
TOWARDS AUTOMATIC GENERATION OF
REALISTIC WEB QUERY SEQUENCES

Valdís Sigurþórsdóttir

Master of Science

Computer Science

June 2011

School of Computer Science

Reykjavík University

M.Sc. RESEARCH THESIS
ISSN 1670-8539

Towards Automatic Generation of Realistic Web Query
Sequences

by

Valdís Sigurþórsdóttir

Research thesis submitted to the School of Computer Science
at Reykjavík University in partial fulfillment of

the requirements for the degree of
Master of Sciencein Computer Science

June 2011

Research Thesis Committee:

Björn Þór Jónsson, Supervisor
Associate Professor, Reykjavík University, Iceland

Hrafn Loftsson
Assistant Professor, Reykjavík University, Iceland

Yngvi Björnsson
Associate Professor, Reykjavík University, Iceland

Copyright
Valdís Sigurþórsdóttir

June 2011

Towards Automatic Generation of Realistic Web Query
Sequences

Valdís Sigurþórsdóttir

June 2011

Abstract

The rapid growth of the web, and the increased use of web search engines,
places heavy demands on the efficiency of the underlying information re-
trieval algorithms. Studying long-term efficiency issues,such as buffer man-
agement policies is thus important. The major search engines have access to
extensive user traces but only short traces have been made publically avail-
able. Performance studies require long user traces for efficient testing, lead-
ing to growing demand for easier accessability for the research field. We
therefore propose a methodology for a) learning user behavior patterns from
the available short traces and b) generating extensive query sequences based
on those behavior patterns in order to simulate actual search engine users. In
a detailed performance study, we show that our methodology simulates the
original trace quite well, both in terms of user behavior patterns and in terms
of basic search engine performance metrics.

Drög að sjálfvirkri gerð raunsærra veffyrirspurna

Valdís Sigurþórsdóttir

Júní 2011

Útdráttur

Ör vöxtur vefsins, og aukin notkun á vefleitarvélum, leggur miklar kvaðir á
skilvirkni í undirliggjandi tækni. Rannsóknir á aðferðum til að tryggja skil-
virkni yfir lengri tíma, svo sem biðminnisstjórnun, krefst afar langra fyrir-
spurnaruna. Fyrirspurnir myndaðar af handahófi skila ekki raunhæfum fyrir-
spurnum. Starfsmenn helstu leitarvélafyrirtækja geta fengið aðgang að eigin
gögnum en einungis stuttar fyrirspurnarunur eru aðgengilegar vísindasam-
félaginu. Við leggjum því til aðferðafræði til að a) læra einfalt líkan að
hegðunarmynstri notenda út frá stuttum fyrirspurnarunum og b) búa til lan-
gar fyrirspurnarunur sem nota þetta hegðunarmynstur til aðlíkja eftir raun-
verulegum notendum leitarvéla. Í rannsóknum okkar sýnum við fram á að
aðferðafræði okkar líkir allvel eftir upphaflegu fyrirspurnarununni, bæði þe-
gar kemur að hegðunarmynstri og með tilliti til skilvirkni mælinga fyrir leitar-
vélar.

To my daugther Katla, the sunshine of my life.

vii

Acknowledgements

I want to thank my supervisor Björn Þór Jónsson for ideas, input and patience. I would

also like to thank the committee members, Yngvi Björnsson andHrafn Loftsson, for their

invaluable comments which helped to improve the presentation of my work. Valgerður

Steinþórsdóttir was invaluable for her encouragement and reviews despite poor health.

Thanks to my co-workers, especially Sigurbirna Hafliðadóttir for review and motivation,

Kjartan R. Guðmundsson for Python and Sqlite input and Guðmundur Örn Ingvarsson

and Sveinn G. Gunnarsson for Unix help. Thanks to Landbankinn for use of hardware. I

also want to thank my family and friends, Mom, Dad, Kristján,Aneta, Valgerður, Jóna,

Steinunn, Anna Guðný, Anna María, Sigga, Stella and Steina... to name some names;

thanks I could not have done this without your help.

viii

ix

Publications

The model and software described in this thesis rest on foundations developed by students

at Reykjavík University, as described in Chapter 3. The bulk ofthe material of the thesis

has been submitted for international publication in a manuscript co-authored by Björn Þór

Jónsson (Reykjavik University). While Björn contributed to the writing of the submitted

document, the main contributions of the thesis, as described in Chapter 1, are entirely my

work.

x

xi

Contents

List of Figures xiii

List of Tables xiv

1 Introduction 1

1.1 Query Traces . 1

1.2 Contributions . 2

1.3 Overview of the Thesis . 3

2 Information Retrieval Background 5

2.1 Queries and Query Refinement . 5

2.2 Ranking of Documents . 6

2.3 Query Processing . 7

2.4 Web Search Engines . 7

3 Related Work 9

4 A Model of User Behavior 11

4.1 A Basic Model . 12

4.2 User Behavior Analysis . 13

4.3 Generating Actions . 15

4.4 A Refined Model of User Behavior . 15

4.4.1 Impact of Query Refinements 16

4.4.2 Impact of Terms in Previous Query 17

4.5 Improved Markov Chain . 17

4.6 Summary . 20

5 Term Selection Policies 21

5.1 The List Length Policy . 22

5.2 The Average Relation Policy . 25

xii

5.3 The Combined Policy . 26

5.4 Summary . 26

6 Experimental Evaluation 29

6.1 Experimental Environment .29

6.1.1 Query Trace . 29

6.1.2 Document Collection . 30

6.1.3 Metrics . 30

6.1.4 Software and Hardware . 31

6.2 Action Sequence Generation .31

6.2.1 SelectingTmax . 31

6.2.2 SelectingRmax . 32

6.2.3 Quality . 33

6.2.4 Time . 34

6.3 Term selection . 35

6.3.1 Quality . 36

6.3.2 Number of Distinct Terms . 37

6.3.3 Time . 38

6.4 Discussion . 38

7 Conclusion 41

Bibliography 43

xiii

List of Figures

4.1 The basic Markov chain . 12

4.2 A refined MC to account for impact of query refinements 16

4.3 The improved basic Markov chain .18

4.4 The Extended Markov chain model improved 19

5.1 Inverted list length distribution 23

5.2 Distribution of average relation 25

5.3 Correlation between list length and average relation 27

6.1 Number of terms in queries, varyingTmax 32

6.2 Number of queries in sessions, varyingRmax 33

6.3 Distribution of query sizes .. 34

6.4 Distribution of session lengths 34

6.5 Average list length for each query 35

6.6 Average number of answers to each query 36

6.7 Distinct terms in 100,000 query sequences 37

6.8 Distinct terms in query sequences 38

6.9 Generation time for 100,000 queries 39

xiv

xv

List of Tables

4.1 Example of a search engine query trace 13

4.2 Markov chain probability transition matrix 14

4.3 Example of a generated action sequence 15

4.4 Illustration of accuracy issues with the simple model ofuser behavior . . 17

5.1 Example document collection .. 21

5.2 Term information summary . 22

5.3 Examples of significant digit calculations 24

xvi

1

Chapter 1

Introduction

The rapid growth of the web, and the corresponding increaseduse of web search engines,

places heavy demands on the efficiency of the underlying information retrieval algorithms.

Studying long-term efficiency issues, such as buffer management, CPU cache utilization,

and distributed processing, is thus important. Doing so, however, requires extremely

long query traces in order to reach a processing equilibriumand get meaningful results.

In addition, because these search engines are geared towards a general user population,

those query traces must be “realistic”, i.e., representative of actual usage.

