DYNAMIC PLANNING FOR AGENTS IN
GAMES USING SOCIAL NORMS AND
EMOTIONS

Palli R brainsson

Master of Science
Computer Science

April 2011

School of Computer Science
Reykjavik University

M.Sc. RESEARCH THESIS

ISSN 1670-8539

4 N
Yik ywd

Dynamic Planning for Agents in Games using Social
Norms and Emotions
by

Palli R Prainsson

Research thesis submitted to the School of Computer Science
at Reykjavik University in partial fulfillment of
the requirements for the degree of
Master of Science in Computer Science

April 2011

Research Thesis Committee:

Dr. Hannes Hogni Vilhjdlmsson, Supervisor
Associate Professor, Reykjavik University, Iceland

Dr. Ari Kristinn Jonsson
President, Reykjavik University, Iceland

Dr. Stacy Marsella
Associate Director for Social Simulation Research, Institute for
Creative Technologies, USC, USA

Copyright
Palli R Priinsson
April 2011

Dynamic Planning for Agents in Games using Social Norms and
Emotions

Palli R Prainsson

April 2011

Abstract

As environments in games have become more and more realistic graphically,
a new big challenge has emerged for gaming companies. Both the computer
controlled agents and player controlled avatars now also need to act in a be-
lievable manner so that the illusion of reality created by exquisite graphics
and physics is not broken. There is a requirement for agents to react to the
environment around them as well as to act in a certain manner when intro-
duced to social situations. For agents to be life-like they need to have basic
human traits like emotions and the ability to make decisions. In this thesis we
describe a way of tackling this challenge using a three pronged solution. We
have incorporated a social norms model into the agents using social rules.
These rules tell the agents how to act when engaged in social situations.
Secondly we added an emotional model which affects the agents’ emotional
state and gives them the ability to vary their responses to situations in the en-
vironment. Both these models reside in an appraisal module that is based on
emotional appraisal theory. The appraisal module will appraise how events
triggered in the environment affect the agents both emotionally and socially
and will give the agent instructions on how he might cope with that situa-
tion. To complete the cycle a planner will make the decisions on what can
be done, what should be done and how it should be done. The resulting sys-
tem provides the illusion that the agents are life-like individuals that can act
differently to similar situations depending on what they think is important to
them at that time.

Kvik aztlanagerd fyrir vitverur i leikjaumhverfi, sem byggir a
félagslegum venjum og tilfinningum

Palli R Prainsson

04 2011

Utdrattur

.....

skapad stort askorun fyrir tolvuleikja framleidendur. Nu purfa bedi tolvustyrdar
vitverur og verur stjérnadar af leikmonnum ad haga sér 4 trdanlegan mata svo
ad ymindadur raunveruleikinn sem storkostleg grafik hefur buid til brotni
ekki. Pad er skilyrdi ad vitverur bregdist vid umhvervinu sem par eru i,
asamt pvi ad haga sér 4 dkvedinn maéta 1 félagslegum adstedum. Til ad blasa
vitverur lifi purfa par ad hafa grunn mannlega eiginleika eins og tilfinnigar
og getu til ad taka dkvardanir. { pessari ritgerd munum vid Iysa hvernig haegt
er ad takast 4 vid pessa dskorun med priskiptri lausn. Vid inleiddum likan
af félagslegum hegdumun { vitverurnar med notkun félagslegra reglna. Pes-
sar reglur segja vitverunni hvernig hin 4 ad bregdast vid pegar hin adili ad
félagslegum adsetdum. [60ru lagi pa baettum vid vid tilfinningalegu likani
sem hefur dhrif 4 tilfinningalegt dstand vitverunar og veitir henni moguleikan
4 ad bregdast mismunandi vid peim adsteedum sem hun lendir 1 { umhverfinu.
B®di pessi 1ikon eru hluti af mats einingu sem byggir 4 tilfinningarlegri
mats kenningu. Mats einingin mun meta hvernig atburdir sem eiga sér stad
i umhverfinu hafa ahrif 4 vitverur b&4di tilfinningalega og félagslega og mun
gefa vitverum leidbeiningar um hvernig par geta brugdist vid pvi dstandi
sem per eru i. Til ad loka hringnum mun &kvardanna eining taka dkvardanir
um hvad er haegt ad gera, hvad @tti ad gera og hvernig pad er gert. Petta kerfi
gefur pa imynd ad vitverurnar eru lifandi einstaklingar sen geta hagad sér 4
mismunandi hatt vid svipadar adstedur eftir pvi hvad peir lita 4 ad sé peim
mikilvegt 4 peim tima.

Acknowledgements

This thesis is supported by the Humanoid Agents in Social Game Environments Grant of

Excellence from The Icelandic Research Fund

I want to thank Dr. Hannes Hogni Vilhjldlmsson my supervisor for his patience and
help, without it this thesis would probably still be ongoing and Arnkell Logi Péturson for
all his work along side me on this project as well as the other members of the CADIA

team.

vi

vii

Contents

List of Figures ix
List of Tables X
1 Introduction 1
I.1 Motivation e e e e 1

1.2 Humanoid Agents in Social Game Environments 3

1.3 Problem Statement 4

1.4 Outline of the Proposed Approach 6

2 Related Work 9
2.1 Cultureand Social Norms 9
2.1.1 CADIAPopulus 10

2.2 EmotionalModels 12
221 EMA . .. 13

23 Planning 14
231 Jadex 15

24 Summary e e e e e e e e e 16

3 Approach 17
3.1 Virtual Environment L o 18

3.2 Appraisal . ..o 21

33 Planning 24

34 Summary . .o .. e e e 27

4 Implementation 29
4.1 SharedModules 29
4.1.1 Launcher 29

412 PowerLoom 30

4.1.3 Communication v v v v v e e 31

viii

414 Utilities L e
4.1.5 DataClasses v v v i ittt e
4.1.6 Parsers e
42 CADIAPopulus. e
43 AppraisalModule L Lo
4.3.1 Social and Emotionalrules
44 PlannerModule
44.1 Beliefs
4472 Goals e
443 Plansand Operators
Results
5.1 Believability
S.1.1 Testscenarios v v v e e e e e e e
5.1.2 Informal User Evaluation
5.2 System architecture and performance
5.2.1 Architecture.
5.2.2 Performance

Conclusion and Future work

6.1 Contributions e
6.2 Limitations and Future work
6.3 Conclusion e,

Bibliography

49
49
50
53
54
54
55

59
59
60
61

63

ix

List of Figures

1.1
1.2

2.1

3.1
32
33
34
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

5.1
5.2

The layered architecture for intelligent animated characters 3
The event cycle for Social Planning Agents. 7
Agents in CADIA Populus in a conversation. 11
Overview of the system architecture 18
CADIA Populus perception system 19
CADIA Populus command menu interface 20
The cognitive-motivational-emotive system of Smith and Lazarus 21
The Jadex architecture Lo 24
Example of a setup properties file for the system 30
A few PowerLLoom concepts, relations and functionsused 30
PowerLoom class diagram, . 32
The Protocol Buffers messages DataTransfer and DataRequest 33
Communication layer class diagram 33
Utilities classdiagram, 34
Examples from the systems logfile 35
Dataclassdiagram L L 35
Example of arule from XML file 37
CADIA Populus class diagram 38
Appraisal module class diagramo 40
Another example of a rule from XML file 42
Planner module class diagram 43
Beliefs from a Jadex agent XML 44
Goals fromaJadexagent XML 45
Plans from a Jadex agent XML 47
Start conversation scenario in CADIA Populus 50
Order drink scenario in CADIA Populus 51

xi

List of Tables

5.1
5.2
53
54

Rule parsing and evaluation time measurements 56
Inserting and retrieving agent position from knowledge base measurements 56
Inserting chunks of data to the knowledge base measurements 56

Sending and receiving data through a socket connection 57

Xii

Chapter 1

Introduction

1.1 Motivation

In recent years, thanks to wide spread high speed broadband Internet connections, more
and more people go online for entertainment as well as social interaction with other peo-
ple. Huge gaming environments, whether they are a massive multiplayer online role play-
ing game (MMORPG) like World of Warcraft! or a social environment like Second Life?,
are rapidly becoming one of the biggest form of mass entertainment. In these environ-
ments players interact with the world and other players as well as non-playing characters
(NPC) by controlling their own human like avatar. Even though they look like real hu-
man beings there is something very important missing. They do not act or behave in a
believable manner, were believable is how a user expects agents to behave depending on
the situation or environment they are in. The avatars might look and dress different but
in the end they all share the same limited behaviour and when game environments and
avatars look as good as they currently do, a life-less carbon copy avatar sticks out like a

sore thumb.

In fairness some games allow the players to give their avatar commands to look more
believable, for example to smile, frown or wave goodbye, but a small set of actions does
not help much in making the avatars look more human like. Lot of human behaviours
also happen unconsciously and a player should not be taxed with having to micro manage
behaviours that he is not even thinking about. Instead we can use Al to appraise a situ-
ation, come up with a plan to handle it and try not to be socially inept while performing
it on behalf of the user. Game companies have tried to incorporate agents with emotions

U http://www.worldofwarcraft.com
2 http://secondlife.com/

2 Dynamic Planning for Agents in Games using Social Norms and Emotions

and personality into their games but that is almost always scripted or written for a specific
scenario which becomes quite repetitive or out of place when agents do not consistently

act in a believable manner in an interactive situation.

What is needed to make an avatar come to life is to use automation to create a convincing
illusion of life, to make the avatar appear like they have a life of their own. To achieve this
an avatar has to have what every human has: A personality as well as the ability to feel
and think independently. Even though personality is what makes us different from other
persons, we must balance that with the expressive behaviours that are inherited patterns or
social norms of the society we live in. To create believable avatars they need to react to the
game environment not only depending on their unique personality but also according to
the social rules that govern the game world. An avatar must not only act correctly in social
situations, he must also be able to expect that other agents respond appropriately to his
social actions and appraise and respond to the situation if they do not. These social rules
and behaviours provide important visual cues to what is going on and are very important

tools for interpreting a social situation within the game.

Another big aspect of being human are emotions and the ability to display them. An avatar
showing no emotional responses to events will seem lacking an inner life. Emotions are
not only used for aesthetic purposes as emotions can affect people’s reasoning process and
therefore if they are missing, actions may seem out of character. Consistent behaviour of
avatars is very important so that the player can relate to the avatar and even establish an
emotional relationship with it. The player should be able to put him self in the avatars
shoes and feel happy when the avatar is happy and that is not possible without a clear
display of emotions even though they might be exaggerated for visual purposes. Cartoon
animators have been using emotions for years to help people relate to things that they

would not relate to otherwise like cars, ants and robots.

For the remainder of this thesis we will make no distinction between NPCs and avatars
under partial control of players unless explicitly noted. Both kinds of characters suffer
from lack of life-like emotional and social reaction to the environment. Let’s assume that
at all levels of control we are dealing with an agent with some autonomy of behaviour as
explained in (Vilhjalmsson, 2004).

Palli R Prainsson 3

1.2 Humanoid Agents in Social Game Environments

This thesis is a part of a larger collaborative effort between CCP Games Inc.3, a major
Icelandic game developer, and the CADIA research laboratory at Reykjavik University*,
which is funded by a grant from the Icelandic Research Fund, called Humanoid Agents
in Social Game Environments (HASGE).

