/drop submit done
initial 0.00 0.00 0.00 0.00

add/drop 1.00 0.55 0.40 0.00
submit 0.00 0.45 0.00 0.00
done 0.00 0.00 0.60 0.00

State X,

Table 4.2: Markov chain probability transition matrix

Example 1: Behavior analysis using basic MC

Consider the simple query trace shown in Table 4.1. This tracgains five queries and
refinement processes for three different users.

The first user starts by adding a term, thus moving from statal to stateadd/drop
Subsequently, the query is submitted, thus making a tranditom stateadd/dropto
statesubmit The user then refines the query by adding another term, tlowsnign from
statesubmitto stateadd/drop The query is now re-submitted, thus moving from state
add/dropto statesubmit Finally, the user session ends, moving from statemitto state
done At this point in time, the user has twice moved from state/drop in both cases

to the statesubmitvia the transitionsubmit so Pr(X,, 11 = submit|X,, = add/drop) =
100%.

The second user, on the other hand, adds three words fromatesasid/drop and then
submits. At that point in time, the staaeld/drophas been visited six times; in half of
those cases the query has been submitted, while in the otifesflthose cases, a term
has been added. Therefore, after processing two users, thitealpitity of transitions
Pr(X,.1 = add/drop|X,, = add/drop) and Pr(X,.1 = submit|X, = add/drop)
are both 50%.

We leave it as an exercise for the reader to verify that aftedyzing the entire trace, the
probability transition matrixP is as shown in Table 4.2.

A note is in order regarding the choice afld and drop actions for the third user of
Table 4.1. This user adds one term and drops another whi@png the second query.
We choose to always seletiop actions ahead aiddactions, in order to avoid dropping
newly added terms.
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Query StateX, StateX,,; Terms
1 initial add/drop 1
add/drop submit
submit add/drop
add/drop add/drop
add/drop submit
submit add/drop
add/drop submit
submit done -

WWWNNN PR
NNR R OR

Table 4.3: Example of a generated action sequence

4.3 Generating Actions

The output of the user behavior analysis is the completegtnibity transition matrixP.
Action generation consists of using this probability mato guide a random selection
of actions. The generation is always started in statel and weighed random function
Is used to decide the next step where the transition with itjeeh probability is more
likely to occur. A query can be edited by adding and droppergs but at the time of
the action “submit”, the query is “written” as it looks like that time. At the end of
each session, the number of visitations to the stabenitis compared to the number of
sequences to be produced, while it is not exceeded, the @ssibs is started in the state
initial. Example 2 describes the process of generating an actioeses,

Example 2: Generated action sequence

Table 4.3 shows a typical action sequence based on the analfyBixample 1, contain-
ing one session with three queries. The first query contaiestemm, the second query
also contains one term—albeit a different one—and the tipirery contains two terms,
including the term from the second query.

As the example in Table 4.3 shows, user sessions can be lontex generated action
sequence than in the original trace. It may also result inigseontaining a particular
number of terms that never appeared in the original trace.

4.4 A Refined Model of User Behavior

In Chapter 5 we describe policies to assign the actual terrtisetqueries. Before that,
however, we must address two accuracy issues with this simpdel of user behavior.
A user submitting the first query should be more likely to refthe query than a user
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Refinement 1 3 0.64 0.51

Figure 4.2: A refined MC to account for impact of query refinetse

submitting the tenth query and therefore we need to add aereént dimension to our
model. A similar issue arises with the number of terms in ayjuwes a user with one term
in the query should be more likely to add a term than a userh@ady has five terms, a
user with no terms should not have any possibility of@p transition.

What is needed to improve the accuracy of our model is a methbdge the probability
function on the number of query refinements seen so far anduimder of terms in the
previous query. Fortunately, however, this turns out todidyfeasy.