1.1 Query Traces

Query traces are log files of queries and interactions that users have submitted from web

search engines or other type of text search systems. Query traces usually consist of in-

formation such as identification (typically anonymized so that it cannot be traced back

to an actual user), the search query, and the time of submission. Other information may

vary depending on the type of system. Obtaining realistic query traces is not trivial. Re-

searchers working for the large search engine companies have the advantage of access to

the actual traces from their respective search engines. Dueto security reasons, however,

only short traces with limited information have been made publically available and can

be used by the general academic. These short traces can, of course, be repeated, but such

cyclic query traces will not properly exercise some important aspects of query processing,

such as buffer management policies. Furthermore, using query traces from a short period

may result in homogeneous queries from fairly few users, dueto the temporary attention

to a particular topic that was in the news at the time.

2 Towards Automatic Generation of Realistic Web Query Sequences

The obvious alternative is random query generation. Since the query distribution is

skewed, however, there are extremely many terms (e.g., rarenames and misspellings)

which occur only in a few documents, leading to abnormally low buffer utilization and

short query execution times. A known method of compensationis to reduce the scope of

the random term selection (Tomasic & Garcia-Molina, 1993),but it is difficult to tune the

choices of the lower and upper bounds. It is unlikely that randomly generated queries can

exercise the query processing engine in a similar manner as actual usage.

There is thus a dire need for a methodology to generate extremely long sequences of re-

alistic queries, in particular for the general academic that does not have access to the long

search engine traces. The generated query sequences need not necessarily be realistic in

the sense that all the queries would make sense for actual users. Instead, it is more im-

portant that the overall characteristics of the queries exercise the query processing engine

in a realistic manner, thus resulting in meaningful performance results. In this thesis we

propose a methodology for the generation of such query sequences.

1.2 Contributions

In this thesis, we make the following three major contributions:

• First, we describe a methodology for a) analyzing user behavior patterns of the

available short search engine traces, and b) using those behavior patterns to generate

extensive query sequences in order to simulate actual search engine users. Note

that this query generation methodology was originally described informally by E.

Tryggvason (2002), but has been formalized as a Markov chainin this thesis.

• Second, we propose three different methods to select the actual terms of the gener-

ated queries. The terms are chosen with an aim towards delivering the same query

characteristics as in the original traces and towards requiring a similar effort from a

search engine.

• Third, in a detailed performance study, we show that our methodology is able to

simulate the original trace quite well, both in terms of userbehavior patterns and in

terms of basic search engine performance metrics.

The methodology does not currently capture all aspects of human behavior. More work

is required, for example, to accurately emphasize the post-processing effort of various

search engines, such as page ranking, and to simulate the temporal drift of attention be-

tween hot topics of the day. We believe, however, that our query generation methodology

Valdís Sigurþórsdóttir 3

can serve as a solid foundation for query generation for large-scale query processing stud-

ies. Researchers at the large search engine companies could,for example, tune a query

generation engine to match the characteristics of their users and open the generation soft-

ware to the general academic, rather than the actual query traces.

1.3 Overview of the Thesis

In Chapter 2 we review basic concepts of Information Retrievaland in Chapter 3 we

describe some related work. In Chapter 4 we describe the user behavior model proposed in

this thesis and in Chapter 5 we describe the proposed term selection policies. In Chapter 6

we evaluate the query generation methodology. We conclude the thesis and propose some

future work in Chapter 7.

4

5

Chapter 2

Information Retrieval Background

The concept of information retrieval (IR) dates back to the 1940s. The science of IR con-

sists of searching document collections for documents and information within documents.

IR also concerns metadata of documents and searching relational databases. IR touches

on many areas of science such as computer science, mathematics, statistics and library

science among other areas. The first IR systems, however, were introduced in the 1950s

and 1960s (Singhal, 2001; Luhn, 1957). Web search engines are the most visible IR ap-

plications. When the web search engines became common, in the1990s, the need for

large-scale web information retrieval became obvious. Today, Google is the most popular

search engine, but there are many competitors such as Yahoo!and Bing (Comscore.com,

2011).

This chapter reviews some information retrieval (IR) topicsthat are necessary for the

understanding of our proposed query generation methodology. We review how traditional

IR systems operate (e.g., see Baeza-Yates and Ribeiro-Neto (1999) for a detailed survey)

and briefly discuss some additional processing performed bymany of the web search

engines.

2.1 Queries and Query Refinement

Information retrieval systems typically usenatural languagetechniques (also known as

vector space model). A natural language query consists of a list of terms (words, im-

plicitly connected by the∨ operator); any document which contains one or more of the

6 Towards Automatic Generation of Realistic Web Query Sequences

terms is perceived to be relevant.1 Documents arerankedby perceived relevance to the

user query (see below). Additionally, most systems restrict the answer to the few most

relevant documents.

Query refinement is an important search behavior in IR systems (Fidel, 1991; Koenemann,

Quatrain, Cool, & Belkin, 1994; Jansen et al., 2000). When a ranked list of documents

does not match what the user had in mind, the user refines the query by adding or remov-

ing terms, and resubmits it. This may occur repeatedly, until the user is satisfied with the

returned results.

2.2 Ranking of Documents

Many systems accomplish the ranking of documents usingcosine similarity(or variants

thereof). Using the cosine similarity measure, the perceived relevance of documentd to

queryq is:

relevanceq,d =
∑

t wd,t · wq,t

Wd

, (2.1)

wherewd,t is the “weight” of termt in d, wq,t is the weight oft in q, andWd is the “vector

length” of documentd:

Wd =
√

∑

t w
2
d,t (2.2)

The productwd,t · wq,t is called thepartial similarity of documentd due to termt. The

weight oft in d is defined by:

wd,t = fd,t · idft (2.3)

wherefd,t is the number of occurrences oft in d andidft is theinverse document frequency

of the termt. An analogous formula applies towq,t, althoughfq,t is typically 1. The

inverse document frequency is defined as:

idft = log2(N/ft) (2.4)

whereN is the number of documents in the collection, andft is the number of documents

in which termt appears at least once. The relevance of a document to a query is zero if

the document has no relation to the query and would be eliminated from the list of result

documents when using a search engine. High value of the relevance, indicates that the

document and the query have more terms in common and documentwould appear high

1 In many systems, additional operators, such as proximity operators, which restrict the location of terms
in the documents, are provided. According to (Jansen, Spink, & Saracevic, 2000) such operators are used
in less than 20% of the queries. Therefore, this work does notconsider such operators.

Valdís Sigurþórsdóttir 7

up in the list of result documents. The inverse document frequency assigns a high value

to terms that are found only in few documents in the collection, but a low value to the

more common terms; it is used by many query evaluation algorithms to decide the order

in which terms are processed.

2.3 Query Processing

The most commonly used index structure is theinverted index. It has oneinverted list

for each termt, in a document collectionc where all(d, fd,t) entries (required for rank-

ing) are stored. The term “inverted” is drawn from the fact that the document collection

is inverted from being a collection of documents that consists of terms to being terms

with a collection of documents. Query processing is typically performed by scanning the

inverted lists and accumulating (partial) scores for documents. Since IR systems do not

return a single correct answer, IR researchers have developed unsafe(or approximate)

query evaluation algorithms, which improve the response time of the system at the cost

of a potential degradation in retrieval effectiveness. Some unsafe optimizations achieve

significant improvement in response time for individual queries, while maintaining ac-

ceptable retrieval effectiveness.

2.4 Web Search Engines

Modern web-search engines, such as Google, are designed to be scalable search engines

that avoid all disk accesses (Brin & Page, 1998; Kleinberg, 1998). They typically use a

lexicon, containing a list of available terms, along with the inverted index that the lexicon

points to, to answer user queries. Pages are downloaded using distributed crawlers (also

known as spiders), which store them into a repository. An indexer then stores information

about each web page, including the link structure, in an anchor file. This anchor file is

then used to calculate page rankings in a post-processing step, where the link-structure

of the documents is used to find good candidates for returningto the user. Since these

algorithms are complex and usually proprietary, and we are more interested in the user

behavior patterns, we have omitted these post-processing steps from our current work.