9, Scenario Engine
Game and scenanio directives from game designers
INTERFACE: Game Director Scripting

8. Avatar Engine (and Interface)

Player character interface and action selection

7. Existential Engine ¢

Character goals, drives and deliberative high level action selection

INTERFACE: High-Level Function Markup Langnage + FML Seripting
6. Functional Engine

Social / Interpersonal Social Interaction Planning, Social Rules

Task / Gameplay Behavior Planning, Gameplay Rules

(And other specialized finctionality)

INTERFACE: Low-Level Function Mackup Language + FML Scopting
5. Behavior Engine

Mapping from functional deseription to behavior descripion and behavior seript ezecntor -

INTERFACE: Behavior Markup Langnage + Customuzed Motion Scupts
4, Motion Engine
Motion controllers and motion scupt executors
INTERFACE: Standard 3D Body Specification + Customized Sensors
3. Body Model

Character articulated skeleton, mesh and skin definition with new sensor information

INTERFACE: Standard Scene Graph API + Customized Perceptual Events
2, Scene Manager

Representation and transformation of world geometry and sounds

INTERFACE: Standard 3D Rendeang API
1. Rendering Engine

Rendering of graphics primitives onto the screen

Figure 1.1: The layered architecture for intelligent animated characters as proposed in the
HASGE project.

The overall goal of the HASGE project is to develop methods in Al and real-time char-
acter animation to render a fully interactive game environment where both NPCs and
avatars exhibit a level of autonomy that makes them appear fully reactive to the social
environment they are in. Doing this in both more believable and more engaging way than
anything else that has been done before. The focus is on behaviours that underlie social

interaction because it is the cornerstone of online community and yet also one of the least

3 http://www.ccpgames.com/
4 http://cadia.ru.is/

4 Dynamic Planning for Agents in Games using Social Norms and Emotions

developed aspects of games today. Avatars are under the control of the player, but will
also exhibit a level of autonomy that makes them appear fully reactive to the environment
they are in. Mixed in with the player avatars there are fully computer controlled NPCs
that have high level goals of their own and can interact with players to achieve them. Also
other autonomous NPCs will populate the area, going about their business to bring the

environment to life.

The realization of an intelligent animated character can be accomplished with a software
framework where the first layers are responsible for getting moving images on the screen
and the higher layers are responsible for making those images do something sensible.
In a way, one could imagine the intelligence spread across all the layers, with a higher
concentration at the top. The software framework proposed in the HASGE project is

shown in figure 1.1.

The work presented by this thesis is two-fold, one part deals with introducing a continuous
planning engine for a dynamic social gaming environment (supporting layers 5-7 in the
image above) and the other introduces modelling of emotions and social norms for the

agents that create relevant goals used by the planner (layer 6).

1.3 Problem Statement

CCP is working on introducing to their MMORPG Eve Online’ the possibility for their
players to dock at and enter space stations so the player can walk around and interact with
other players and NPCs. For that new gaming experience to compare favorably to their

existing game world they need their agents to behave in a believable manner.

For a behaviour to be reasonable, it must be oriented towards achieving the agent’s goal
while taking into account the dynamic environment. Note that the goals differ from one
control level to another. At the highest level, in NPCs, these may be very high-level goals
that require a long time to achieve, such as acquiring certain information or try to get
people to perform quests to help them fulfill their goals. In contrast, at the lowest level
the goals may simply be to reach a location or get some other agent’s attention. For a
agent to work towards achieving its goals, it must be able to plan out a series of steps
and then execute those. This problem is made more complex by the constant creation of
new goals, rapid changes in the environment and various dynamic constraints on possible
steps. Furthermore, the problem cannot be adequately solved up-front, as the situations

can vary too greatly to enumerate all possibilities or define a sensible strategy that works

3 http://eveonline.com/

Palli R Prainsson 5

well in all different situations. Reasonable behavior and decision-making relies on solving
the problem of being able to make goal-oriented decisions, executing those and adjusting
them as needed in a dynamic environment, against a changing set of complex constraints.
In addition, this needs to be done sufficiently fast so that agent behaviour does not slow
or halt.

When an agent has a specific social goal in mind, such as saying "hello" to a friend,
there are a number of social actions that have to be performed before the goal has a
chance of being reached. The particular break-down of actions depends greatly on the
social situation at hand, including both relatively static information such as social norms,
to much more dynamic information such as when the planned recipient of a greeting is
moving away. Games frequently deal with some level of planning, but most of the effort
revolves around offensive tactics where the goal is the elimination of enemies. Very little
has been done in helping agents in a game to be more effective planners socially. This
thesis models a dynamic social environment, including possible actions and changing
constraints, and feeds it to a planning engine for rapidly generating reasonably believable

sequences of social behaviour.

Another thing that the agents must do is to be able to appraise the situations they find
themselves in and act accordingly, and if they find themselves in a situations where things
are not going according to plan they must be able to cope with it somehow. Here emotions
play a large part since he may respond differently based on how the situation affects
him emotionally. For example he might just accept the situation and drop the goal, try
to recover from the situation by figuring out a new plan or even just enter a state of
denial where he lessens the importance the situation has on his goal. While a lot of work
has been done in the field of emotional modelling, as will be discussed later, most of it
has been used in conversational situations between agents and humans, typically in an
immobile environment where the player has limited control of the situation and not in

highly dynamic massive multiplayer game environments.
This leaves us with the following question:

How can an agent in a massive multiplayer game environment be continuously guided by
social norms and emotions to produce a natural sequence of behaviours and actions that

are consistent with both societal and individual traits?

6 Dynamic Planning for Agents in Games using Social Norms and Emotions

1.4 Outline of the Proposed Approach

For modelling emotions and social norms in NPCs and avatars, they need to be aware
of their surroundings and more importantly the social situation they are engaged in and
behave according to it. The proposed solution involves building on previous work done in
CADIA Populus (Pedica & Vilhjdlmsson, 2009), which introduced a virtual environment
where agents are powered by territorial awareness and use reactive behaviours in social
interactions. To fulfill the need of continuous planning for behaviours that go beyond
the simple reactive behaviours of CADIA Populus, we integrate a Belief-Desire-Intention
(BDI) system, called JADEX (Pokahr, Braubach, & Lamersdorf, 2005b), with a planning
engine, into CADIA Populus. The BDI model is a two step process that first uses an
agent’s current situation (beliefs) to select which set of goals (desires) should be pursued
and then how an agent builds a plan (intentions) by employing the means at his disposal

to achieve those goals.

A model of social norms and emotions, heavily influenced by the work done in EMA
(Marsella & Gratch, 2009) which provides a general framework of appraisal and coping
as reasoning components for believable autonomous agents, will be used to appraise sit-
uations and events that occur in the virtual environment and subsequently provide goals

for the agents so they can act in a manner consistent with the situation.

Even though a lot of work has been done in the fields touched on in this thesis, it is non-
trivial to integrate them and get them to work in harmony in the dynamic environment
so they do not provide contradicting behaviours and therefore damage the believability of
the system. Another big challenge is the fact that the players still have a lot of control

over what the avatar does and actions he might take could be considered faux pas.
To summarize:

Our goal is to create a system where agents must be able to personally appraise and react
to situations around them, figure out what needs to be done to achieve their goals by
creating plans and to be able to dynamically alter those plans if needed. The agents must
also be able to follow the social rules of the scenario or context they are in and finally
they must have emotions as they play a big part in creating unique personalities as well

as influence decisions.

The architecture proposed in this thesis is based on a cycle (figure 1.2) where events
that occur in the virtual environment, in this case CADIA Populus, trigger an appraisal
module. The appraisal module uses its modelling of emotions and social norms to create

suggestions in response to the events. The appraisal module’s suggestions are then de-

Palli R Prainsson 7

~ Actions

Virtual

. Planner
Environment

&
2 &
% $
(]
Cgb

Appraisal Module

Figure 1.2: The event cycle for Social Planning Agents.

liberated over by a planner. The planner creates a plan containing the actions needed to
respond appropriately to the event that started the process. Those actions are then played
out in the virtual environment to complete the cycle. The architecture will be described

in more details in later chapters.

Chapter 2

Related Work

The goal of this thesis is to create believable behaviours for agents in a social environment
by adding social norms and emotions to Claudio Pedica’s work, CADIA Populus (Pedica,
2009), as well as introducing a continuous planner to it. In this chapter earlier work will
be reviewed which provides an important theoretical background. In the first section we
present a brief overview of systems using behaviours controlled by social norms or culture
and in the next section we will look into emotional models and systems using them. In
the third section we review a few planning systems. All three sections will contain a
subsection that reviews key aspects of the systems or models considered most influential

to the work done in this thesis.

2.1 Culture and Social Norms

For agents to act believable in groups or in a crowd of people they have to be able to
follow certain social norms as well as to perceive the people around them and respond to
their behaviour accordingly. Social norms can vary from small details like how to take
turn in a conversation to where and when to sit at a dinner party. Social norms can vary
between cultures, a social act in one culture can be considered rude in others or even have
opposite meaning, for example in Bulgaria nodding ones head is a show of disagreement

while in most other European countries it is meant as a sign of agreement.

Social norms have been an interest to the Intelligent Virtual Agent (IVA) community for
a while. Lot of the work has focused on behaviours in conversations like turn-taking and
spontaneous gesturing (Thorisson, 1999; Cassell, Bickmore, Campbell, Vilhjalmsson, &
Yan, 2001). In Thespian (Si, Marsella, & Pynadath, 2006) characters try to follow social

10 Dynamic Planning for Agents in Games using Social Norms and Emotions

norms to have meaningful conversations, taking turns and keep the conversations flow-
ing. Social norms are modelled as goals which the characters will try to achieve or follow
and therefore the characters can violate those social norm goals if other more pressing
goals interfere. As well as having automatically generated turn-taking behaviours Body-
Chat (Vilhjalmsson, 1997) introduced communicative signals like salutation or greetings
where the avatar indicates he would like to engage in a conversation with another avatar.
BodyChat also provided a setting so that if the person was not interested in having a
chat the avatar would automatically start reactive avoidance behaviours if another avatar

showed intentions to interact with him.

People have different personalities and different roles and even behave differently in cer-
tain situations and Demeanour proposes the use of multiple profiles for each autonomous
agent (Gillies & Ballin, 2004). Each agent has a main profile, where all the main charac-
teristics are defined, and three types of sub-profiles (person, role and situation) to handle
different social situations. When a sub-profile is loaded it overrides the settings of other

profiles.

A person’s background or culture has a major influence on interactions between people,
and as mentioned above different cultures have different social norms. Differences in
cultures have been studied for a long time by anthropologists and behavioural scientists.
Geert Hofstede’s idea of five dimensions of culture (Hofstede, 2001) has been used to
construct a culture agent architecture (Mascarenhas, Dias, Enz, & Paiva, 2009) in which

agents behave according to their cultural context and status amongst the group.

2.1.1 CADIA Populus

CADIA Populus is a simulation platform for social game environments developed at the
CADIA laboratory at Reykjavik University. CADIA Populus provides an environment
with animated agents that can move around, using steering behaviours that can be acti-
vated and deactivated, and start chatting with other agents. The agents are also able to
perceive their environment using low-level visual perception and high-level social per-
ception, which provides information regarding the social environment like how many
individuals are within personal distance according to Hall’s Proxemics Theory (Hall,
1966).