4.4.1 Impact of Query Refinements

Consider first the impact of query refinement. Figure 4.2 steomedified MC which dis-
tinguishes between the initial query (here called refindr@gand subsequent refinements
queries (summarized into refinement 1). We can refer to thiessptes usingadd/drop,
add/drop, submi andsubmit.
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Query StateX, Action State X, ,; Terms
1 initial add add/drop 1
add/drop drop add/drop 0
add/drop submit submit 0
initial add add/drop 1
0
0

add/drop drop add/drop
add/drop submit submit
submit end done

NNNDNPRFP P

Table 4.4: Illustration of accuracy issues with the simpteled of user behavior

Needless to say, it is also likely that the probability of givong terms on the first re-
finement (second query) is different from the probabilitydodpping terms in the second
refinement. We propose to address this by extending the negdelfurther to distinguish
between stateadd/drop, throughadd/drop, andsubmit throughsubmit,. Note that the
statesadd/drop, andsubmit, always summarize refinementsand above.

A key question, then, is how large should be. A good rule of thumb should be to
maken sufficiently large to simulate the original trace well, véhawvoiding overfitting
by distinguishing between session lengths that occur \aely in the original trace. In
Chapter 6 we demonstrate how to apply this methodology andilvesg the termRmax

to represent the maximum

4.4.2 Impact of Terms in Previous Query

The MC can be extended similarly to account for the termsemitevious query, to make
the model more accurate and avoid transitions such as d@@pterm with an empty
query. In this case, e.g., stadd/drop ; refers to refinementthat started witly terms.
Note that the original query always starts without termsadéd/drop ; is not a valid state
for j > 0. The same methodology can be used to avoid overfitting tocases as for the
number of refinements. In Chapter 6 we use the t&maxto represent the maximum

J.

4.5 Improved Markov Chain

Our model does not distinguish between the actaddanddropwhich causes a problem
of dropping newly added terms, this can cause empty quengsa unnecessary work
being performed.
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Figure 4.3: The improved basic Markov chain

The problems are better illustrated with the following exden

Example 3: Accuracy issues during generation of an action segnce

Consider the action sequence of Table 4.4. Note that thisrasgquence is not based on
the probability function from the previous example, buheaton a more generic proba-
bility function such as might arise with a very long and vargedjinal trace.

In the first query, a term is first added as is typically the c&absequently, however, the
same term is then dropped, resulting in an empty query beibmgted. This sequence is
essentially the same as submitting directly fromithigal state, and would never appear
in the query trace; the probability of dropping a term in thmgtial query should be 0%,
which is different from the general case.

In the second query, a similar situation arises, where a newtiea term is immediately
dropped. Since this is not the first query, however, dropgnmgs can indeed occur. What
should not occur, however, is the immediate removal of newdgadderms.

Note that we have coded the generation such that newly added tare only dropped
if there are no older terms, but we did not disallow droppiegns. A better solution
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Refinement 1 |

|

Figure 4.4: The Extended Markov chain model improved

Is to split up theadd/dropstate into stateadd anddrop. This was discovered late in
the process and due to the tight timeframe, it was impossibtan the full experiment

using this improved model. In this section we describe theraved model. We managed
to generate action sequences using the improved MC modet@ngare them to the
formerly generated action sequences. These initial egudicate little difference from

the previously generated action sequences and shoulddreeret affect the final result.

The results and the comparison between action sequendelsendiscussed further in
Chapter 6.

Figure 4.3 shows how the stateld/drophas been split into the statesld and drop.
Performing any transition that points to the statep tells us that the user was dropping a
term. Note that transition from stadeldto statedrop is not available due to the fact that
we choose to drop terms first when user refines the search; deseabed earlier.