Extending our work to generate query results with a reasonable hyper-structure is a very

interesting path for future work.

8

9

Chapter 3

Related Work

We are not aware of any work that uses traces to generate querysequences, as we do.

Web query traces have, however, been analyzed in various ways. Jansen (2006) provides

an extensive overview of a search log analysis. He describesa search log, its existence and

the different levels of analysis. He explains why it is collected, how it is used and can be

used, along with an overview of what has already been done in this area of research.

A very large search engine log was analyzed by Silverstein, Marais, Henzinger, and

Moricz (1999). They show that queries are typically short and seldom modified. They

also show that query terms are frequently constituents of phrases, meaning that search

engines might consider search terms as parts of phrases evenif the user did not explicitly

specify them as such.

Ozmutlu, Spink, et Ozmutlu (2002) use Poisson sampling to analyze a search log from

Excite (www.excite.com), they show how a sample set can represent the characteris-

tics of the entire search log.

A time analysis on a trace was performed by Beitzel, Jensen, Chowdhury, Grossman, and

Frieder (2004). The analysis was performed on a very large query log and shows how

traffic and topical categories fluctuate between hours within days. Some categories seem

to fluctuate considerably while others are stable all day long. The research offers valuable

input into the aspect of search engine performance testing regarding indexing, routing and

caching algorithms.

Transaction logs from nine different search engines were compared by Jansen and Spink

(2006). They compared the difference of usage between search engines. The results were

that web searching is performed in a similar way, regardlessof what search engine is

10 Towards Automatic Generation of Realistic Web Query Sequences

being used. We hence conclude that an analyzed trace from onesearch engine is suitable

for generating a query trace to test another search engine.

Web queries can be categorized into three broad categories:informational queries, naviga-

tional queries and transactional queries (Jansen, Booth, & Spink, 2008; Rose & Levinson,

2004). Informational queries are queries that cover a broadtype and return many relevant

results (e.g., Colorado or trucks). Navigational queries seek a single page (e.g., youtube

or delta airlines). Transactional queries arise when the user intends to perform an action

such as purchasing a car or downloading a program. Zhang, Jansen, and Spink (2009)

analyzed a web search engine transaction log and showed thatmost queries belong to the

informational query category, and that the rate of those queries varied during different

time periods, while the other two categories were more stable. The proportion among

these categories was about 12:2:1 (informational:transactional:navigational).

The study most similar to ours, is the one by Zhang et al. (2009), who performed a time

and pattern analysis of a web search engine transaction log with an aim towards building

a model of user interactions. They analyze various characteristics of the transaction log

but do not look into each detailed action such as adding or dropping a term. They used a

transaction log from the Dogpile web search engine (www.dogpile.com) and showed

that time series analysis can be used to predict some user behavior such as that users who

enter the shortest queries are more likely to click the highest rated results. Among other

interesting results were that people seem to use the basic web search engines more, rather

than using search engine variant that focuses on finding specific file types such as images

or audio files. The average query length was about 2.9 terms and remains stable for the

duration of the log.

The model presented in this thesis was originally proposed by Tryggvason (2002). We

have refined the model with respect to users dropping terms, introduced the formal nota-

tion used in this thesis, and added policies for selecting terms for the generated sequences.

The software used for the experiments in this thesis was originally created by Böðvarsson

(2006) and Berghreinsson (2007). The software was improved,however, as the perfor-

mance was greatly improved and errors removed, and the new policies and methods were

added.

11

Chapter 4

A Model of User Behavior

The basic search engine user actions are fairly simple. The user starts by writing a few

terms, and then submits the query. Based on the outcome, the user may choose to refine

the query or to end the session. During query refinement, the user can add terms and/or

drop terms, and then submit the refined query. There may, of course, be arbitrarily many

refinements. The size (or the length) of the session depends on the number of refinements

made by the user. For each time the user clicks the search button, a query is stored in a

search engine log and is also known as the query trace as we usein our experiment. Our

goal is to simulate the process described by the query trace.

The query generation is performed in two steps. The first stepis to generate anaction

sequencethat imitates the overall user behavior of adding terms, dropping terms, and

submitting queries. The second step is term selection, where the actual terms of the

queries are chosen. Splitting the procedure into two steps makes it possible to use different

term selection methods for the same action sequence, makingcomparison and evaluation

more precise and efficient.

In this chapter, we first propose a simple Markov chain for modeling user behavior (Sec-

tion 4.1). We discuss how trace analysis can yield probability values for the parameters

of this model (Section 4.2) and how the model is used to generate action sequences (Sec-

tion 4.3). We propose two refinements to the model to more accurately capture the evo-

lution of model parameters during the query refinement process (Section 4.4). Finally, in

Section 4.5 we discuss an improved model to distinguish better betweenadd anddrop

actions. The improved model was used to partially generate action sequences. Term

selection policies are then described in Chapter 5.

12 Towards Automatic Generation of Realistic Web Query Sequences

Figure 4.1: The basic Markov chain

4.1 A Basic Model

A Markov chain (MC) is a mathematical framework for modeling transitions from one

state to another. The next state depends only on the current state and not on previous

states or transitions. The model is often described as a directed graph, where the edges are

labeled with the probability of each transition. A MC is a sequence of random variables

X1, X2, X3, ... with the Markov property, namely that, given the present state, the future

and past states are independent. Formally,Pr(Xn+1 = x|X1 = x1, X2 = x2, ..., Xn =

xn) = Pr(Xn + 1 = x|Xn = xn). The possible values ofXi form a countable setS

called the state space of the chain.

As discussed above, a user can add or drop terms, submit the query and end the session

and these are the possible transitions using the MC model. Likewise, in this simple model,

the set of states isS = {initial , add/drop, submit, done}. The name of states indicates

the last action made by the user. Figure 4.1 illustrates the statess and possible transitions,

along with probability for the user behavior using MC model1; surprisingly, a transition

1 the probabilities shown are actual numbers from our analysis.

Valdís Sigurþórsdóttir 13

Query User Query
1 1 program
2 1 certify program
3 2 inform certify require employee
4 3 certify program
5 3 certify employee

Table 4.1: Example of a search engine query trace

is possible from theinitial state to thesubmitstate, resulting in an empty query.2 The

transitions that lead to the stateadd/dropcan either be to add or drop a term; MC distin-

guish between these actions in code. The high re-submittingrate is because users click

a link that views the next ten results and by doing that, the same query is re-submitted

with different page numbers. These re-submissions could easily be removed from the

query trace, but we decided to leave them in as they may be valuable to search engine

optimizers. More precisely, the possible transitions are:

Pr(Xn+1 = add/drop | Xn = initial)

Pr(Xn+1 = submit | Xn = initial)

Pr(Xn+1 = add/drop | Xn = add/drop)

Pr(Xn+1 = submit | Xn = add/drop)

Pr(Xn+1 = add/drop | Xn = submit)

Pr(Xn+1 = submit | Xn = submit)

Pr(Xn+1 = done | Xn = submit)

4.2 User Behavior Analysis

The probability of each transition is calculated by analyzing an existing query trace, which

represents a set of typical user behaviors. The analysis process steps through the existing

query trace using the MC. For each term added or dropped a transition is made and also

for each submission and an end of a session. During the analysis the transitions and

the visitations to each state are counted and proportioned to find the probability of each

action. For further illustration we use a simple example.

2 Most of the empty queries in the search trace used in the experiments arise due to a cleaning process
that removes terms that are not in the document collection. Empty queries may, however, arise in practice
and search engines treat those queries differently: Googleand Bing do nothing, while Yahoo! shows a
special page with a demonstration video.