The agents also have territorial awareness controlled by territorial behaviors (Pedica &
Vilhjalmsson, 2009), for example when agents are in a conversation (figure 2.1) they will
try to keep a personal distance, social equality, group cohesion, common attention and do-

main awareness. These behaviours generate motivational forces that reposition or reorient

Palli R Prainsson 11

PLAVEN

47

Figure 2.1: Agents in CADIA Populus in a conversation.

the agent according to the rules of the conversation model. The conversation modelling
is influenced by Kendon’s research on face-to-face interaction (Kendon, 1982) in which
he came up with the F-formation system that explains the positional and orientational ar-
rangements of conversation participants as well as the behavioural relationships amongst

them.

Simulating the social norms of human territories in CADIA Populus has been shown to
increases the believability of a scene significantly, by reducing artificiality and increasing
appeal, social richness and apparent agent awareness in simulated conversations (Pedica,
Vilhjalmsson, & Larusdéttir, 2010). The agents awareness of other agents was also shown

to be improved through the use of gaze behaviour and body orientation.

A feature of CADIA Populus that is particularly useful for this research is the ease of
plugging in new behavioural controls. New behaviours, such as those resulting from
planning can be integrated with existing reactive behaviours using several available mech-

anisms.

12 Dynamic Planning for Agents in Games using Social Norms and Emotions

2.2 Emotional Models

Emotions play a large part in how we humans act and what we do. Our emotional state
is on display every waking hour, we frown when we are sad and smile when we are
happy but the face is not the only indication of emotions, for example we startle when
we are surprised or take defensive stance when frightened. Just by looking at those few
examples shows that creating Al agents without some kind of emotions would detract
from their believability. The goal of this work is not to include emotions only for their
aesthetic or dramatic value but also for how they influence the actions of the agents and
the conditions that generate them. A human in a good mood is more likely to be optimistic
about achieving his goals than one in a bad mood. An angry or offended person is likely
to try to seek retribution or justice, while a person burdened with guilt might try to make

up for what he did wrong.

Inrecent years researchers in the field of Al have started developing computational models
for agents using various existing emotion theories. One of them is the Pleasure-Arousal-
Dominance (PAD) emotional state model by Mehrabian (Mehrabian, 1996) in which he
suggests that pleasure, arousal and dominance are the three faces of emotion. The PAD
model was designed to describe and measure individual differences in temperament. In-
stead of using names or concepts for emotions, PAD gives each of the three faces a value
between -1.0 to 1.0, as it is impossible to measure and average emotional traits. A subset
of the PAD emotional model was used in AlphaWolf (Tomlinson & Blumberg, 2003) to
model how automated pups of wolves use dominance, one variable of PAD, to find their
place in the packs social order. Even though every emotion possible can be modelled in
PAD there is no appraisal of those emotions, that is, there is nothing that links emotions

to the events that caused them.

The OCC theory (Ortony, Clore, & Collins, 1988) models an appraisal process that assess
the link between emotions and events by defining emotions as valanced (good/bad) reac-
tions to events. The OCC model defines 22 different emotion types and 3 types of goals
(active pursuit, interest and replenishment goals). The importance of goals in OCC is
split into two, the importance of success and the importance of failure, as goals can have
different emotional intensities whether they succeed or not. For example a person might
have the goal of eating and by achieving that goal a person would probably be moderately
pleased, however it will not be nearly as intense an emotion as when he can not achieve
a goal which might cause him intense fear for his life. FearNot! is an Interactive Vir-
tual Environment (IVE) that addresses the issue of bullying in schools where the player

assumes the role of an advisor (friend) to the bully victim, who then tries to follow the

Palli R Prainsson 13

advice in short interactive scenes (Aylett, Dias, & Paiva, 2006). They use emotions as a
key factor in achieving believability and use the OCC theory to model it. FearNot! also

addresses one of the shortcomings of OCC by adding a coping mechanism.

One of the key aspects of Lazarus’ appraisal theory is a coping mechanism (Lazarus,
1991). Coping, as defined by Lazarus, "consists of cognitive and behavioral efforts to
manage specific external or internal demands (and conflicts between them) that are ap-
praised as taxing or exceeding the resources of the person" (Lazarus, 1991). In other
words coping determines an agent’s response to the appraised significance of events.
Coping is an important aspect of creating believable agents as they will have to handle
situations in various manners depending on their appraisal of the situation. One of the
better known computational models of Lazarus’ appraisal theory is Emotion and Adap-
tation (EMA) (Marsella & Gratch, 2009), a system we will discuss in more detail below.
EMA provides a general framework of appraisal and coping as reasoning components for
believable autonomous agents. EMA introduces a coping process that is split into five
stages, it starts by identifying a coping opportunity, then elaborates the coping situations
using the relations between the individuals concerned as well as their responsibilities in
the event. After that, coping strategies are proposed for a coping opportunity, the cop-
ing potential is then assessed and finally one or more strategies are selected and applied
(Gratch & Marsella, 2004).

22.1 EMA

EMA is an emotional framework that models human emotions based on Lazarus’ ap-
praisal theory. Appraisal and coping are key features of EMA. The system continuously
appraises how the dynamic environment affects the agent resulting in emotional and cop-
ing responses. When an event is appraised it provides the agent with information on how
an event impacts others, how relevant it is to the agent, is the event desirable, likelihood
of the event, does the source of the event deserve blame or credit, how much control the
agent has over the event and whether it is likely that the event might change without any
intervention by an agent. The agent then might need to cope with the situation he is in
and there are few different ways of coping and each coping strategy affects the agent in a
different manner. EMA organizes these coping strategies into four categories as opposed
to the two strategies proposed by Lazarus (Lazarus, 1991), problem focused and emo-
tional focused. Those strategies are: Attention, belief, desire and intention related coping.
Attention related coping can either be to seek more information if something changed un-

expectedly or to suppress information if the agent has low control of the situation. Shifting

14 Dynamic Planning for Agents in Games using Social Norms and Emotions

responsibility towards or from someone from or towards another and wishful thinking are
types of belief related coping. Lowering or increasing the utility are ways to increase or
decrease the desirability of an action. Intention related coping can refer to form an inten-
tion to perform an action to achieve an un-achieved goal, get help from others, perform
an action that makes amends if he has harmed another, delay an intention if the goal is
currently unattainable, drop the goal or perform an action that removes the agent from an

undesirable situation.

EMA is one of the most advanced emotional frameworks that combines planning and
affect. EMA’s description of appraisal makes it a fast, uniform process with no need
to appeal to alternatives between fast and slow appraisal processes. The EMA model is
unique among computational models of emotion in its ability to both influence and be
influenced by other cognitive processes. As it is built on standard Al processes and repre-
sentations it can be incorporated into autonomous agent systems. EMA has been applied
to such systems as Mission Rehearsal Exercise (MRE) (Hill et al., 2003) and Stabilization
and Support Operations (SASO) (Traum, Swartout, Marsella, & Gratch, 2005). MRE is
a virtual military simulation in which the user takes part in a scenario. The user needs
to converse with virtual characters in an extremely emotional and stressful situations and
resolve the situation in an acceptable way. SASO is a negotiation training application
with autonomous agents, in which negotiation strategies are seen as coping strategies and

the appraisal process is used to select which strategies to use.

2.3 Planning

Automated agents must exhibit a reasonable behaviour in the environment. For the agent
to act in a believable manner all his decisions and actions must be oriented to achieve
his goals, this holds for both high level and low level goals such as ordering a drink at a
bar and greeting a person respectively. Making these decisions and executing them in a
dynamic environment requires the agent to plan his actions in a fast and dynamic way, as

he has to be able to adapt his plan to the ever-changing environment.

The planning community has for a long time been interested in the design of artificial
agents. Of these early planning systems, STRIPS (Fikes & Nilsson, 1971), is probably
the best known. They created a system "that attempts to find a sequence of operators in
a space of world models to transform a given initial world model into a model in which
a given goal formula can be proven to be true" (Fikes & Nilsson, 1971). The STRIPS

planner has its limitations in regards to planning with uncertainty in virtual reality simu-

Palli R Prainsson 15

lations, since a STRIPS plan is a sequence of actions that are executed blindly. To solve
the uncertainty problem Sensory Graphplan (SGP) added sensing actions and conditional
effects (Weld, Anderson, & Smith, 1998). SGP builds contingency plans that use sens-
ing actions to gather information that are then used to select between different plans. In
LORAX (Jénsson, McGann, Pedersen, latauro, & Rajagopalan, 2005) and more specif-
ically in their planning system, EUROPA (Frank & J6nsson, 2003), they use continuous
re-planning to allow its system to seamlessly modify their plans when unexpected events

occur due to the dynamic environment.

The main focus of the so-called Belief-Desire-Intention (BDI) systems is reactive plan-
ning and goal deliberation. Because of this they are considered to be well suited for
modelling rational behaviour in agents (Thangarajah, Padgham, & Harland, 2002). Even
though they are not fully fledged deliberative planning systems there is a similarity to
them (Silva & Padgham, 2004). One of the problems with pure BDI systems is that they
do not provide an architectural framework for handling goal relationships, and therefore it
is difficult to pursue multiple goals in parallel (Pokahr, Braubach, & Lamersdorf, 2005a).
The Jadex BDI system, which we will go into more detail below, solves this problem of
the BDI model by implementing a goal deliberation strategy that allows agents to pursue
multiple goals in parallel (Pokahr et al., 2005a) instead of just one. As stated above BDI
systems are not deliberative planners and the handicap of their reactive planning is that
the plan schemata is pre-compiled and therefore not flexible. But it has been shown that
it is possible to integrate a deliberate planner with a BDI system to get the flexibility of
the deliberative planners and reactivity and goal deliberation of BDI (Walczak, Braubach,
Pokahr, & Lamersdorf, 2006).

2.3.1 Jadex

Jadex 1s a BDI reasoning engine that supports building agents with beliefs, desires (goals)
and intentions (plans) (Pokahr et al., 2005b). They automatically deliberate about their
goals and pursue them applying appropriate plans. Practical reasoning is handled by
two components responsible for goal deliberation and means-end reasoning respectively.
Goal deliberation selects current non-conflicting goals based on agents beliefs. Means-
end reasoning takes events and new goals as input to select a plan from the plan library.
While plans are running they can update the belief base, trigger events or create new
goals. The system uses a belief base to represent the agent’s knowledge of the world. The
belief base plays a crucial role in the reasoning process as the engine monitors the belief

base for changes that may fulfill conditions that can trigger a new goal or drop an existing

16 Dynamic Planning for Agents in Games using Social Norms and Emotions

one. Jadex provides four different types of goals: perform, achieve, query and maintain
goals. Perform goals are an activity centric goals, where performing an action is most
important, in contrast to achieve goals that seek to achieve a certain world state. Query
goals are used for information retrieval so if the knowledge required is already available
no additional work is required. Maintain goals try to maintain a certain world state and if
that state gets violated the agent will by any means possible try to re-establish the desired
world state. A goal deliberation strategy makes sure that conflicting goals can not be run
at the same time by defining inhibition links between them so that less important goals

are delayed until the completion of more important ones.

The Jadex BDI reasoning engine is designed to be extended, it is independent of the un-
derlying platform and that makes it an easy system to use as a library for other systems.
The addition of a planner makes it different from most other BDI systems as it is not
only a reactive planning system but can also deliberate over more complex situations.
The engine’s most important feature is the full support of the two phases of the practical
reasoning process (goal deliberation and means end reasoning). Jadex has not been inte-
grated with a multi-agent social game environment before but its setup of actors, goals,
beliefs and plans makes it relatively easy and implementing an external knowledge base

is also straight-forward.