Figure 4.4 illustrates the same changes made to the refinddlmbFigure 4.2. Thelrop
state is not used in the initial query and therefore it shop®nly on refinement level
one.
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4.6 Summary

In summary, we initially presented a very simple MC for usehdvior and presented a
methodology for learning the probability transition matf? and using the MC to gener-
ate action sequences that simulate user search behavitheWextended that model into
a two-dimensional array of states, which allow us to moraieately capture the evolu-

tion of the probability function during the query refinem@nbcess. At a later stage we
improved our model to capture the edit actions of users eetterbto prevent dropping

newly added terms and skip unnecessary work. So far, hoywsredrave not created any
specific queries; we now turn to the actual term selectioitigsl.
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Chapter 5
Term Selection Policies

This chapter describes the second step of query sequenesgen, namely term selec-
tion, where the actual terms twld anddrop are chosen. The baseline policyr&dom
selection(RN) where all terms have the equal probability of being addedropped. As
with the probability function of the MC, however, we proposenhalyze the properties of
the terms in the original trace and use those propertiedeotdbe terms of the generated
queries.

We propose three such policies: Thist Length(LL) policy uses information about the
length of the inverted list (how many documents a term carobed in) to guide the term
selection; TheAverage RelatiorfAR) policy uses the average similarity of a term to the
documents in the collection; and a combined polidl)(which uses both the list length
and the average relation to select the terms.

A lexicon table consists of distinct row for each term foundai document collection.
Each row has information relevant to the term such as théeligjth and in our case we
also store information about average relation. The lexigoimts to an inverted index
which stores in which document the term is found in. Exampéhdws what a lexicon
could look like for a small document collection.

Document Text (Cleaned and Stemmed)

1 require employee inform
supervisor inform

2 require

3 program employee certify require

4 program require

Table 5.1: Example document collection
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Term LL AR [AR]
require 4 1x0% 1
employee 2 0.39 1
inform 1 0.57 1
supervisor 1 0.29 1
certify 1 0.50 1
program 2 1.25 2

Table 5.2: Term information summary

Example 4: Lexicon table

Consider the document collection shown in Table 5.1, which wiluged as a running
example in this chapter. As is typical in IR, the documentkigifigure have been cleaned
(HTML tags have been removed, as well as common words from &stjand the terms
stemmed. Table 5.2 shows a lexicon table for this collectidhe table includes the
inverted list length for each term, as well as the averageti@ha(the calculation of the
average relation will be described in detail later in this gtar).

5.1 The List Length Policy

The length of the inverted list indicates how many documémsterm occurs in, and
is thus a basic measure of how common the term is in the doducadiection. Ta-
ble 5.2 shows that most terms in our running example occunéndmcument, while one
term occurs in all four. Such skew is, in fact, common in d@aldocument collections;
Figure 5.1 shows the distribution of list length in the doemncollection used in our
experiments. The figure shows that many terms have low ligjtteand few terms have
high list length. The collection is described further in Cleay®.1.

In order to use the list length to guide the term selectiorcg@ss, we accumulate statistics
on the list length distribution in the original query trageto a probability histogram.
A separate distribution is accumulated for each transitiothe MC. This distribution
is then used in the term selection process to choose termsn Atdding a term using
a transition such a®r(X,,; = add/drogX, = initial) we have a list of terms (or a
list of specific characteristics of a term, in this cdde) that have been added using that
transition, followed by a number of occurrences. We thenxesghted random to choose
the LL we want to use. Finally a random term is chosen from the tehasfulfill the
criteria from the inverted index. Example 5 will explain theédtransition.
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Figure 5.1: Inverted list length distribution

Example 5: Adding a term using LL policy

Consider the original query trace in Table 4.1. Furthermalet, us focus on the first
term selected in each user session, which is the transfioiX,,.1 = add/drop|X,, =
initial) (usingadd. This transition occurs three times in the query trace, #rmelterms
selected are: “program”, “inform”, and “certify”. Turning to Table 5.2, we see that
“inform” and “certify” have list length of 1, while “program” has list length of 2. The
list length distribution, represented blyst lengthicoun) pairs, is thus: (1:2); (2:1).