14 Towards Automatic Generation of Realistic Web Query Sequences

StateXn

initial add/drop submit done

StateXn+1

initial 0.00 0.00 0.00 0.00
add/drop 1.00 0.55 0.40 0.00
submit 0.00 0.45 0.00 0.00
done 0.00 0.00 0.60 0.00

Table 4.2: Markov chain probability transition matrix

Example 1: Behavior analysis using basic MC

Consider the simple query trace shown in Table 4.1. This trace contains five queries and

refinement processes for three different users.

The first user starts by adding a term, thus moving from stateinitial to stateadd/drop.

Subsequently, the query is submitted, thus making a transition from stateadd/dropto

statesubmit. The user then refines the query by adding another term, thus moving from

statesubmit to stateadd/drop. The query is now re-submitted, thus moving from state

add/dropto statesubmit. Finally, the user session ends, moving from statesubmitto state

done. At this point in time, the user has twice moved from stateadd/drop, in both cases

to the statesubmitvia the transitionsubmit, soPr(Xn+1 = submit|Xn = add/drop) =

100%.

The second user, on the other hand, adds three words from the stateadd/drop, and then

submits. At that point in time, the stateadd/drophas been visited six times; in half of

those cases the query has been submitted, while in the other half of those cases, a term

has been added. Therefore, after processing two users, the probability of transitions

Pr(Xn+1 = add/drop|Xn = add/drop) and Pr(Xn+1 = submit|Xn = add/drop)

are both 50%.

We leave it as an exercise for the reader to verify that after analyzing the entire trace, the

probability transition matrixP is as shown in Table 4.2.

A note is in order regarding the choice ofadd and drop actions for the third user of

Table 4.1. This user adds one term and drops another while preparing the second query.

We choose to always selectdrop actions ahead ofaddactions, in order to avoid dropping

newly added terms.

Valdís Sigurþórsdóttir 15

Query StateXn StateXn+1 Terms
1 initial add/drop 1
1 add/drop submit 1
2 submit add/drop 0
2 add/drop add/drop 1
2 add/drop submit 1
3 submit add/drop 2
3 add/drop submit 2
3 submit done –

Table 4.3: Example of a generated action sequence

4.3 Generating Actions

The output of the user behavior analysis is the complete probability transition matrixP .

Action generation consists of using this probability matrix to guide a random selection

of actions. The generation is always started in stateinitial and weighed random function

is used to decide the next step where the transition with the higher probability is more

likely to occur. A query can be edited by adding and dropping terms but at the time of

the action “submit”, the query is “written” as it looks like at that time. At the end of

each session, the number of visitations to the statesubmitis compared to the number of

sequences to be produced, while it is not exceeded, the next session is started in the state

initial . Example 2 describes the process of generating an action sequence.

Example 2: Generated action sequence

Table 4.3 shows a typical action sequence based on the analysis of Example 1, contain-

ing one session with three queries. The first query contains one term, the second query

also contains one term—albeit a different one—and the thirdquery contains two terms,

including the term from the second query.

As the example in Table 4.3 shows, user sessions can be longerin the generated action

sequence than in the original trace. It may also result in queries containing a particular

number of terms that never appeared in the original trace.

4.4 A Refined Model of User Behavior

In Chapter 5 we describe policies to assign the actual terms tothe queries. Before that,

however, we must address two accuracy issues with this simple model of user behavior.

A user submitting the first query should be more likely to refine the query than a user

16 Towards Automatic Generation of Realistic Web Query Sequences

Figure 4.2: A refined MC to account for impact of query refinements

submitting the tenth query and therefore we need to add a refinement dimension to our

model. A similar issue arises with the number of terms in a query, as a user with one term

in the query should be more likely to add a term than a user thatalready has five terms, a

user with no terms should not have any possibility of adrop transition.

What is needed to improve the accuracy of our model is a method to base the probability

function on the number of query refinements seen so far and thenumber of terms in the

previous query. Fortunately, however, this turns out to be fairly easy.

4.4.1 Impact of Query Refinements

Consider first the impact of query refinement. Figure 4.2 showsa modified MC which dis-

tinguishes between the initial query (here called refinement 0) and subsequent refinements

queries (summarized into refinement 1). We can refer to the split states usingadd/drop0,

add/drop1, submit0 andsubmit1.

Valdís Sigurþórsdóttir 17

Query StateXn Action StateXn+1 Terms
1 initial add add/drop 1
1 add/drop drop add/drop 0
1 add/drop submit submit 0
2 initial add add/drop 1
2 add/drop drop add/drop 0
2 add/drop submit submit 0
2 submit end done –

Table 4.4: Illustration of accuracy issues with the simple model of user behavior

Needless to say, it is also likely that the probability of dropping terms on the first re-

finement (second query) is different from the probability ofdropping terms in the second

refinement. We propose to address this by extending the modeleven further to distinguish

between statesadd/drop0 throughadd/dropn andsubmit0 throughsubmitn. Note that the

statesadd/dropn andsubmitn always summarize refinementsn and above.

A key question, then, is how largen should be. A good rule of thumb should be to

maken sufficiently large to simulate the original trace well, while avoiding overfitting

by distinguishing between session lengths that occur very rarely in the original trace. In

Chapter 6 we demonstrate how to apply this methodology and we will use the termRmax
to represent the maximumn.

4.4.2 Impact of Terms in Previous Query

The MC can be extended similarly to account for the terms in the previous query, to make

the model more accurate and avoid transitions such as dropping a term with an empty

query. In this case, e.g., stateadd/dropi,j refers to refinementi that started withj terms.

Note that the original query always starts without terms, soadd/drop0,j is not a valid state

for j > 0. The same methodology can be used to avoid overfitting to rarecases as for the

number of refinements. In Chapter 6 we use the termTmax to represent the maximum

j.

4.5 Improved Markov Chain

Our model does not distinguish between the actionsaddanddropwhich causes a problem

of dropping newly added terms, this can cause empty queries and an unnecessary work

being performed.

18 Towards Automatic Generation of Realistic Web Query Sequences

Figure 4.3: The improved basic Markov chain

The problems are better illustrated with the following example.

Example 3: Accuracy issues during generation of an action sequence

Consider the action sequence of Table 4.4. Note that this action sequence is not based on

the probability function from the previous example, but rather on a more generic proba-

bility function such as might arise with a very long and variedoriginal trace.

In the first query, a term is first added as is typically the case. Subsequently, however, the

same term is then dropped, resulting in an empty query being submitted. This sequence is

essentially the same as submitting directly from theinitial state, and would never appear

in the query trace; the probability of dropping a term in the initial query should be 0%,

which is different from the general case.

In the second query, a similar situation arises, where a newly added term is immediately

dropped. Since this is not the first query, however, dropping terms can indeed occur. What

should not occur, however, is the immediate removal of newly added terms.

Note that we have coded the generation such that newly added terms are only dropped

if there are no older terms, but we did not disallow dropping terms. A better solution

Valdís Sigurþórsdóttir 19

Figure 4.4: The Extended Markov chain model improved

is to split up theadd/dropstate into statesadd anddrop. This was discovered late in

the process and due to the tight timeframe, it was impossibleto run the full experiment

using this improved model. In this section we describe the improved model. We managed

to generate action sequences using the improved MC model andcompare them to the

formerly generated action sequences. These initial results indicate little difference from

the previously generated action sequences and should therefore not affect the final result.

The results and the comparison between action sequences will be discussed further in

Chapter 6.

Figure 4.3 shows how the stateadd/drophas been split into the statesadd and drop.

Performing any transition that points to the statedrop tells us that the user was dropping a

term. Note that transition from stateadd to statedrop is not available due to the fact that

we choose to drop terms first when user refines the search; as wedescribed earlier.