2.4 Summary

As can be seen here, a lot of work has been done in the field of planning and modelling
social norms and emotions. But combining all three aspects in a multiplayer game envi-
ronment has not been done before. By combining emotions and social norms we cover
two of the most prominent aspects of what makes us unique human beings and combined
with the planner will give the agents a process of thought or cognition. Adding a plan-
ner to the reactive behaviours of CADIA Populus, supports a more complex performance
by our agents, as they can deliberate what actions to take to achieve their goals. In the
following chapters we will go into more detail about our approach for combining these

techniques.

17

Chapter 3

Approach

“You won’t get anything done by planning.” -Karl Pilkington

In this chapter our approach will be described in more detail. The goal is to improve the
believability of autonomous agents using social norms and emotions. Our work is an ex-
tension on the work already done in CADIA Populus, in which human social behaviour
is simulated using human territoriality. However it does not deal with interpersonal rela-
tionships, emotions, affiliation and other deeper social aspects of social interaction. Sim-
ulating those aspects has been researched and worked on by various people as seen in
the previous chapter. What we want to achieve is to bring those aspects together in one

place.

Our approach proposes the architecture shown in figure 3.1. We split the system into three
independent modules. The first one is the virtual environment which handles the anima-
tion of the agent as well as its reactive behaviours. The cognitive aspect is represented by
an appraisal module and a planning module. We decided on this three module approach
as a believable agent needs be able to perceive and interact with his environment (Virtual
Environment), understand what is happening around him (Appraisal) and combine vari-
ous actions to achieve some goal (Planning). As stated in the previous chapter on related
works we will be using the pre-existing system of CADIA Populus for the virtual environ-
ment part and the Jadex BDI system integrated with the planner for the planning module,
both systems have been modified to suit our needs. The appraisal module is based on the
work by Gratch and Marsella on the emotional appraisal theory of Lazarus, which we also

use to model social norms.

For this work we do not provide a system with a complete range of emotions, wide range
of social norms or all coping strategies defined by Gratch and Marsella. We were pri-

marily focused on achieving a functional integration. However one of the design goals

18 Dynamic Planning for Agents in Games using Social Norms and Emotions

DataResponse
User Goals o
Virtual a
Environment DataRequest Planner
Commands

ﬁjeriesﬁesults

Knowledge base

ﬁ eriesireults gq
gegf\of\s

U
S F%egpond

Zo,
@f)f &ﬂf}é’&

gegﬁons

Appraisal
Module

Figure 3.1: Overview of the system architecture

of this system was to make it easily extendable and therefore it is easy to integrate new
emotions, social norms and coping strategies to it. It is also possible to switch out or turn
off each and every one of the three main modules as they were designed be able to act
independently. The appraisal module and planner module could have been more tightly
coupled to make it easier to appraise plans as they are created and appraise how events
affect active goals. However keeping them loosely coupled gives us more flexibility in
extending each of the modules, as well as connecting them to other modules in the future.
Also the limitations of not having the tightly coupled can be overcome using well defined

interfaces.

In the next sections we will cover in more detail the overall architecture of the approach
for modelling social norms and emotions. Each part or module will be described in detail
and how they are all connected together. Detailed implementation will be covered in

chapter 4.

3.1 Virtual Environment

The virtual environment, CADIA Populus, handles the visual aspect of the project, where
agents are displayed in a game environment. It handles animating the agents. As men-
tioned in previous sections it also handles reactive behaviours modelled on Kendon’s the-
ory on face-to-face interaction formations as well as human territories focusing on conver-

sational social situations. Those behaviours coupled with a gaze controller that controls

Palli R Prainsson 19

Figure 3.2: The two types of sensors in the CADIA Populus perception system. Proximity
sensors on the left and visual perception on the right.

the agents idle gaze make the agents seem like they are aware of the agents they are in-
teracting with as well as their surroundings. To generate an agent’s reactive response to
the environment and the social situation they are in, CADIA Populus provides a reactive
behaviour framework. The framework supports the creation of a library of reactive be-
haviours which can be executed by other modules or by other reactive behaviours. The
framework keeps track of running behaviours and will order and blend newly started be-
haviours with those that are already running according to priorities and weights. The
sensory system of CADIA Populus, seen in figure 3.2, consists of two types of sensors. A
low level visual perception (on the right) that is split into peripheral and central visual area
represented by two cones in front of the agent. The second sense is a proximity sensor (on
the left) that simulates a persons awareness over four distances or social zones, intimate,
personal, social and public, represented by the circles around the agent. The two larger
social zones have blind spots represented by two cones at the back of the agent. These
two senses continuously gather information about the agent’s surroundings, producing

perceptual data.

In our approach CADIA Populus is responsible for updating the central knowledge base
with the agent’s beliefs such as the the perceptual data gathered by the perception system
so other external modules can have access to the data. The perceptual data provides the
knowledge base with information like position of the agents and props the agent sees
using the visual perception as well as what he perceives through the proximity sensors.
The knowledge base not only receives perceptual data, the knowledge base also contains
information on the external status of the agent. The agent’s external status information can
for example be whether it is sitting or not, is in a conversation and if so what conversation
is he in and with whom. The agent’s profile is also stored and that has more to do with

its internal status. The internal status of an agent consists of its social relationships with

20 Dynamic Planning for Agents in Games using Social Norms and Emotions

other agents, who its friends and enemies are. The current emotional status of the agent
is also stored in its profile along with the agents personality. Currently it is only possible
to configure how emotional or social the agent is, where a highly emotional agent might
take different actions in a situations then a more socially adept agent might. The agent
profile information plays a huge part in the inner functionality of the cognitive aspects of

this work and will be explained in more detail in the relevant sections.

Order drink

l Complain

Figure 3.3: CADIA Populus command menu interface

As the virtual environment provides the interface to the user of an avatar it has the goal
of displaying to the user what is going on behind the scenes and to take commands from
the user. The cognitive modules feed the environment with updated emotional data and
social states. CADIA Populus provides the visual hints of these internal states to the user
using various changes in the users avatars as well as the computer controlled agents. For
example if the agent is happy he might be smiling and if it is angry the agent could furrow
his brows and scowl. The agent even might clap hands and smile if an event or another
agents action made the agent extremely happy or shake his fist in anger if something
angered him. Some effects of changes in internal state of the agent might be more subtle
and might not be directly linked to an user controlled event, for example a slight head nod
and a smile when passing a friend or carefully following an agent with an evil look if it is

an enemy. The virtual environment does not only receive internal status changes from the

Palli R Prainsson 21

cognitive modules but also receives commands to perform certain tasks or actions. These
commands range from triggering simple animations to starting one or more behaviours
such as greeting or wandering. Normally the commands received are a part of a larger plan
generated in the planner module. CADIA Populus also allows the user to send commands
to his avatar. The user can either just click on a certain object or place and a simple default
action will be carried out or he can send a command through a command menu (see figure
3.3). The latter results in a command being sent to the cognitive modules to handle and
create a plan for it. The plan is then carried out by sending back to CADIA Populus small
action commands to be performed. A command can be as simple as moving to a certain
object, where the plan only has one step, or a more complicated one like ordering a drink
in which many small actions are needed to achieve that goal, such as getting the attention
of the bartender by greeting him for example, asking for a drink, waiting for the drink to

be prepared and receiving the drink and thanking the bartender.

3.2 Appraisal

Intra-Individual Factors Situational Factors

Personality

Situational | g Ohbjective
Construal [Conditions

— | Meeds/Commitments/Coals =i
EKnowledge/ Attitudes/ Belinfs

4

A) Appraisal Process

Emational Response

A |

Appraisal Dulcome

Subijective
Experience
or "Affect"

Action
Tendencies

Physiclogical
Response

\"\ fy o Translation of Action
- hal Terdencies 1o Coping Activity

Emotion-Focused Coping Problem-Focused J

Coping Activities Coping

Figure 3.4: The cognitive-motivational-emotive system of Smith and Lazarus (Smith &
Lazarus, 1990)

In order to create believable and life-like agents we decided that they would need to follow
some kind of social norms and also show emotional responses to events happening around
them. The emotions generated would influence his decision making so that the same or

a similar situation would not always result in the same actions so scenarios would not

22 Dynamic Planning for Agents in Games using Social Norms and Emotions

become to repetitive. To achieve this we based our modelling of emotions on the Ap-
praisal Theory of Lazarus. "How a given individual reacts emotionally to an encounter
depends on an evaluation of what the encounter implies for personal well-being" (Smith
& Lazarus, 1990) is appraisal. Figure 3.4 depicts the model as a two step process of
appraisal and coping. Our approach is to appraise events as they occur in the environment
and how they affect the agent at that time, but future actions and goals are not consid-
ered during appraisal. This differs from the EMA computational model mentioned in the
previous chapter, in which future actions and goals influence the agent’s response to an

event.

Even though the Lazarus’s Appraisal Theory is a model for emotional response to events
we also base our modelling of social norms on the same principles as our emotional
model. In similar way as appraisal causes an emotional response to certain events, it will
also result in a social response. For example If the event in question is a social action, like
greeting, the appraisal process will deem greeting back as an expected response to that

event as well as generating an emotional reaction.

In order to model emotions and social norms we created a dedicated appraisal module.
The module is triggered by events happening in the virtual environment. An event can be
anything happening in the system, it can be a action of an agent or a sound coming from
an object. That is, an event needs to be triggered by someone or something and affecting
or noticed by someone. As an event gets triggered, the module will notify the concerning
agents, both those that are affected by the event and the one causing it. Each agent, using
his event appraisal process, will then analyze the event by checking who or what triggered
the event. After the cause of the event has been established the agent checks if the event

fulfilled an expectation he had towards the source of the event.

An expectations is when someone expects something to happen in the future. We use
expectations, for example, in such a manner that if an agent starts a two way social situa-
tion, like a greeting, he will expect that his action will be reciprocated. If an expectation
is fulfilled the internal status of the agent will be updated in a positive manner but if an
expectation is left unfulfilled the agent will be affected in an negative manner. For exam-
ple your avatar greets an agent and if the agent greets back the avatar will both be affected
emotionally (joy) and socially towards that agent, while if the agent ignores the greet the
avatar might feel disappointment and dislike towards the agent. If the event in question is
something that the agent had not expected, then the agent will evaluate how it affects him

both socially and emotionally.

The next step of the process is the creation of the aforementioned expectations. An expec-

tation is created only for the agent that is the cause of the event and if the event in question

Palli R Prainsson 23

triggers a fulfillment of a condition required so that the expectation can be created. One
event can cause more then one expectation to be created. For example an agent might
notice a friend and call him over and that would create two expectations, some kind of ac-
knowledgment and coming over to join him. After the expectations have been created the
agent evaluates all of them to see how they will affect him both emotionally and socially
if they are fulfilled. Then the expectations are added to a list of active expectations which
the agent checks each time he receives a new event as mentioned above. The expectations
also do not live forever and each one is given a fulfilment deadline that depends on the
type of expectation. For example a greet expectation has a relatively short deadline as one
would expect the response to be almost immediate, while on the other hand expectations
of being bought a drink in return might take longer to timeout. When an expectation ex-
pires the agent will evaluate how it will affect him and respond accordingly. Same type
of expectations are also grouped together and only one of them needs to be fulfilled as
they all share a similar purpose. For example in response to a greet action, one might
expect to be greeted back with any of many different types of greetings and each of them
would affect him differently but not receiving the greet the agent wanted the most would
not affect him in a negative manner in a similar way as if he would not have been greeted
at all.