Turning to the example action sequence in Table 4.3, we seththérst action is indeed
to add a term from this distribution. We now have a 67% proligtdf choosing a term
with list length 1 (the candidates, according to Table 5.2“anérm”, “supervisor” and
“certify”) and 33% probability of choosing a term with list tgth 2 (the candidates are
“employee” and “program”).

The first attempt to drop a term is a similar process as addiagya but the main differ-
ence is that we only have the terms in the current query tosghfrom and we can not
count on that we have a match. If there is no match to the aedlgistribution, a random
term from the current query is removed. Example 6 describesltop process.
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LLy LLs LL,
1 1 1

8 8 8
10 10 10
12 12 10
16 16 20
92 92 90
96 96 100
112 110 100
1,154 1,200 1,000

Table 5.3: Examples of significant digit calculations

Example 6: Dropping a term

Using the original query trace in Table 4.1, we can see onlycase of the user dropping
aword. The user(3) has submitted the query "certify progrand needs to drop the term
“program”, before he adds “employee” and submits again. Tirensition Pr (X, =
add/drop| X,, = submit) (usingdrop) is used to drop the word. According to Table 5.2,
the word “program” has list length of 2 and therefore we try teeubat to select a term to

drop. If none of the terms in the current query fits that cidea term is chosen randomly
from available terms.

When terms are added, we are guaranteed to find at least onevidrthe selected list
length. For the shorter list lengths, however, many cartdglexist and the term selection
is thus not restricted to the actual terms used in the ofigjnery trace. When terms are
dropped, on the other hand, it is not always possible to firetra with the selected list
length, since the selection is now restricted to the terrasdhe already in the query. In
this case, the term to drop is chosen at random.

When using a large collection, it is possible to overfit therdiation. Consider, for
example, aterm that occurs in 4,376 documents. Itis unfitkelt any other term occursin
that many documents, but there may be several terms thatinet350—-4,450 documents
and those terms should be equally relevant. In order to awgedfitting and to increase
the flexibility of the term selection process, we proposeaxythe number ofignificant
digits that are considered in each cas@able 5.3 shows examples of rounding the list
lengthLL to 2 or 1 significant digits, indicated iy, andLL,, respectively.

1 Significant digits are commonly used in physics to indicagaccuracy of measurement equipment.
The list length can indeed be said to be a measurement ofefnegiu
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Figure 5.2: Distribution of average relation

5.2 The Average Relation Policy

The list length policy does not take into account the fact taems may occur multiple

times in some documents, which should affect the importahegerm. If a term appears
in many documents, for example, we may assign little relegao that term, whereas
a term that occurs rarely but often in a single document nmaghiore important. We

propose to use the average relation of each tetmthe whole document collection as
the basis of a term selection policy. The average rela#d?) (s defined as the weighted
average of the partial similaritigsf all documents! where term’ is found:

AR =3 2t (5.1)

a4 Wd

wherew, = >, wq, represents the total similarity of each document to all &2rm

2 For the definition of partial similarity, see Formula 2.1 aagp 6 and the following text, but note that
wq,¢ is 1 in all cases.
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Example 7: Adding a term using AR policy

Consider again the original query trace of Table 4.1 and foonghe first term selected
in each user session, which is the transitiBn(X,,.; = add/drop|X,, = initial). This
transition occurs three times in the query trace, and thenteselected are: “program”,
“inform”, and “certify”. Turning to Table 5.2, we see that “iform” and “certify” have
average relation (rounded up) of 1, while “program” has avgearelation of 2. The aver-
age relation distribution is thusaferage relatiaoun) pairs, is thus: (1:2); (2:1). When
selecting terms from this distribution, we therefore have %robability of choosing a
term with average relation 1 (the candidates, according tbl@%.2 are “require”, “em-

ployee”, “inform”, “supervisor” and “certify”) and 33% probability of choosing a term
with average relation 2 (the candidate is only “program”).