Figure 4.4 illustrates the same changes made to the refined model of Figure 4.2. Thedrop

state is not used in the initial query and therefore it shows up only on refinement level

one.

20 Towards Automatic Generation of Realistic Web Query Sequences

4.6 Summary

In summary, we initially presented a very simple MC for user behavior and presented a

methodology for learning the probability transition matrix P and using the MC to gener-

ate action sequences that simulate user search behavior. Wethen extended that model into

a two-dimensional array of states, which allow us to more accurately capture the evolu-

tion of the probability function during the query refinementprocess. At a later stage we

improved our model to capture the edit actions of users even better to prevent dropping

newly added terms and skip unnecessary work. So far, however, we have not created any

specific queries; we now turn to the actual term selection policies.

21

Chapter 5

Term Selection Policies

This chapter describes the second step of query sequence generation, namely term selec-

tion, where the actual terms toaddanddrop are chosen. The baseline policy israndom

selection(RN) where all terms have the equal probability of being added ordropped. As

with the probability function of the MC, however, we propose to analyze the properties of

the terms in the original trace and use those properties to select the terms of the generated

queries.

We propose three such policies: TheList Length(LL) policy uses information about the

length of the inverted list (how many documents a term can be found in) to guide the term

selection; TheAverage Relation(AR) policy uses the average similarity of a term to the

documents in the collection; and a combined policy (AL) which uses both the list length

and the average relation to select the terms.

A lexicon table consists of distinct row for each term found in a document collection.

Each row has information relevant to the term such as the listlength and in our case we

also store information about average relation. The lexiconpoints to an inverted index

which stores in which document the term is found in. Example 4shows what a lexicon

could look like for a small document collection.

Document Text (Cleaned and Stemmed)
1 require employee inform

supervisor inform
2 require
3 program employee certify require
4 program require

Table 5.1: Example document collection

22 Towards Automatic Generation of Realistic Web Query Sequences

Term LL AR ⌈AR⌉
require 4 1.x10−29 1
employee 2 0.39 1
inform 1 0.57 1
supervisor 1 0.29 1
certify 1 0.50 1
program 2 1.25 2

Table 5.2: Term information summary

Example 4: Lexicon table

Consider the document collection shown in Table 5.1, which will be used as a running

example in this chapter. As is typical in IR, the documents inthis figure have been cleaned

(HTML tags have been removed, as well as common words from a stoplist) and the terms

stemmed. Table 5.2 shows a lexicon table for this collection.The table includes the

inverted list length for each term, as well as the average relation (the calculation of the

average relation will be described in detail later in this chapter).

5.1 The List Length Policy

The length of the inverted list indicates how many documentsthe term occurs in, and

is thus a basic measure of how common the term is in the document collection. Ta-

ble 5.2 shows that most terms in our running example occur in one document, while one

term occurs in all four. Such skew is, in fact, common in real-life document collections;

Figure 5.1 shows the distribution of list length in the document collection used in our

experiments. The figure shows that many terms have low list length and few terms have

high list length. The collection is described further in Chapter 6.1.

In order to use the list length to guide the term selection process, we accumulate statistics

on the list length distribution in the original query trace,into a probability histogram.

A separate distribution is accumulated for each transitionin the MC. This distribution

is then used in the term selection process to choose terms. When adding a term using

a transition such asPr(Xn+1 = add/drop|Xn = initial) we have a list of terms (or a

list of specific characteristics of a term, in this caseLL) that have been added using that

transition, followed by a number of occurrences. We then useweighted random to choose

theLL we want to use. Finally a random term is chosen from the terms that fulfill the

criteria from the inverted index. Example 5 will explain theaddtransition.

Valdís Sigurþórsdóttir 23

1

10

100

1000

10000

100000

1e+06

1e+07

1 10 100 1000 10000 100000 1e+06

N
um

be
r

of
 te

rm
s

List length

Listlength

Figure 5.1: Inverted list length distribution

Example 5: Adding a term using LL policy

Consider the original query trace in Table 4.1. Furthermore,let us focus on the first

term selected in each user session, which is the transitionPr(Xn+1 = add/drop|Xn =

initial) (usingadd). This transition occurs three times in the query trace, andthe terms

selected are: “program”, “inform”, and “certify”. Turning to Table 5.2, we see that

“inform” and “certify” have list length of 1, while “program” has list length of 2. The

list length distribution, represented by (list length:count) pairs, is thus: (1:2); (2:1).

Turning to the example action sequence in Table 4.3, we see that the first action is indeed

to add a term from this distribution. We now have a 67% probability of choosing a term

with list length 1 (the candidates, according to Table 5.2 are“inform”, “supervisor” and

“certify”) and 33% probability of choosing a term with list length 2 (the candidates are

“employee” and “program”).

The first attempt to drop a term is a similar process as adding aterm, but the main differ-

ence is that we only have the terms in the current query to choose from and we can not

count on that we have a match. If there is no match to the analyzed distribution, a random

term from the current query is removed. Example 6 describes the drop process.

24 Towards Automatic Generation of Realistic Web Query Sequences

LLN LL2 LL1

1 1 1
8 8 8

10 10 10
12 12 10
16 16 20
92 92 90
96 96 100

112 110 100
1,154 1,200 1,000

Table 5.3: Examples of significant digit calculations

Example 6: Dropping a term

Using the original query trace in Table 4.1, we can see only onecase of the user dropping

a word. The user(3) has submitted the query "certify program"and needs to drop the term

“program”, before he adds “employee” and submits again. ThetransitionPr(Xn+1 =

add/drop|Xn = submit) (usingdrop) is used to drop the word. According to Table 5.2,

the word “program” has list length of 2 and therefore we try to use that to select a term to

drop. If none of the terms in the current query fits that criteria, a term is chosen randomly

from available terms.

When terms are added, we are guaranteed to find at least one termwith the selected list

length. For the shorter list lengths, however, many candidates exist and the term selection

is thus not restricted to the actual terms used in the original query trace. When terms are

dropped, on the other hand, it is not always possible to find a term with the selected list

length, since the selection is now restricted to the terms that are already in the query. In

this case, the term to drop is chosen at random.

When using a large collection, it is possible to overfit the distribution. Consider, for

example, a term that occurs in 4,376 documents. It is unlikely that any other term occurs in

that many documents, but there may be several terms that occur in 4,350–4,450 documents

and those terms should be equally relevant. In order to avoidoverfitting and to increase

the flexibility of the term selection process, we propose to vary the number ofsignificant

digits that are considered in each case.1 Table 5.3 shows examples of rounding the list

lengthLL to 2 or 1 significant digits, indicated byLL2 andLL1, respectively.

1 Significant digits are commonly used in physics to indicate the accuracy of measurement equipment.
The list length can indeed be said to be a measurement of frequency.

Valdís Sigurþórsdóttir 25

1

10

100

1000

10000

100000

1e+06

1e+07

1 10 100 1000 10000

N
um

be
r

of
 te

rm
s

Average relation

AverageRelation

Figure 5.2: Distribution of average relation

5.2 The Average Relation Policy

The list length policy does not take into account the fact that terms may occur multiple

times in some documents, which should affect the importanceof a term. If a term appears

in many documents, for example, we may assign little relevance to that term, whereas

a term that occurs rarely but often in a single document mightbe more important. We

propose to use the average relation of each termt to the whole document collection as

the basis of a term selection policy. The average relation (AR) is defined as the weighted

average of the partial similarities2 of all documentsd where termt is found:

ARt =
∑

d

wd,t

wd

(5.1)

wherewd =
∑

t wd,t represents the total similarity of each document to all terms.

2 For the definition of partial similarity, see Formula 2.1 on page 6 and the following text, but note that
wq,t is 1 in all cases.