The final step of the process when an event triggers the appraisal module is to create sug-
gestions. Suggestions are the appraisal modules way of coming up with possible actions
as a response to the event that just happened. Suggestions are created in the same way as
expectations, that they have conditions that need to be fulfilled by the event and as with
expectations many suggestions can be created from one event. They are also grouped to-
gether depending on type with one slight difference as one of the suggestions per group is
always to take no action at all. This option is needed so that the agent has the possibility
to select to do nothing when he wants to or can not perform the other actions. Suggestions
also define a certain state that needs to be reached, called a goal state. For example a bar-
tender agent receives an event that an agent has ordered a drink, one of his suggestions is
to serve the agent and that suggestion has a goal state that the agent in question has been
served or has a drink. Suggestions can have a goal state containing many such variables.
As with the expectations once the suggestions have been created they need to be evaluated
to set the importance of each suggestion both for social reasons and emotional. Now that
the appraisal module has completed the processing of the event the suggestions are sent to
the planner for deliberation. The planner chooses which suggestions should be performed
and which should not and how that is done will be described in the next section. After

the planner has decided it sends the results back to the appraisal module for evaluation.

24 Dynamic Planning for Agents in Games using Social Norms and Emotions

The module then reviews what suggestions were accepted and updates his internal values

according to their importance to him.

As has been described above the appraisal module takes care of updating the internal
status of the agent, that is his emotional state, his social status towards other agents, who
his friends are and who is enemies are. The internal status is updated every time an event
occurs, what expectations have been fulfilled or not and what actions the agent has chosen
to take. The value of change depends on the importance to the agent. How important
certain things are to the agent depends on his mood, his personality and his relationship
with other agents. The internal status is important both for visual aid and for the selection
of actions to be taken, so the appraisal module also takes care of informing other modules

regularly of the agents state.

3.3 Planning

Agent
' . Capalbilit
"/F_’r‘actlcal reasomng\ Select palally)
1 goals
interpreter
Handle
deliberation Beliefs e Goals
el conditions
I
“a o
Goal Read/write : Incoming
deliberation facts . messages
Handle
Dispatch
(5ub-)goals
Application events

Cutgoing
MESSages
Means-end Selact
. i Plans
reasoning plans I

Figure 3.5: The Jadex architecture (Pokahr, Braubach, Walczak, & Lamersdorf, 2007)

Lots of what we do or want to do as humans are complex behaviours that require many
different actions to be coordinated together. To create believable automated agents they
also need to be able to perform more complex behaviours that require a set of actions to
be performed in contrast to the simple reactive behaviours provided by CADIA Populus.
Behaviours such as starting a conversation with someone are more complex than to only
go up to him and start talking, at least if you want to keep some sort of a social protocol.

To start a conversation with someone one needs to get his attention, wait for acknowledge-

Palli R Prainsson 25

ment, approach and greet the person and then you can start the conversation. To achieve
creating complex behaviours you can either script scenarios, which might look good but
will become repetitive or even in certain situations look out of place as something scripted
does not take into account changes in the environment, or let the agent plan what actions
to take, in what order and when. For this you need a planner and planning in a continu-
ously changing multiplayer environment is a big challenge as the agents need to be able

to respond to those changes quickly as well as intelligently.

In our approach we take a pre-existing BDI system with a planner, called Jadex (See
figure 3.5). The BDI system provides us with an infrastructure to create planning agents,
goals, plans and beliefs in an easy manner. Each agent in the virtual environment has
a planning agent in Jadex that is completely independent of the other agents and knows
basically nothing about anything except what is added to its beliefs. The belief base is
fed information both from the virtual environment, which provides perception data and
personality, and the appraisal module, which updates the internal status of the agent. The
appraisal module also provides the BDI system with proposal for the desires or goals of
the agent in from of the suggestions discussed in previous section. Jadex then sends its
intentions back to CADIA Populus in form of commands that make up the plan for that
goal. The planner works as most planners in a way that when it receives a goal it searches
through all actions at its disposal to find out what actions are needed to achieve the goal.
Each actions has a precondition that has to be met before it can be used and an effect
which describes what will happen to the state or environment after it has been executed.
The preconditions and effect are then used to determine the order of the actions when
building the plan. The Jadex BDI system also has a goal deliberation strategy that allows
the planner to run many non-conflicting goals at the same time as well as suspending and
activating goals depending on their priority, so that when goals defined as goals of high
importance become active the conflicting goal of lower importance become suspended

while the other one runs its course.

The planning system receives goals from two external sources, the user issued commands
in the virtual environment and the suggestions from the appraisal module. Jadex also
provides a structure to create reactive goals within the system that are triggered due to
changes in the belief base that fulfill create conditions of said goals. As was mentioned
in previous section in this chapter the user sends his goals through a command interface
in the virtual environment. The user goals are of the highest importance and override
all running goals. This is done so that even though the computer controls many of the
avatars action the user will always be in control. The user might therefore violate certain
etiquette which might trigger unfavourable events for his avatar. The system however

provides support for the computer to take some measures to mitigate such effect by either

26 Dynamic Planning for Agents in Games using Social Norms and Emotions

changing the belief base so that a certain goal would be activated or to trigger an event
and the appraisal module would assess the event and generate suggestions that would
conclude a social situation gracefully. For example the avatar is in a conversation with an
agent and the user selects to go somewhere else, that would change the belief base in such
a way that the avatar was exiting a conversation, a reactive goal within the planner would

then be triggered to wave or say goodbye as he leaves.

The suggestions the planner receives from the appraisal module require more work than
the user issued commands as the suggestions represent many ways of responding to some
situation. First of all when the planning agent receives the suggestions he will have to go
through them and calculate which suggestions he wants to take, based on for example his
mood or personality. The suggestions are already grouped together so the agent only has
to select one suggestion from each group he receives. After the agent has chosen which
suggestions to take he has to create a goal state from the combined goal states defined in
each suggestion. That new goal state has to be evaluated to see if the planner can find a
plan to fulfill it. If every thing is fine a new plan has been generated but if the planner
finds no solution the planning agent needs to identify what part of the goal state can not
be achieved and go through the suggestions again with that in mind and choose again.
For example there could be two suggestions to greet another agent and one would be to
wave and the other to shake his hand. The latter would be a more favourable action and
would be selected in the first round but the planner finds out that the agent has to be able
to touch the other agent to shake his hand and he is on the other side of a glass wall. The
planner would then reject all suggestion that required him to be near the other agent and
would choose the wave greet suggestion instead. As was mentioned in the section above
each group of suggestions always has a no action suggestion that has no influence on the
goal state so there is always at least one combination of suggestions possible. After the
planner has created a plan from the suggestions the planner sends to the appraisal module
what suggestions he chose for evaluation and sends the actions one by one to the virtual

environment.

As the planner is independent from the virtual environment and has no idea how long
actions take to perform it sends only one action from the plan at a time to the virtual
environment. This means that the planner has to monitor the belief base of changes to
see if the preconditions of the action have been fulfilled before sending the next action.
The planner uses the same preconditions as when selecting the order of the actions when
creating the plan. By making the planner send the actions one by one the flexibility of
changing or interrupting a running plan becomes more easy as the virtual environment is

not running a whole plan at once but just one small part at a time.

Palli R Prainsson 27

3.4 Summary

Combining these three modules discussed in this chapter helps us achieve our goal of
creating agents that are able to react to changes in their environment both in an reactive
manner and a manner that needs a more complex set of actions. We also have avatars
that do not need micro managing as they can be given high level goals which they will
then discover themselves how to achieve. Their actions are not performed in any manner
the agents see fit but are guided by social rules of their game world. However, as with
humans, the social awareness of the agents can be clouded by emotions and their feelings

towards other agents.

28

29

Chapter 4
Implementation

In the following sections we will go into more detail regarding our implementation of the
approach described in the previous chapter and what technology is used. We will not go
into detail of the third-party software used, such as Jadex BDI System and PowerLoom.
Our implementation goals were to create a flexible and easily extendable system with

modules that are independent of each other.

4.1 Shared Modules

In this section we will discuss smaller modules, utilities and data objects that are shared
amongst the three major modules, in particular the planner and the appraisal module.

Modules are written in Java unless stated otherwise.

4.1.1 Launcher

Everything except CADIA Populus is started by running the Launcher. The Launcher
starts by reading the setup configurations (see figure 4.1) to determine what modules to
initialize and which parameters to use. If the knowledge base module is configured to
start (knowledgeBase) then a XML-RPC web server for PowerLoom is started running on
the port configured (knowledgeBasePort), with initial data loaded from a file (knowledge-
BaseFile) and setting which knowledge base module to use (knowledgeBaseModule). The
Launcher will not continue until CADIA Populus has registered itself with the knowledge
base as there is no point of starting other modules until the virtual environment is up and

running. Finally the appraisal module (appraisalModule) and the planner (planner) are

30 Dynamic Planning for Agents in Games using Social Norms and Emotions

started. The planner can also be started in a graphical user interface mode (plannerGUI)
in which goals, plans and beliefs can be monitored. As each module is started they register

with the knowledge base so the other modules can know if they are running or not.

knowledgeBase = true
knowledgeBasePort = §081
knowledgeBaseFile = cadia.plm
knowledgeBaseModule = CADTR
socketHost 127.0.0.1

socketPort 45445

planner = true

plannerUI = false

apprai=zalModule = true
appraizalImports = is.ru.cadia. knowledgebase . PowerLoom
socialModule = true

socialRuleFile = =social-rule.xml
emotionModule = true
emotionRuleFile = emotion-rule.xml

Figure 4.1: Example of a setup properties file for the system

4.1.2 PowerLoom

fo0 Concepts

{defconcept entity)

(defconcept agent (re entity))

{defconcept prop (?e entity)]
(defconcept bartender [?e agent))
[defconcept customer [re agent])

(defconcept conversation)
frr RBelations
defrelation in-conwversation ((Fe entity) (?conv conwersation))

defrelation greeted [(r7e enticy) (e entity] (= STRIHG)))

f2; Functions

deffunction pos-x ([fel entity) [(7el entity)) :-» [#x FLOAT))
deffunction pos-v¥ ([(?el entity) (?ed entity)l) :-» (?yv FLOAT))
deffunction zees ((7e entity))] :-> (73 STRING))

deffunction detects ((ze entity¥)) :-> (3 STRIHG))
deffunction sitting ((2el entity) 1 :-> [2x S5TRING))

Figure 4.2: A few PowerLoom concepts, relations and functions used

For a knowledgebase we use PowerLoom (Chalupsky, MacGregor, & Russ, n.d.). Pow-

erLoom is a knowledge representation system that uses a fully expressive, logic-based

Palli R Prainsson 31

representation language. PowerLoom uses a natural deduction inference engine that com-
bines forward and backward chaining to derive what logically follows from the facts and
rules asserted in the knowledge base. As was mentioned in previous chapters the knowl-
edge base stores information regarding various things like the type of agent, conversations,
actions performed, locations, status and what the agents perceive. Some of the concepts,
relations and functions defined in PowerLoom can be seen in figure 4.2. PowerLoom is
programmed in a programming language called STELLA that can be translated into Lisp,
C++ and Java. We use the Java version of PowerLoom as the planner and appraisal mod-
ule are both programmed in Java and connect therefore with the knowledge base using the
Java API provided. Figure 4.3 shows the class diagram of the PowerLoom connection to
the three major modules. We created a PowerLoomConnection, that provides an easy to
use interface against PowerLoom. The class encapsulates all major functionality of Pow-
erLoom, such as asserting and retracting propositions, retrieving knowledge, ask whether
something is true or not, runtime creation of concepts, evaluation of commands and load-
ing a file of pre-defined structures. The planner and appraisal module share a helper class,
PowerLoom, that encapsulates the PowerLoom syntax and uses PowerLoomConnection
to connect to PowerLoom. The connection on the CADIA Populus side is done in a sim-
ilar fashion with a PowerLoom helper class that connects to the PowerLoomConnection.
The only difference is that it sends the PowerLoom commands through an XML-RPC
gateway (PowerLoomXMLRPC). However this causes a performance issue because of the
overhead of sending messages over XML-RPC, to solve this we group the commands

together in batches before sending them over instead of sending them one by one.