For the document collection used in our experiments, thelteesf the average relation
calculation ranged from 0 to 9791.49. Figure 5.2 shows tk#&idution of the average
relation; as with list lenghts it is very skewed. It showsttmany terms have low average
relation and few terms have high average relation. Sincemrag numbers with decimal
points is a slow process, the numbers were rounded up to witelgers to speed up the
term selection. As with the list length, we use 2 or 1 signifta#igits to avoid overfitting
and to increase the flexibility of the term selection process

5.3 The Combined Policy

The combination of average relation and list lengih)(term selection policy is similar
to the previous policies, except that the probability distiion of terms is now a two-
dimensional histogram, rather than a single-dimensioisab@iram as in the case of the
LL and AR policies. We observe that there is a strong correlation éetwlist length
and average relation (the correlation coefficient is ab@39Figure 5.3 illustrates the
correlation betweehlL and AR) and the probability distribution is thus very skewed as
before. As with the other two policies, we use 2 or 1 signifiahgits to avoid overfitting
and to increase the flexibility of the term selection process

5.4 Summary

We have proposed three policies for term selection, basedvented list length I(L),
average relation to the document collecti®xR(, and a combination of the twaA().
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Since the list length and average relation are highly cateel, however, all three policies
can be expected to give rather similar results.

We also experimented with a policy that used the relatignbeiween individual terms
to guide the term selection. This would, of course, best mtite term selection process
of actual users. Unfortunately, the preparation of theti@iahip statistics was projected
to take months given our limited computing resources, and fuch a policy is left for
future work.
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Chapter 6
Experimental Evaluation

In this chapter, we study the quality and efficiency of ourrgugeneration methodol-
ogy. We start by describing the experimental environmeati{{n 6.1). Then we study
action sequence generation (Section 6.2) and finally eteatha term selection policies
(Section 6.3). The evaluation is performed by comparingadtaristics of the generated
query sequences to the original query trace that we intesuhtolate.

6.1 Experimental Environment

The experimental environment consists of a query trace andrdent collection, which
are used to generate statistics for the query generationthdfmore, we developed a
simple search engine to gather metrics regarding basionpeahce parameters.

6.1.1 Query Trace

The query trace we used as a starting point in our query geoeia a well-known query
log consisting of actual queries submitted to the web seangineexci t e. comin
2001. This query trace has been studied and analyzed il bgtather researchers (e.g.,
see (Spink, Jansen, Wolfram, & Saracevic, 2002; Spink, Milf Jansen, & Saracevic,
2001)). The query trace consists of 1,025,910 queries gtdminin 266,566 sessions.
The average session length (number of queries in a sessiin)d about 3.8 queries; the
shortest session is a single query, while the longest sessitsists of exactly 100 queries.
The average number of terms in a query is about 2.1; the lkaggesy contains 38 terms,
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while about 9.3% of the queries contained no term (due tolda@nag process in almost
all cases).

6.1.2 Document Collection

The data collection used in this project is the WT10G (Web K ddiGigabytes) dataset, a
widely used benchmark for information retrieval developtrend evaluation. The dataset
Is distributed by CSIRO in Australia and was developed by aicod the web in 1997.
The document collection was cleaned from html-tags, endaitesses, and all characters
other than English letters (a-z) and all terms were set t@fam@se and stemmed. After
this processing the document collection consist of 1,931 {8rms in 1,681,575 docu-
ments. The most common termpage which occurs 1,956,579 times in the collection,
while the termaccesds the most common within a single document, occurring 43,93
times in one particular document.

6.1.3 Metrics

To evaluate the quality of the action sequence generatiengreated 30 sequences of
100,000 queries each, and compared the query size andrséssgih distributions to
that of the original query trace. We define two parametBfgaxandZmax to account
for the size of the two-dimensional arrayasfd/drop ; andsubmit ; states that distinguish
between statistics based on the refinements and numbentdf &dithe start of the query.
We show how to select these parameters effectively.