26 Towards Automatic Generation of Realistic Web Query Sequences

Example 7: Adding a term using AR policy

Consider again the original query trace of Table 4.1 and focuson the first term selected

in each user session, which is the transitionPr(Xn+1 = add/drop|Xn = initial). This

transition occurs three times in the query trace, and the terms selected are: “program”,

“inform”, and “certify”. Turning to Table 5.2, we see that “inform” and “certify” have

average relation (rounded up) of 1, while “program” has average relation of 2. The aver-

age relation distribution is thus (average relation:count) pairs, is thus: (1:2); (2:1). When

selecting terms from this distribution, we therefore have a 67% probability of choosing a

term with average relation 1 (the candidates, according to Table 5.2 are “require”, “em-

ployee”, “inform”, “supervisor” and “certify”) and 33% probability of choosing a term

with average relation 2 (the candidate is only “program”).

For the document collection used in our experiments, the results of the average relation

calculation ranged from 0 to 9791.49. Figure 5.2 shows the distribution of the average

relation; as with list lenghts it is very skewed. It shows that many terms have low average

relation and few terms have high average relation. Since matching numbers with decimal

points is a slow process, the numbers were rounded up to wholeintegers to speed up the

term selection. As with the list length, we use 2 or 1 significant digits to avoid overfitting

and to increase the flexibility of the term selection process.

5.3 The Combined Policy

The combination of average relation and list length (AL) term selection policy is similar

to the previous policies, except that the probability distribution of terms is now a two-

dimensional histogram, rather than a single-dimensional histogram as in the case of the

LL and AR policies. We observe that there is a strong correlation between list length

and average relation (the correlation coefficient is about 90%; Figure 5.3 illustrates the

correlation betweenLL andAR) and the probability distribution is thus very skewed as

before. As with the other two policies, we use 2 or 1 significant digits to avoid overfitting

and to increase the flexibility of the term selection process.

5.4 Summary

We have proposed three policies for term selection, based oninverted list length (LL),

average relation to the document collection (AR), and a combination of the two (AL).

Valdís Sigurþórsdóttir 27

1

10

100

1000

10000

100000

1e+06

1 10 100 1000 10000

Li
st

 L
en

gt
h

Average Relation

Figure 5.3: Correlation between list length and average relation

Since the list length and average relation are highly correlated, however, all three policies

can be expected to give rather similar results.

We also experimented with a policy that used the relationship between individual terms

to guide the term selection. This would, of course, best match the term selection process

of actual users. Unfortunately, the preparation of the relationship statistics was projected

to take months given our limited computing resources, and thus such a policy is left for

future work.

28

29

Chapter 6

Experimental Evaluation

In this chapter, we study the quality and efficiency of our query generation methodol-

ogy. We start by describing the experimental environment (Section 6.1). Then we study

action sequence generation (Section 6.2) and finally evaluate the term selection policies

(Section 6.3). The evaluation is performed by comparing characteristics of the generated

query sequences to the original query trace that we intend tosimulate.

6.1 Experimental Environment

The experimental environment consists of a query trace and document collection, which

are used to generate statistics for the query generation. Furthermore, we developed a

simple search engine to gather metrics regarding basic performance parameters.

6.1.1 Query Trace

The query trace we used as a starting point in our query generation is a well-known query

log consisting of actual queries submitted to the web searchengineexcite.com in

2001. This query trace has been studied and analyzed in detail by other researchers (e.g.,

see (Spink, Jansen, Wolfram, & Saracevic, 2002; Spink, Wolfram, Jansen, & Saracevic,

2001)). The query trace consists of 1,025,910 queries submitted in 266,566 sessions.

The average session length (number of queries in a session) is thus about 3.8 queries; the

shortest session is a single query, while the longest session consists of exactly 100 queries.

The average number of terms in a query is about 2.1; the largest query contains 38 terms,

30 Towards Automatic Generation of Realistic Web Query Sequences

while about 9.3% of the queries contained no term (due to the cleaning process in almost

all cases).

6.1.2 Document Collection

The data collection used in this project is the WT10G (Web Track 10Gigabytes) dataset, a

widely used benchmark for information retrieval development and evaluation. The dataset

is distributed by CSIRO in Australia and was developed by a crawl of the web in 1997.

The document collection was cleaned from html-tags, email addresses, and all characters

other than English letters (a-z) and all terms were set to lower case and stemmed. After

this processing the document collection consist of 1,991,324 terms in 1,681,575 docu-

ments. The most common term ispage, which occurs 1,956,579 times in the collection,

while the termaccessis the most common within a single document, occurring 41,938

times in one particular document.

6.1.3 Metrics

To evaluate the quality of the action sequence generation, we created 30 sequences of

100,000 queries each, and compared the query size and session length distributions to

that of the original query trace. We define two parameters,RmaxandTmax, to account

for the size of the two-dimensional array ofadd/dropi,j andsubmiti,j states that distinguish

between statistics based on the refinements and number of terms at the start of the query.

We show how to select these parameters effectively.

To evaluate the quality of the term selection process, we generated actual queries from

each of these 30 sets using the four different term selectionpolicies (random,LL, AR, and

AL), as well as three variations of significant digits (unlimited, 2, and 1), for a total of 10

runs (the number of significant digits does not affect randomselection).

We then took the generated queries and ran them through our home-made search engine,

which kept track of the total list length of all terms in the query and the answers for the

query. The total list length indicates the basic processingcost of scanning the inverted

index, while the number of documents occurring in more than one term is a measure of

the similarity of the terms in the query; the more such documents, the more similar the

terms.

Valdís Sigurþórsdóttir 31

6.1.4 Software and Hardware

The software builds on a prototype developed by E. Þ. Böðvarsson (2006) and refined by

V. Berghreinsson (2007). The software was developed in Python, using numpy for the

numerical calculation, and SQLite database. The timed measurements were performed

on a Lenovo T61p laptop with 2 GB of RAM, an 2.40 GHz Intel Dual Core processor,

and 320 GB of local disk space. The operating system was Microsoft XP Professional

SP3.

6.2 Action Sequence Generation

The action sequence is a sequence of transitions that can be performed after each other,

an example of generated action sequence is shown in Table 4.3. Before analyzing the

quality and performance of the action sequence generation,it is necessary to set theTmax
andRmax parameters to avoid overfitting to rare cases. We ran multiple experiments,

where bothTmaxandRmaxwere varied from 0 to 10, and the performance analyzed for

different combinations. As described in Section 4.4 setting Tmax = 0 or Rmax = 0 is

not appropriate, but it does give us a baseline to compare to.

6.2.1 SelectingTmax

Figure 6.1 shows the impact of theTmaxparameter on the average number of terms in a

query and the corresponding standard deviation. Thex-axis shows the value ofTmax in

each case, while they-axis shows the average across all values of theRmaxparameter.

The values in each case are compared to the average number of queries and the corre-

sponding standard deviation from the original trace that weare trying to simulate. We

want to choose the parameter that is closest to the original trace. As the figure shows,

changingTmax from 0 to 2 affects the average number of terms significantly.Increasing

the parameter further does not affect the quality, since both the average number of terms

and standard deviation seems to stay stable. The standard deviation shows a similar effect.

Finally, the figure shows thatTmax = 2 gives the best fit in terms of both average and

standard deviation, and therefore we chose to use this valuein our experiments. Note that

theTmaxparameter does not affect the session length significantly.

32 Towards Automatic Generation of Realistic Web Query Sequences

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

T
er

m
s

pe
r

Q
ue

ry

T_max

Average: Original
Generated

Standard Dev: Original
Generated

Figure 6.1: Number of terms in queries, varyingTmax

6.2.2 SelectingRmax

Figure 6.2 shows the impact of theRmaxparameter on the average number of terms in

a query and the corresponding standard deviation. Thex-axis shows the value ofRmax
in each case, while they-axis shows the average across all values of theTmaxparameter.