4.1.3 Communication

All communication between CADIA Populus and the external modules goes through
sockets. The CADIA Populus side is the socket server and all external modules con-
nect to it using socket clients. The class structure of the communication layer can be seen
in figure 4.5. Within CADIA Populus it is the PlannerSubsystem that manages the data
transfer to and from the socket server. Google’s Protocol Buffers!(Protobuf) are used to
encode the data that is transferred through the sockets. Protocol buffers are a flexible,
efficient, automated mechanism for serializing structured data. The data structure created
is then generated into source code for the programming language being used. Protobuf
currently supports three programming languages, C++, Java and Python. The fact that our
system uses both Python and Java modules made using Protobuf an easy choice. We cat-

egorized our data messages into three groups: request, response and commands. For this

! http://code.google.com/p/protobuf/

32

Dynamic Planning for Agents in Games using Social Norms and Emotions

i Populus

" Planneriodule

v
i
.

\ PowerLoom
1

MainEngine

i]

Avatar

i 3 T b

] f

AvatarProfile PlannerAgent Ji‘

'

] |
.................... L —

fE AppraisalModule

FPowerLoom

"1 PowerLoomXMLRPC
. S

PlannerSubsystem)

/
/
I}
!
=
3 .
=
2|
=
g
2
3
(o]
£
2|
a
=)

Figure 4.3: A class diagram showing the PowerLLoom classes and connection to the three
major modules. CADIA Populus connects to the PowerLoom interface using an XML-
RPC interface. The Appraisal and Planner module use a Java API to communicate with

PowerLoom.

we created a data structure consisting of a wrapper object, DataTransfer, that can contain
an instance of the three message types, DataRequest, DataResponse, DataCommand, as

seen in figure 4.4.

DataRequest and DataResponse work in pairs. The external modules request data from
CADIA Populus by sending DataRequest and get the data back as DataResponse. Both
messages are very similar and can be of four different types, registered agents, goals,
remove agent and events, but the DataResponse also sends additional data depending
on the type. A registered agents message contains information on agents in the virtual
environment, goals have information on goals created by the player himself, remove agent

informs when agents have been deleted and events have data regarding events triggered

in the system.
Handling of communication for CADIA Populus is written in Python and is done through
the PlannerSubsystem class. PlannerSubsystem works as a subscription service, when-
ever it receives a DataRequest the sender is put into a list of subscribers and when CADIA
Populus sends out information the data is sent to all those that are registered to that type of
a message. The DataCommand is used by the external modules to send action commands
to an agent. The CADIA Populus MainEngine takes care of informing the PlannerSub-
system of registered agents and when agents are removed from the environment as well
as providing an access point for other classes, such as Avatar, to the PlannerSubsystem.

Palli R Prainsson 33

message DataTransfer

{
enum DataType { FEQUEST = 1; FEIPONSE = Z: COMMAND = 3: }
required DartaType dataType = 1:

optional DataBRecquest redquest 2:
optional DataResponse response = 37
optional DataCommand commatd = 4;

'

message DataBedquest

{
emm Type { FEGISTERED AGENTS = 1: GOALS = 2: REMOVE AGENT = 3: EVENTS = 4:}

required Type type = 1;

Figure 4.4: The Protocol Buffers messages DataTransfer and DataRequest

Communication

=]
MainEngine [CREIEN.—— > Broadcaster)
T [] 7
L
"
-

E Ee———— Populus

1 -

1 -~ i

] ~ -

b \‘*-.“ b ProtobufHelper Callbackinterface
AvatarProfile PlannerAgent J

[+] Plannerilodule [+] AppraisalModule

Figure 4.5: A class diagram showing the communication layer. CADIA Populus commu-
nicates with the communication layer using Protobuf messages. The other two modules
use the ProtobufHelper to send messages and subscribe to messages with the Broadcaster.

In the MainEngine game-loop a call is made to the PlannerSubsystem so that data that is

not urgent can be gathered and sent at a certain time interval.

To handle communication for both the planner and the appraisal module we created a Java
TCPClient that handles all socket communication with the socket server in CADIA Popu-
lus, using Google Protocol Buffers as mentioned above. The socket client is asynchronous
so that when it sends a message it will not wait until it receives a response. What socket
server to connect to (socketHost) and on what port (socketPort) is configured in the setup
properties file (see figure 4.1). As soon as a message arrives it is broadcast through the
Broadcaster. The Broadcaster handles all messages going to the planner and appraisal
module, both messages coming from CADIA Populus as well as messages between the

modules. For the modules to get a message from the Broadcaster they have to subscribe

34 Dynamic Planning for Agents in Games using Social Norms and Emotions

to the message types they are interested in and implement the CallbackInterface used to
broadcast messages to the modules. When a message is received through the socket con-
nection the Broadcaster uses ProtobufHelper to convert Google Protocol Buffer messages
to data classes (see section 4.1.5 Data Classes). ProtobufHelper is a helper class that can
be used for both converting data classes to messages and vice versa and therefore hides
Protocol Buffers code from other modules. ProtobufHelper also provides functions for
the modules to send Google Protocol Buffer messages to CADIA Populus. This means

that all communication between modules goes through a single point.

4.1.4 Utilities

= Utilities

StringUtil
© (Propsutil)
: 3

| MyLogger | RandarmUtil

Figure 4.6: A class diagram showing the Java utility classes

Few utility classes have been created to keep commonly used functionality in one place
(see figure 4.6). StringUtil provides functions when working with strings such as to parse
strings to various arrays and lists. Reflect has various static reflection methods to find
classes, construct classes or invoke class methods when code is stored in non compiled
files like XML or properties files. This utility is mainly used when converting condition
clauses in the rule xml files when evaluating them. PropsUtil provides a singleton class
for loading and storing a property file as well as access methods that return default values
instead of null when property is not found in file. RandomUtil is a static class with access
to random generator so that only one instance of provides the system with random num-
bers. This is mainly done so that objects populated with random numbers will not have
the same data if created at the same moment. The final utility is MyLogger which, as the
name might indicate, handles logging in the system except for CADIA Populus. MyLog-
ger uses the log4j library from Apache?. The log utility is a singleton so that all modules

2 http://logging.apache.org/log4j/

Palli R Prainsson

35

log into the same file, an example can be seen in figure 4.7. Log pattern (logPattern),

level (logLevel) and file (logFile) for the logger are configured in the setup properties file

(see figure 4.1). MyLogger also provides static logging functions for all log levels, debug,

info, error and fatal.

INFO
INFO
INFO
INFOQ
INFQ
INFO
INFO
INFO
INFOQ
INFO
INFO
INFO
INFOQ
INFO
INFO
INFO
INFOQ
INFOQ
INFO

4.1.5

2010-12-218
2010-12-24
2010-12-218
2010-12-238
2010-12-238
2010-12-218
2010-12-218
2010-12-218
2010-12-238
2010-12-218
2010-12-218
2010-12-218
2010-12-238
2010-12-218
2010-12-218
2010-12-218
2010-12-238
2010-12-238
2010-12-238

Data Classes

L5331
L 578
L 578
.187
. 718
. 937
,937
.aoa
.ooo
|
L015
L 015
L0115
L1171
203
250
.250
.250
. 250

Starting PoverLoom~ZML-REPC web server at port 8081

Fowerloom web ssrver running.

Waiting for CADIAPopulus

AppraisalController — AppraisalController created
SceneController — ScenseController created
AppraisalController. addigent — Adding agent Barkeep
SocialWormModule loadRules — Loading social rule=s for Barkeep
EnctionModule . loadRules — Loading emotion rule=s for Barkeep
AppraizalController.addigent — Adding agent Playerl
SociallormModule . loadRules — Loading social rules for Playerl
EnotionHodule loadRules — Loading emotion rules for Playerl
SceneController registerdigent — starting agent Barkeep
SceneController. startigent - Starting agent Barkeep
AgentInitPlan body — Initializing agent Barkesp
SceneController register — REegistering agent — Barkeep
SceneController registerdigent — starting agent Plaverl
SceneController. startigent — Starting agent Playerl
AgentInitPlan body — Initializing agent Playerl
SceneController register — REegistering agent — FPlayerl

Figure 4.7: Examples from the systems log file

=

@
AgentProfile

ExpectationGroup
Expectation

Data Classes

SuggestionGroup

GoalData ' Suggestion

Figure 4.8: A class diagram showing the Java data classes

The appraisal module and the planner share some data classes which can be seen in figure

4.8. Agent stores information for agents such as his unique id, name, type and the agents

36 Dynamic Planning for Agents in Games using Social Norms and Emotions

profile (AgentProfile). The AgentProfile, as mentioned in previous sections, holds infor-
mation regarding the agents’ emotional and social state, list of friends and enemies, his
attitude towards other agents as well as configurations of the agents personality. Location
stores coordinates of entities in CADIA Populus and is used when fetching their position
from the knowledge base. The expectation and suggestion concepts mentioned in previous

sections both have class representations, Expectation and Suggestion respectively.

Expectation has information on the type of expectation, what sub-type it is, who is the
target, what event caused the expectation, which extra arguments there are if any, how
much utility it will provide to the agent if fulfilled or not and how long it will be valid once
it is activated. ExpectationGroup is used to group together expectations of the same type
and target, so that only one such expectation needs to be fulfilled. ExpectationGroup also
keeps track of which Expectation in the group will expire last, as the expectation group
is valid until all expectations have expired. Similar data is stored for suggestions except
Suggestion does not have a deadline and additionally stores the status of the suggestion
(Accepted, rejected, unprocessed) and what changes to the world state are required to
achieve the suggestion. SuggestionGroup groups together suggestions of the same type

that are relevant to a certain event.

Event contains information on events that occur in the environment. An event consists of
a type, sub-type, trigger and list of agents that are affected by the event. Argument is used
when storing extra arguments for expectations and suggestions as well as goal state values
of suggestions. Argument consists of a name, expression and value. The expression can
be (almost) any value or Java statement. The expression is parsed to set the value of the
argument. The expression is only parsed once for each argument. A Utility class is used
to store type and value of utilities for suggestions and expectations. Information regarding
goals are stored in GoalData. Information on goals includes the id of the agent who’s goal
it is, what type and sub type of goal it is, additional arguments, state required to achieve

the goal and if applicable the group of suggestions used to create the goal.

Condition and Rule classes will be described in the next section.

4.1.6 Parsers

We created two parsers for XML files that store social and emotional rules for the ap-
praisal module. First we created XMLParser, a generic xml parser using the SAX XML
parsing library, to parse the rule XML file (see figure 4.9). The parser is then called to
parse the rule XML file using RuleHandle, a XML parsing helper class. The RuleHan-
dler contains the logic to parse the specific structure of the rule XML file. The helper

Palli R Prainsson 37

is invoked when a start or an end element is located in the XML file. The name of the
elements is then used to construct instances of Rule, the rules’ Condition, its suggestions,
expectations and what effect its fulfillment will have. When the end element of the rule is
encountered all objects are gathered together and added to the Rule instance and added to

a list of rules.