To evaluate the quality of the term selection process, wegded actual queries from
each of these 30 sets using the four different term seleptticies (randoml_L, AR and
AL), as well as three variations of significant digits (unlait 2, and 1), for a total of 10
runs (the number of significant digits does not affect randefaction).

We then took the generated queries and ran them through owe-htade search engine,
which kept track of the total list length of all terms in theegqy and the answers for the
guery. The total list length indicates the basic processwgj of scanning the inverted
index, while the number of documents occurring in more thaa term is a measure of
the similarity of the terms in the query; the more such doaus)ehe more similar the

terms.
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6.1.4 Software and Hardware

The software builds on a prototype developed by E. b. Bodwar&006) and refined by
V. Berghreinsson (2007). The software was developed in Rytasing numpy for the
numerical calculation, and SQLite database. The timed uneagents were performed
on a Lenovo T61p laptop with 2 GB of RAM, an 2.40 GHz Intel Dual €processor,
and 320 GB of local disk space. The operating system was BfrXP Professional
SP3.

6.2 Action Sequence Generation

The action sequence is a sequence of transitions that caerfmerped after each other,
an example of generated action sequence is shown in TahleB&fdre analyzing the
quality and performance of the action sequence generdtismecessary to set thiénax

and Rmax parameters to avoid overfitting to rare cases. We ran melggperiments,
where bothlmaxand Rmaxwere varied from 0 to 10, and the performance analyzed for
different combinations. As described in Section 4.4 sgtiifhax = 0 or Rmax = 0 is

not appropriate, but it does give us a baseline to compare to.

6.2.1 Selectindlmax

Figure 6.1 shows the impact of thgnaxparameter on the average number of terms in a
query and the corresponding standard deviation. Z-agis shows the value dfmaxin
each case, while thg-axis shows the average across all values ofRhgax parameter.
The values in each case are compared to the average numbeeragdsgand the corre-
sponding standard deviation from the original trace thataneetrying to simulate. We
want to choose the parameter that is closest to the origiaeét As the figure shows,
changingImaxfrom 0 to 2 affects the average number of terms significaitigreasing
the parameter further does not affect the quality, sinch tis¢ average number of terms
and standard deviation seems to stay stable. The standaatiole shows a similar effect.
Finally, the figure shows thatmax = 2 gives the best fit in terms of both average and
standard deviation, and therefore we chose to use this wralue experiments. Note that
the Tmaxparameter does not affect the session length significantly.
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Figure 6.1: Number of terms in queries, varyifighax

6.2.2 Selecting”max

Figure 6.2 shows the impact of thHémax parameter on the average number of terms in
a query and the corresponding standard deviation. zFaris shows the value dtmax

in each case, while thg-axis shows the average across all values offihgxparameter.
The numbers are compared to the average number of terms aredmanding standard
deviation from the original trace that we want to imitate.thAs figure shows, the average
is fairly stable across all values édmax The standard deviation, on the other hand,
approaches that of the original tracef@saxgrows. We chose to usémax= 9, as only
8% of all queries occur in sessions longer than 9 queries.|¥decampared accumulated
distribution of number of queries an@imax = 9 was closest to the original query trace.
Note that theRmaxparameter does not affect the query size significantly.

A smaller set of comparable action sequences were genexaieg the improved MC
model described in Section 4.5. The results were nearlydheesand the selection of
Tmaxand Rmaxwould be the same.
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6.2.3 Quality

Figure 6.3 shows the distribution of query sizes for the gateel sequences compared
to the original trace. The two generated sequences wergaedeusing two different
models, the MC model and the improved MC model. Thaxis shows the number of
terms per query, while thg-axis shows the proportion of queries that are of each site. A
traces were generated usiighax = 2 and Rmax = 9 as discussed above. As the figure
shows, the generated sequences match the original trate ajosely. The generated
sequences have sligthly more queries with only one ternsllglhttly fewer with no terms
and two terms. We observe also that the generated traceviaisdaeries with very many
terms. Overall, however, as we saw in Figure 6.1, the diffeeebetween the generated
sequences and the original trace is very small.