The numbers are compared to the average number of terms and corresponding standard

deviation from the original trace that we want to imitate. Asthe figure shows, the average

is fairly stable across all values ofRmax. The standard deviation, on the other hand,

approaches that of the original trace asRmaxgrows. We chose to useRmax= 9, as only

8% of all queries occur in sessions longer than 9 queries. We also compared accumulated

distribution of number of queries andRmax= 9 was closest to the original query trace.

Note that theRmaxparameter does not affect the query size significantly.

A smaller set of comparable action sequences were generatedusing the improved MC

model described in Section 4.5. The results were nearly the same and the selection of

TmaxandRmaxwould be the same.

Valdís Sigurþórsdóttir 33

0

1

2

3

4

5

6

0 2 4 6 8 10

Q
ue

rie
s

pe
r

S
es

si
on

R_max

Average: Original
Generated

Standard Dev: Original
Generated

Figure 6.2: Number of queries in sessions, varyingRmax

6.2.3 Quality

Figure 6.3 shows the distribution of query sizes for the generated sequences compared

to the original trace. The two generated sequences were generated using two different

models, the MC model and the improved MC model. Thex-axis shows the number of

terms per query, while they-axis shows the proportion of queries that are of each size. All

traces were generated usingTmax= 2 andRmax= 9 as discussed above. As the figure

shows, the generated sequences match the original trace quite closely. The generated

sequences have sligthly more queries with only one term, butslightly fewer with no terms

and two terms. We observe also that the generated trace has fewer queries with very many

terms. Overall, however, as we saw in Figure 6.1, the difference between the generated

sequences and the original trace is very small.

Turning to the number of sessions, Figure 6.4 shows the distribution of session lengths

for the generated sequences compared to the original trace.Similar to the figure above,

two different models were used to generate the action sequences, the MC model and the

improved MC model. Thex-axis shows the number of queries in a session, while the

y-axis shows the proportion of a sessions that are of each length. The traces are generated

usingTmax= 2 andRmax= 9 as before. As the figure shows, the generated sequences

34 Towards Automatic Generation of Realistic Web Query Sequences

0 %

5 %

10 %

15 %

20 %

25 %

0 5 10 15 20 25 30 35 40

P
ro

po
rt

io
n

(%
)

Terms per Query

Original
Generated

Improved

Figure 6.3: Distribution of query sizes

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

40 %

45 %

0 20 40 60 80 100 120

P
ro

po
rt

io
n

(%
)

Queries per Session

Original
Generated

Improved

Figure 6.4: Distribution of session lengths

also match the original trace quite closely in terms of session lengths. The generated

sequences have sligthly fewer sessions with only one query,but slightly more with a few

queries. The improved model seems to generate a little longer sessions by average than

the former model. The longest generated session using MC is 97 queries and 113 using

the improved MC model, compared to 100 in the original trace.The 113 query session

seems to be a extreme case, because looking at the data, a common maximum size is

75-80 queries. The session length does not affect the results of list length and answers.

Overall, however, as we saw in Figure 6.2, the difference is negligible.

6.2.4 Time

Analysis of the million query trace takes around 30 seconds.It then takes approximately

three seconds to generate an action sequence that consists of 100,000 queries.

Valdís Sigurþórsdóttir 35

100 %

101 %

102 %

103 %

104 %

A
ve

ra
ge

 L
is

t L
en

gt
h

(%
)

Policies

LL(N) LL(2) LL(1) AR(N) AR(2) AR(1) AL(N) AL(2) AL(1)

Figure 6.5: Average list length for each query

6.3 Term selection

We have seen that the action sequences match the original trace quite closely. We now

evaluate the quality of the term selection policies, by comparing them to the original query

trace. The home-made search engine processes all the queries in each sequence (or trace)

and captures performance metrics such as the total list length per query, and the number

of answers per query.

Note that, unsurprisingly, random selection of terms performs extremely poorly; due to

the skew of the list length distribution, the average list length of random queries is only

about 0.22% of the average list length of the original trace.More than half of the terms

have a list length of less than three and are therefore likelyto be chosen half the time with

the random policy. In real life, however, such terms are selected much more rarely. As

a result, we do not consider random term selection further, but focus instead on the three

proposed policies:LL, AR, andAL.

36 Towards Automatic Generation of Realistic Web Query Sequences

100 %

102 %

104 %

106 %

108 %

110 %

A
ve

ra
ge

 A
ns

w
er

s
(%

)

Policies

LL(N) LL(2) LL(1) AR(N) AR(2) AR(1) AL(N) AL(2) AL(1)

Figure 6.6: Average number of answers to each query

6.3.1 Quality

Consider first the total list length of all the terms in each query. This metric captures the

work done to read all inverted lists, regardless of whether they are stored in memory or on

disk. All policies have slightly longer inverted lists thanthe original trace, so Figure 6.5

shows the average list length as the percentage of the original trace (set to 100%). For

each of the three policies, the impact of the number of significant digits is also shown. As

the figure shows, all variations yield an average list lengthwhich is within a 4% difference

from the original trace, and most are within 2%. For this metric, LL2 andAL2 are the best

policies by a small margin.

Turning to the relationship between query terms, Figure 6.6shows the average number of

answers (distinct documents) found relative to the original trace. This metrics is relatively

worse than the list length metric, because terms that actualusers enter in the same query

are typically more related. The difference, however, is still only 6–8%. For this metric

also,LL2, AR1 andAL2 are the best policies by a small margin.

Valdís Sigurþórsdóttir 37

100 %

110 %

120 %

130 %

140 %

D
is

tin
ct

 T
er

m
s

at
 1

00
,0

00
 (

%
)

Policies

LL(N) LL(2) LL(1) AR(N) AR(2) AR(1) AL(N) AL(2) AL(1)

Figure 6.7: Distinct terms in 100,000 query sequences

6.3.2 Number of Distinct Terms

Figure 6.7 shows the number of distinct terms used in the 100,00 queries of the generated

sequences, relative to the first 100,000 queries from the original trace. This is a metric

that may affect buffer management significantly. All policies return a significantly greater

variety of terms than the original trace. This was to be expected, since the choice is

only guided by numerical values rather than semantics. The advantage of the generated

sequences is that they are not restricted by the terms of the original trace and will thus

exercise buffer management policies. TheALN policy is the most similar to the original

trace, as it has the tightest restrictions on the term selection.

Figure 6.8 analyses the number of distinct terms in the querysequences over a longer

period. For this figure, we generated sequences of 1,000,000queries and compared to the

original trace. Thex-axis shows the number of queries in the sequence, and they-axis

shows the ratio of distinct terms compared to the original trace. The figure focuses on

two significant digits, but the results are similar for the other cases. As Figure 6.8 shows,

the number of distinct terms is similar for the very first queries, and then diverges quickly

and evenly from the original.

38 Towards Automatic Generation of Realistic Web Query Sequences

100 %

110 %

120 %

130 %

140 %

150 %

160 %

170 %

0 100

200

300

400

500

600

700

800

900

1000

D
is

tin
ct

 T
er

m
s

(%
)

Sequence Length (thousands)

LL(2)
AR(2)
AL(2)

Figure 6.8: Distinct terms in query sequences

6.3.3 Time

Turning to the efficiency of the query generation, Figure 6.9illustrates the time in seconds

that it takes to select terms into 100,000 queries using different policies and significant

digit variations. For detailed analysis, the time is split into four categories of work: a) the

time to load the term table (about two million entries); b) the time to load the statistics

used for term selection; c) the time to actually generate thequeries; and d) the time to

write the queries to disk. In the fastest methods, the majority of the time is spent on

loading data into memory. In the slower methods more time is spent on the actual term

selection, because the statistical data is much more complicated. The time is, in general,

acceptable but theAL policies are the slowest.