<rule:
<condition:
<l—— zalf not trigger of event AND event iz of type grecet AND self not greeted
trigger with same type of grest—-—=
15self.getId() .equals(Sevent.getTrigger()) &Samp;&
"greet" . equals{$event .getType()) Lamp;Lamp;
1PowerLoon. hasGreeted{$self. getId{) , Sevent.getTrigger{), 5event.getSubType(}) Lamp:Lamp:
"distant" .equals{Sevent. getSubType ())
< /ocondition=
<sugyestions>-
<suggestion type="greet" subType="distant'>
<utilities:-
<utility type="social" utility="5" />
<utility type="emotion" utility="1" />
</utilities>
<arquments-
< l—— value can be expression——>
<Largument name="isResponse" value="true" />
<argument name="target" walue="S5event.getTrigger()}" />
< jarquments>
<goalState-
<state name="hasDistantSaluted" walue="S5event.getTrigger{}" />
< /goalState-
< /eugyestion:
<suggestion type="greet" subType="nohction":>
<utilities>
<utility type="social" wtility="-7" />
<utility type="emotion" utility="-1" />
</utilities>
<argquments-
< /jargquments>
< /suyyestion-
< /sugyestions>
<i—— 1 was grested this makes me happy ——=
<event-effect>-
<effect name="angerJoy" wvalue="5"/>
</event-effect:
</rule>

Figure 4.9: Example of a rule from XML file. At the top there is the condition that
needs to be fulfilled so that the rule is used. Rules can have a list of suggestions with
utility, arguments and goal state. Not shown in this example but some rules also have
expectations. Last part of the rule is the event effect on the internal state of the agent.

As seen in figure 4.9 the condition of the rule is very similar to Java code. To be able to
evaluate these conditions another parser was made called ExpressionParser. The parser
is generated using JavaCC3, a parser generator, and its add-on JJTree, which allows the
generated parsers to produce syntax trees. The expressions to be parsed, such as the condi-
tion, are then passed to the parser. The parser then breaks the expression down to smaller
units, which are then recursively parsed until the whole expression has been broken down

to single statements. Each statement is then evaluated to find out of what type it is using

3 http://java.net/projects/javacc/

38 Dynamic Planning for Agents in Games using Social Norms and Emotions

reflection. The expression in whole is not evaluated until the value of the expression is
requested. The parser offers the possibility of including import statements when evaluat-
ing an expression that contain classes that are not part of the standard java.lang package.
These import statements can be added in the system setup properties file mentioned above
(see figure 4.1) using the appraisallmports property. Example of this can be seen in the
example provided where a static call to the PowerLoom class is made. A major part of the
expression is the possibility to include parameters, marked with a ’$’” symbol in front of it.
When an expression has such parameters they need to be included when the expression’s
value is requested. In the example the $self parameter is replaced with the Agent object
of the agent evaluating the condition. Not only conditions are evaluated in this manner,

both values of arguments and goal states can be expressions as well.

4.2 CADIA Populus

CADIA Populus is a virtual social game environment written in python that supports fast
development of various different social situations to try out new agent behaviours. The
graphical aspect of the environment in created using Panda3D#. Panda3D is a game en-
gine, a framework for 3D rendering and game development from Disney and Carnegie
Mellon University. The NVIDIA PhysX engine is used to create a reliable physical sim-
ulation of scenarios in CADIA Populus. PhysX allows rigid body dynamics, fast spatial

queries and high performance physical simulation.

{# PlannerMadule’
g F‘opulus
MainEngine ———————®{ Powerloom =====c——mmmmae & Poweroom -~ -
v
p e
i .
Avatar PlannerSubsystemp—w————__________’ [+] Communication \\\
Tl e ~.
IS Tl ¢ H"““M‘EE AppraisalVodule

| AvatarProfile | Planneragent

Figure 4.10: A class diagram of new and altered classes in CADIA Populus

To be able to integrate the planning and appraisal module with CADIA Populus some
additions were needed, see class diagram in figure 4.10 for new or altered classes. First

of all a layer was added between the Avatar class in CADIA Populus, which controls the

4 http://www.panda3d.org

Palli R Prainsson 39

reactive behaviours and animation of the virtual agents and avatars, and the new external
modules (appraisal module and planner). We created a PlannerAgent that has the pur-
pose of receiving commands from the external modules and play them out through the
Avatar class. This is done by mapping each command received to starting and/or stop-
ping reactive behaviours, play or stop animations or gestures and issuing commands to
speak. Doing it this way the external modules issues a single command that can start one
or more behaviour depending on the complexity of the action, for example a greet com-
mand is issued the PlannerAgent glances at the other agent, greets him both verbally and
with a wave gesture. Each agent of the virtual environment is registered with the external
modules and will have a PlannerAgent instance that it belongs to. The class also takes
care of updating the knowledge base when a performance of action by the agent needs to
be stored in the knowledge base so that the agent can know that he has performed cer-
tain actions, like when an agent greets another it will be stored so that he will not greet
him again within a certain time period. We do this so that the agents do not look silly
by constantly greeting each other. As well as updating the knowledge base the Planner-
Agent also receives new internal status information from the external modules to update
the AvatarProfile of the Avatar. The AvatarProfile contains information on the agents
friends and enemies which is a list of the agents names in question, his personality, his
emotional status and status towards other agents. Currently the personality consists of
what type the agent is, for example a bartender, how emotional and social the agent is.
The emotional and social variables are represented as float numbers that can range from
0.0(lowest) to 1.0(highest). Meaning an agent with emotional value of 1.0 and social
value of 0.3 would be controlled by his emotions and take emotional decisions instead
of maybe more socially acceptable ones. For example if he bumps into another agent,
he would shout obscenities at him for being in his way instead of apologizing. For now
these values are constant as the persons personality does not change much over short time
which are current focus is on. However the emotional status and how an agent feels about
other agents are ever changing variables. Those variables are floating numbers that range
from -10.0 to 10.0 if the variable has two sides and 0.0 to 10.0 if it only has one side. Cur-
rently the variable we use are all two sided like angerJoy represents the agent emotional
spectrum from furious(-10.0) to ecstatic(10.0) with 0.0 being a neutral and the same for
agents opinion on other agents, where -10.0 represents utter dislike and 10.0 means that

the agent is in awe of the other agent.

40 Dynamic Planning for Agents in Games using Social Norms and Emotions

E Planneriadule
I .
.r’/ // [
- ,, :
ra 1
e |
7 s [T W
x’// g g@ Utilities and Data Classes
4] PawerLoom -
: y
- - ’/
[#] CADIA Papulus — ’ K
- Ay
R\ e \\
1. v
k-‘-“‘-.. /’/\‘\ . LY
e L’/ . = AppraisalMadule
T Communication :

Callbackinterface

s
s

e

AppraisalController]
ExpectationMonitor

i (SUCHIMUGME) (EmuliunMudu\e)

Figure 4.11: A class diagram of the new Appraisal Module

4.3 Appraisal Module

The class diagram of the new Appraisal Module is shown in figure 4.11. The Appraisal-
Controller is a singleton class and is the center of the appraisal module. The controller
keeps track of all agents, maintains the ExpectationMonitor and is able to receive broad-
casts from the Broadcaster by implementing the CallbackInterface as well as registering
that the appraisal module is active with the knowledge base. The controller subscribes
to registered agents, removed agents, events and suggestion responds messages. When a
new agent is registered with controller an AppraisalAgent is created. The remove message
deletes the appraisal agent from the list of agents. When an event message is received the
controller checks which agents triggered and are influenced by it and sends it to them for

processing. The same is done for suggestion respond messages from the planner.

ExpectationMonitor is a thread that runs every second and checks whether expectations
have expired. The monitor fetches all AppraisalAgent instances from the AppraisalCon-
troller. Each appraisal agent is then queried for his ExpectationGroups, which the monitor
will run through and checks if the last Expectation in the group has expired. The monitor
gathers together all expired expectation groups and informs the appraisal agent if there

are any.

Palli R Prainsson 41

Each AppraisalAgent consists of the agents information (Agent) and the expectations of
the agent. Each appraisal agent can also have AppraisalModules. The modules are used
when the agent is processing an Event and creating and evaluating expectations and sug-
gestions in response to that event. Currently we there are two appraisal modules and they
can be configured in our out using the system setup properties file. The agent can have
an EmotionModule and a SocialModule, if the emotionModule and socialModule proper-
ties are set respectively. Both modules extend the AppraisalModule and share most of its
functionality. Each module has its own set of rules, which will be explained below. When
the AppraisalAgent processes an event he gets expectations and suggestions from the ap-
praisal modules which he then groups together as mentioned above. After the appraisal
agent has processed the event, the suggestion groups are sent to the Broadcaster which
ultimately provides the suggestions to the planner. When the ExpectationMonitor informs
the AppraisalAgent of expired expectations the agent starts by removing them from his
list of active expectations. After that the expectation, from the group of expectations,
that would have given the agent the lowest utility is taken, negated and his internal status

updated accordingly.

After the planner has chosen which suggestions to use, a response with the results is sent
back to the agent. The agent goes through the suggestions and updates his internal status
depending on the utility of the chosen suggestions. As there is always one suggestion in
each group which is to take no action with appropriate utility, there is no need to think
about negative utility for actions not taken. When calculating the changes in the agent
status the utility is altered depending on the agent’s personality. A highly social agent
will be more affected by social utilities. After the agent has updated his internal values an

update is sent to the other modules.

4.3.1 Social and Emotional rules

The AppraisalModule and its subclasses EmotionModule and SocialModule load the XML
rules files mentioned before. These rules are used when appraising events. When an un-
expected event occurs the appraisal modules evaluate each rule to see if the conditions are
met. If a condition is met the utility of the configured effect of the rule is used to alter the
agents status. Same process is used when creating expectations and suggestions, if the
rule’s conditions are fulfilled then the expectation or suggestion of that rule are added to

their respective lists.

As can be seen in figure 4.9 rules consists of conditions that need to be true so that rule

can become active, suggestions that have a type so they can be grouped together, sub-

42 Dynamic Planning for Agents in Games using Social Norms and Emotions

type to distinguish between them and list of utilities. The utilities tell how important the
suggestion is, both positively and negatively, to the agent. Each suggestion can also have
additional arguments, that are not part of the standard suggestion, that might be needed
when working with them. For example in the case of a greet suggestion knowing whether
it is a response or who the agent is greeting could be important. The suggestion might
also define a goal state that needs to be achieved so that the suggestion can be considered
achieved. If the goal state has more than one variable all of them need to be fulfilled. Like
suggestions, expectations of a rule (see figure 4.12) have a type and subtype but they also
have a deadline. A deadline is defined as the number of milliseconds that can pass from
activation until the expectations has expires. Expectations also have utility and arguments
but no goal state. The final part of the rule is that it can have an event effect, which defines

in what way fulfilling the condition of the rule will effect the agent.