Turning to the number of sessions, Figure 6.4 shows theilalistvn of session lengths

for the generated sequences compared to the original t&inglar to the figure above,

two different models were used to generate the action seggsethe MC model and the
improved MC model. Ther-axis shows the number of queries in a session, while the
y-axis shows the proportion of a sessions that are of eackhlelmpe traces are generated
usingTmax = 2 and Rmax= 9 as before. As the figure shows, the generated sequences



34 Towards Automatic Generation of Realistic Web Query 8agas

= I I I J T T 1
Original —e—
Generated ---2---
o Improved ---3--- ]
3
= 15% |
i)
2 10% |
o
[a
5% ,‘ _
0% R | | |
20 25 30 35 20
Terms per Query
Figure 6.3: Distribution of query sizes
45 % : | | | |
Original —e—
350 Generated ---2--- ]
100 Improved ---&--- 4
S 30% |
5 25% |
S 20% :
S 150 |
& 15 %

10 % :
5% :
0% | D

100 120

Queries per Session

Figure 6.4: Distribution of session lengths

also match the original trace quite closely in terms of ses&ngths. The generated
sequences have sligthly fewer sessions with only one ghetglightly more with a few
queries. The improved model seems to generate a little fosggsions by average than
the former model. The longest generated session using MT qg8ries and 113 using
the improved MC model, compared to 100 in the original tratlee 113 query session
seems to be a extreme case, because looking at the data, sonomeimum size is
75-80 queries. The session length does not affect the sesiulist length and answers.
Overall, however, as we saw in Figure 6.2, the differencegdigible.

6.2.4 Time

Analysis of the million query trace takes around 30 secohidben takes approximately
three seconds to generate an action sequence that corfgi®® @00 queries.
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6.3 Term selection

We have seen that the action sequences match the originaldtate closely. We now
evaluate the quality of the term selection policies, by canmg them to the original query
trace. The home-made search engine processes all thegjmesch sequence (or trace)

and captures performance metrics such as the total listigreg query, and the number
of answers per query.

Note that, unsurprisingly, random selection of terms penfextremely poorly; due to
the skew of the list length distribution, the average lisigih of random queries is only
about 0.22% of the average list length of the original trddere than half of the terms
have a list length of less than three and are therefore likebye chosen half the time with
the random policy. In real life, however, such terms arectetemuch more rarely. As
a result, we do not consider random term selection furthérfdzus instead on the three
proposed policiesL, AR, andAL.
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6.3.1 Quality

Consider first the total list length of all the terms in eachrgu&his metric captures the
work done to read all inverted lists, regardless of whethey aire stored in memory or on
disk. All policies have slightly longer inverted lists thdre original trace, so Figure 6.5
shows the average list length as the percentage of the akigace (set to 100%). For
each of the three policies, the impact of the number of sicanifi digits is also shown. As
the figure shows, all variations yield an average list lemgtich is within a 4% difference
from the original trace, and most are within 2%. For this meetrL, andAL; are the best
policies by a small margin.

Turning to the relationship between query terms, FiguresBdws the average number of
answers (distinct documents) found relative to the origha@e. This metrics is relatively
worse than the list length metric, because terms that aoseab enter in the same query
are typically more related. The difference, however, i stily 6—-8%. For this metric
also,LL,, AR, andAL, are the best policies by a small margin.
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Figure 6.7: Distinct terms in 100,000 query sequences

6.3.2 Number of Distinct Terms

Figure 6.7 shows the number of distinct terms used in theODOfyeries of the generated
sequences, relative to the first 100,000 queries from thggnaditrace. This is a metric
that may affect buffer management significantly. All pa@greturn a significantly greater
variety of terms than the original trace. This was to be etgugcsince the choice is
only guided by numerical values rather than semantics. Thardage of the generated
sequences is that they are not restricted by the terms ofripmal trace and will thus
exercise buffer management policies. ey policy is the most similar to the original
trace, as it has the tightest restrictions on the term sefect