6.4 Discussion

The term selection policies all return rather similar results. Most of our methods generate

100,000 queries in less than 50 seconds. The policiesLL2, AR1 andAL yield average

list length of 2% or less above the original trace. TheAL policy is closest to the original

Valdís Sigurþórsdóttir 39

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

T
im

e
in

 s
ec

on
ds

Policies
LL(N) LL(2) LL(1) AR(N) AR(2) AR(1) AL(N) AL(2) AL(1)

Load Term
Load Analysis

Generation
Write

Figure 6.9: Generation time for 100,000 queries

trace in the number of distinct terms but it is also the slowest. TheLL2 policy is fast and

appears to be the best option.

40

41

Chapter 7

Conclusion

We have argued that there is a dire need for a methodology to generate extremely long

sequences of realistic queries, in particular for the general academic that does not have ac-

cess to long search engine traces. The generated query sequences need not necessarily to

be realistic in the sense that all the queries would make sense for actual users. Instead, it is

more important that the overall characteristics of the queries exercise the query processing

engine in a realistic manner, thus resulting in meaningful performance results.

In this thesis, we have proposed a novel methodology for analyzing user behavior patterns

of the available short search engine traces, and using thosebehavior patterns to generate

extensive query sequences in order to simulate actual search engine users. We have also

described three different methods to select the actual terms of the generated queries. The

terms are chosen with an aim towards delivering the same query characteristics as in the

original traces and towards requiring a similar effort froma search engine. In a detailed

performance study, we have showed that our methodology is able to simulate the original

trace quite well, both in terms of user behavior patterns andin terms of basic search engine

performance metrics.

The methodology does not currently capture all aspects of human behavior. More work

is required, for example, to accurately emphasize the post-processing effort of various

search engines, such as page ranking, and to simulate the temporal drift of attention be-

tween hot topics of the day. Many search engines allow proximity operators, which our

methodology does not yet support. Implementing a term selection policy that takes into

account term-to-term similarity would also be an importantdirection.

An interesting extension to our model would be to simulate different types of users. A

model could be created for each type of users and during the generation, the models

could be used to create different query sequences that couldthen be merged into one.

42 Towards Automatic Generation of Realistic Web Query Sequences

The different models could consist of both different probility of actions and also different

term selection policies. The timing of the queries is also animportant part of buffer

management, as many queries may be submitted at the same timefrom many different

users. Time could be added to the generated sequences by maintaining statistics about

query intervals from the original trace. By combining different models for different users,

and generating queries from different models in the appropriate proportions and with the

appropriate interval distributions, very complex situations could be simulated using the

same simple methodology. The most difficult aspect, in fact,will be discovering and

separating the different classes of users.

We therefore believe that our query generation methodologyproposed in this thesis can

serve as a solid foundation for query generation for large-scale query processing studies.

Researchers at the large search engine companies could, for example, tune a query gener-

ation engine to match the characteristics of their users andopen the generation software

to the general academic, rather than the actual query traces.

43

Bibliography

Baeza-Yates, R. A., & Ribeiro-Neto, B. (1999).Modern information retrieval. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Beitzel, S. M., Jensen, E. C., Chowdhury, A., Grossman, D., & Frieder, O. (2004). Hourly

analysis of a very large topically categorized web query log. In Proceedings of the

27th annual international ACM SIGIR conference on research and development in

information retrieval(p. 321 - 328). Sheffield, United Kingdom.

Berghreinsson, V. (2007).Bætt afköst við gerð hermifyrirspurna[Improved performance,

during generation of simulated queries]. B.Sc. Thesis. Reykjavik University, Reyk-

javik, Iceland.

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search

engine. InProceedings of the 7th World Wide Web conference (WWW7)(p. 107 -

117). Brisbane, Australia.

Böðvarsson, E. T. (2006).The WWG Software Library for Web Workload Generation.

B.Sc. Thesis. Reykjavik University, Reykjavik, Iceland.

Comscore.com. (2011). [Webpage].http://www.comscore.com/Press_Ev-

ents/Press_Releases/2011/3/comScore_Releases_February_-

2011_U.S._Search_Engine_Rankings.

Fidel, R. (1991). Searchers’ selection of search keys: III. Searching styles.Journal of the

American Society of Information Science (JASIS), 42(7), 515–527.

Jansen, B. J. (2006). Search log analysis: What it is, what’s been done, how to do it.

Library & Information Science Research, 28(3), 407 - 432.

Jansen, B. J., Booth, D. L., & Spink, A. (2008). Determining theinformational, naviga-

tional, and transactional intent of web queries.Information Processing & Manage-

ment, 44(3), 1251 - 1266.

Jansen, B. J., & Spink, A. (2006). How are we searching the world wide web?: a compari-

son of nine search engine transaction logs.Information Processing & Management:

an International Journal - Special issue: Formal methods for information retrieval

archive, 42(1), 248–263.

44 Towards Automatic Generation of Realistic Web Query Sequences

Jansen, B. J., Spink, A., & Saracevic, T. (2000). Real life, real users, and real needs: A

study and analysis of user queries on the web.Information Processing & Manage-

ment, 36(2), 207–227.

Kleinberg, J. (1998). Authoritative sources in a hyperlinked environment. InProceedings

of the ninth annual ACM-SIAM symposium on discrete algorithms (p. 668 - 677).

San Francisco, CA, USA.

Koenemann, J., Quatrain, R., Cool, C., & Belkin, N. (1994). New tools and old habits:

The interactive searching behavior of expert online searchers using INQUERY. In

Proceedings of the third TExt Retrieval Conference (TREC-3).Gaithersburg, MD,

USA.

Luhn, H. P. (1957). A statistical approach to mechanized encoding and searching of

literary information.IBM Journal of Research and Development, 1(4), 309–317.

Ozmutlu, H. C., Spink, A., & Ozmutlu, S. (2002). Analysis of large data logs: an

application of poisson sampling on excite web queries.Information Processing &

Management, 38(4), 473–490.

Rose, D. E., & Levinson, D. (2004). Understanding user goals in web search. InPro-

ceedings of the 13th international conference on World WideWeb (WWW’04)(pp.

13–19). New York, NY, USA.

Silverstein, C., Marais, H., Henzinger, M., & Moricz, M. (1999). Analysis of a very large

web search engine query log.SIGIR Forum, 33(1), 6–12.

Singhal, A. (2001). Modern information retrieval: a brief overview. Bulletin of the IEEE

Computer Society Technical Commitee on Data Engineering, 24(4), 35–43.

Spink, A., Jansen, B. J., Wolfram, D., & Saracevic, T. (2002).From e-sex to e-commerce:

Web search changes.Computer, 35(3), 107-109.

Spink, A., Wolfram, D., Jansen, B. J., & Saracevic, T. (2001).Searching the Web: The

Public and Their Queries.Journal of the American Society for Information Science

and Technology (JASIST), 52(3), 226–234.

Tomasic, A., & Garcia-Molina, H. (1993). Query processing and inverted indices in

shared-nothing document information retrieval systems.The VLDB Journal, 2(3),

243–275.

Tryggvason, E. (2002).Workload Generation.B.Sc. Thesis. Reykjavik University,

Reykjavik, Iceland.

Zhang, Y., Jansen, B. J., & Spink, A. (2009). Time series analysis of a Web search engine

transaction log.Information Processing & Management, 45(2), 230–245.

School of Computer Science
Reykjavík University
Menntavegi 1
101 Reykjavík, Iceland
Tel. +354 599 6200
Fax +354 599 6201
www.reykjavikuniversity.is
ISSN 1670-8539