Figure 6.8 analyses the number of distinct terms in the geequences over a longer
period. For this figure, we generated sequences of 1,00008(es and compared to the
original trace. Ther-axis shows the number of queries in the sequence, ang-#xes
shows the ratio of distinct terms compared to the origiratdr The figure focuses on
two significant digits, but the results are similar for theertcases. As Figure 6.8 shows,
the number of distinct terms is similar for the very first gasyand then diverges quickly
and evenly from the original.
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Figure 6.8: Distinct terms in query sequences
6.3.3 Time

Turning to the efficiency of the query generation, FigureilfuStrates the time in seconds
that it takes to select terms into 100,000 queries usingmifft policies and significant
digit variations. For detailed analysis, the time is spitbifour categories of work: a) the
time to load the term table (about two million entries); b¢ time to load the statistics
used for term selection; c) the time to actually generategtieries; and d) the time to
write the queries to disk. In the fastest methods, the ntgjorfi the time is spent on
loading data into memory. In the slower methods more tim@&nhson the actual term
selection, because the statistical data is much more coatetl. The time is, in general,
acceptable but thaL policies are the slowest.

6.4 Discussion

The term selection policies all return rather similar resullost of our methods generate
100,000 queries in less than 50 seconds. The polidigs AR, and AL yield average
list length of 2% or less above the original trace. Hiepolicy is closest to the original
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Figure 6.9: Generation time for 100,000 queries

trace in the number of distinct terms but it is also the slaw€&keLL, policy is fast and
appears to be the best option.
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Chapter 7
Conclusion

We have argued that there is a dire need for a methodologyrerges extremely long
sequences of realistic queries, in particular for the gdre@rademic that does not have ac-
cess to long search engine traces. The generated querynsequesed not necessarily to
be realistic in the sense that all the queries would makeedenactual users. Instead, itis
more important that the overall characteristics of the iggerxercise the query processing
engine in a realistic manner, thus resulting in meaningéufgrmance results.

In this thesis, we have proposed a novel methodology foyaimay user behavior patterns
of the available short search engine traces, and using thedsevior patterns to generate
extensive query sequences in order to simulate actuallseagine users. We have also
described three different methods to select the actuaktefrthe generated queries. The
terms are chosen with an aim towards delivering the samey quinaracteristics as in the
original traces and towards requiring a similar effort frarsearch engine. In a detailed
performance study, we have showed that our methodologyegalsimulate the original
trace quite well, both in terms of user behavior patternsmaterms of basic search engine
performance metrics.

The methodology does not currently capture all aspects widmubehavior. More work
is required, for example, to accurately emphasize the pastessing effort of various
search engines, such as page ranking, and to simulate tperaindrift of attention be-
tween hot topics of the day. Many search engines allow pribgioperators, which our
methodology does not yet support. Implementing a term setepolicy that takes into
account term-to-term similarity would also be an imporw@ingction.

An interesting extension to our model would be to simulateedént types of users. A
model could be created for each type of users and during therggon, the models
could be used to create different query sequences that toeiidbe merged into one.
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The different models could consist of both different pritpibf actions and also different
term selection policies. The timing of the queries is alsaraportant part of buffer
management, as many queries may be submitted at the samé&dmenany different
users. Time could be added to the generated sequences btaimai statistics about
guery intervals from the original trace. By combining diéfat models for different users,
and generating queries from different models in the appaitgproportions and with the
appropriate interval distributions, very complex sitoas could be simulated using the
same simple methodology. The most difficult aspect, in fai, be discovering and
separating the different classes of users.

We therefore believe that our query generation methodopygposed in this thesis can
serve as a solid foundation for query generation for laigdesquery processing studies.
Researchers at the large search engine companies coulgafopke, tune a query gener-
ation engine to match the characteristics of their usersoped the generation software
to the general academic, rather than the actual query traces
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