<rule:
<condition>-
wi—— aelf trigger of event AND event is of type grest AND
target has not greeted trigger before——x
§self.getId().equals{$event.getTrigger()) Lamp:Lam:
"greet" .equals{Sevent .getType()) &Lamp:Lkamp:
| PowerLoom. hasGreeted(5target, Sevent.getTrigger{))
< /condition:
<expectations:-
<!—— A grest of no specific type, default used if he gets an
unexpected greet but a greet of some sort-——>
<expectation type="greet" subType="default" deadline="10000">
<utilitiess
£utility type="social" utility="1" /=
<utility type="emotion" utility="1" />
</utilities:-
<argquments /-
< /expectation
<!—— A grest of type distant ——>
<expectation type="greet" subType="distant" deadline="5000":
<utilities:
<utility type="social" uwtility="3" />
<utility type="emotion" ubtility="5" />

</utilities-
<argquments />

</expectation-

=!—— A greet of type close ——=

<expectation type="greet" subType="close" deadline="10000":
<utilities>

<utility type="social" wtility="4" />
<utility type="emotion" utility="5" />
</utilitiess
<argquments />
</expectation:-
</expectations-
</rule-

Figure 4.12: Another example of a rule from XML file. Unlike in figure 4.9, this rule has
a list of expectations that are activated if the condition is met.

Palli R Prainsson 43

B S

Contraller
1\

AgentController

¥ CADIA Popuius :

J R e e W
FES| Communication e [+ Utilities and Data Classes
L "
. . "
- . AN \
N \
R Appraisalvlodule

Figure 4.13: A class diagram of the new Planner Module

4.4 Planner Module

For the planning part of the system we use the Jadex BDI system with a planner integrated,
which is written in Java. The class structure of the Planner Module can be seen in figure
4.13 (the diagram only shows our classes and not the classes of the Jadex system). In a
similar setup as the appraisal module the central piece is a PlannerController which han-
dles broadcasts from the Broadcaster by implementing the CallbackInterface and man-
ages the agents. The controller is registered with Jadex as a Jadex agent and as such has
a connection to the Jadex system, has a belief base and can create goals and plans. When
the controller has been created it registers the planner module in the knowledge base and
subscribes to registered agents, removed agents, goals and suggestion messages from the
Broadcaster. When an agent is registered with the controller a PlanningAgent is created.
Also the controller creates a goal in Jadex to create a new Jadex agent. A Jadex agent is
created using an XML file which defines what beliefs, goals and plans the agent can have.
Each part of the Jadex agent XML file will be described in the following sections. When
a new Jadex agent is initialized an AgentController is created to manage the connection
to the Jadex agent, so that it is possible to create goals, receive plans and access the belief
base of that agent. The PlanningAgent is then connected with the AgentController so that
the relevant Jadex agent is accessible to the agent. A remove agent messages both deletes
the agent from the list of agents stored in the PlannerController and un-registers the agent
in the Jadex system. The goal messages are, as mentioned in previous sections, a user trig-

gered goal. The controller finds which agent this goal belongs to and dispatches it to the

44 Dynamic Planning for Agents in Games using Social Norms and Emotions

PlanningAgent in question. Similarly, the suggestions are sent to the agent for processing.
The AgentController also takes care of updating the Jadex belief base of the agents with
some information stored in the knowledge base such as the location of the agent, what
entities he sees and what he detects. Both the PlannerController and the AgentController

extend the Controller class which encapsulates the access to the Jadex agents.

The PlanningAgent consists of a connection to its Jadex agent and information about the
agent (Agent). The PlanningAgent has the ability to drop running goals and create new
goals. Active goals can be dropped if a new conflicting goal of higher importance is
generated. The agent has two ways of creating new goals, either a user triggered goal
which is of the highest importance or a goal created from suggestions. The agent receives
SuggestionGroups from the appraisal module. The suggestions are then evaluated to see
which combinations of suggestions will give the most desired result. The agent also
checks if it is possible to achieve the goal state defined in each suggestion. All suggestions
that lead to an unreachable goal state are rejected. When the agent has selected which
suggestions he wants to use they are marked as accepted and a new goal is created using
the goal state of each suggestion. As soon as a valid plan has been generated from the
suggestion goal, the planning agent sends a suggestion response back to the appraisal

module, informing it of which suggestions were accepted and rejected.

4.4.1 Beliefs

<heliefs
<helief name="ctrl" class="hgentController" /-
<helief name="1d" class="BasichgentTdentifier" /-

<helief name="zeez" class="5tring" updaterate="500">-
<fact>-Sheliefbase.ctrl=—null?"" : $heliefbase.ctrl.getSeenEntities ()< /fact>

</helief’-

<helief name="detects" class="5Strimg" updaterate="500"2
<fact>5heliefbase.ctrl—null?"" ; fheliefbase.ctrl.getDetectedEntities ()< /fact:

</helief>

<helief name="playerGoallata" class="GoalData" >
<helief name="playerGoal" class="String" />
</helief=>

Figure 4.14: Beliefs from a Jadex agent XML. Each belief needs ot define a name and the
class type of its value. Beliefs can be defined to update itself automatically by setting an
update rate.

The Jadex system provides each agent with a belief base which is used to maintain the
agents world state. The belief base is defined in the Jadex agent XML file (see figure 4.14).

Palli R Prainsson 45

The belief base can both contain a single value beliefs or a belief set with multiple values
for a single belief. Beliefs can also be updated both manually and automatically. Even
though we mainly use an external knowledge base to store the agents world state, we also
use the belief base. The belief base stores the connections between the Jadex agent and
our agent classes through the id and ctrl belief variables respectively. The belief base is
also useful as a trigger for goals in Jadex. We use the beliefs both when we want to trigger
dynamic goals and reactive goals. The playerGoal belief is used when the PlanningAgent
creates a new goal, which can be either a goal triggered by the user or a goal the agent
creates from suggestions received from the appraisal module. The playerGoalData belief
is an instance of GoalData and stores all information regarding the goal defined in the
playerGoal belief. The reactive goals on the other hand are goals that are started by the
Jadex agent when a certain condition is fulfilled. We can use the sees and detects beliefs
to trigger such goals. For example an agent detects another agent but does not see it could
mean that the other agent is behind him, a reactive goal to turn around could be created.
The two perception beliefs are updated automatically every half a second by fetching data
from the knowledge base using the expression defined as the fact of the belief. These

facts can also be used to give a belief an initial value at startup.

4.4.2 Goals

<goalst
<achiewvegoal name="5Suggestion" exclude="never":-
<creationcondition:$heliefbhase.playerGoal.equals(" suggestion") — true</creationcondition:
< /achievegoal’

<achiewvegoal name="GoToTarget" exclude="newver":-

<parameter name="target"' class="String"' optional="true" />

Lundiue /=

<creationcondition=%heliefbase.playerGoal .equals{"goTo") = true</creationcondition>-
< /achievegoal -

<performijoal name="Turnfround" exclude="never":
<deliberation cardinality="1">
<inhibits ref="GoToTarget" />
</deliberation:-
<creationcondition:Sheliefhase. sees.equals {Sheliefhase.detects) — false</creationcondition-
< /per formigoal -
</yoals:>

Figure 4.15: Goals from a Jadex agent XML. This example has two types of goals achieve
goal and perform goal. Goals define create condition which activates the goal when ful-
filled. The deliberation configuration helps with the goal selection process.

As was mentioned in a previous chapter the Jadex system has four different types of goals.
An example of the agent’s goals can be seen in figure 4.15. The perform goal is an activity

centric goal, where performing an action is most important, in contrast to the achieve goal

46 Dynamic Planning for Agents in Games using Social Norms and Emotions

that seeks to achieve a certain world state. Query goal is used for information retrieval so
if the knowledge required is already available no additional work is required. Maintain
goal tries to maintain a certain world state and if that state gets violated the agent will by
any means possible try to re-establish the desired world state. Currently we mainly use the
achieve goal as we are usually looking to get to a certain world state. Perform goals are
more suited for reactive goals for example to turn around when an agent senses something
behind him. Maintain goals could be used if we wanted our agents for example to get a
drink whenever they would become thirsty, then the state that the maintain goal would
be trying maintain would be that the agent is quenched. As was mentioned in the beliefs
section above the goals can be created using the belief base. As can be seen if figure 4.15
we use the playerGoal belief to create either a user triggered goal (goTo) or a suggestion
generated goal (suggestion) depending on its value. The reactive goal to turn around uses
the the changes in the sees and detects beliefs as a create condition. The goals can be
configured to block each other based on how important they are. This is done by defining
a deliberation with a cardinality value for how important it is and then listing up what
goals the goal inhibits. The goals can also block creating other instances of themselves

by defining them as unique.

Most of the goals we use are dynamic goals and for each one them we need to create a
class. The class needs to extend the DynamicGoal abstract class which implements the
Jadex planner PlanningGoal interface. Each goal class needs to define a function that
checks for each step of the plan how close it is to fulfill the goal state. If the goal is unable
to find a plan it marks all unattainable goal states so that if the goal is a suggestion goal a
new set of suggestions that do not have the bad goal state variables can be tried to achieve

the goal.

4.4.3 Plans and Operators

The Jadex system defines plans available to the agent in the agent XML file. Figure 4.16
shows how plans are defined in the Jadex agent XML file. In Jadex there are two kinds
of plans, the predefined plans and the dynamic plans. Both types of plans need to create
a class to represent them. The predefined plan classes need to extend the Jadex Plan
class while the dynamic plan classes extend the Jadex DynamicPlan. Predefined plans,
such as the AgentInitPlan, do not use the planner to find out what actions to perform.
All actions of such plans have been set and are always performed in the same way and
order each time. Such plans are normally only useful as simple reactive plans, such as

to turn around, which only requires one action. The dynamic plans on the other hand

Palli R Prainsson 47

<plans:
<plan name="5uggestionsDynamicPlan'>

<parameter name="time" class="int" direction="fixed">-
<raluex50< ralues

< /parameter:

<parameter name="operatorl" class="String">-
<value:"new DistanceSalutationOperator () "< /ralue>

< /parameter:

<parameter name="operator?" class="String">
<ralue>"new FindTargetOperator()}"</value>

< /parameter:

<parameter name="operator3" class="String":>
<value>"new ApproachTargetOperator()"< /value>

< /parameter

<parameter name="operatord" class="String">
<value:"new CloseSalutationOperator(}"< /value>

< /parameter:

<parameter name="operator’" class="String">
<ralue>"new StartConversationOperator ()" /ralue-

< /parameter:

<parameter name="operatoré" class="String":>
<value:"new StandfpOperator ()" < /value:

< /parameter:

<parameter name="operator?" class="String">
<value:"new OrderDrinkOperator{)"</value:

< /parameter:

<parameter name="operatord" class="String":>
<value:"new ServeOrderOperator{)"< /ralue:

< /parameter

<parameter name="operator9" class="String">-
<value:"new FetchOrderOperator({)"</value:

< /parameter:>

<hody>new SuggestionsDynamicPlan()< /hody>

<trigger>
<goal ref="Suggestion' />

</trigger>

< /plan:

<plan name="init">
<hody>new hgentInitPlan{)< /hody>
< /plan:
</plans>

Figure 4.16: Plans from a Jadex agent XML. A dynamic plan needs to define which
operators can be used to generate a plan. All plans need to define which class is used
when constructing a plan. A plan can also define which goal triggers the plan and how
much time it can take to find a plan before aborting the.

48 Dynamic Planning for Agents in Games using Social Norms and Emotions

use the Jadex planner to find out which actions to take. In Jadex the actions of a plan
are called operators. Each operator can in fact issue more than one action to the virtual
environment. The plans are triggered when a goal becomes active by linking the plans

with the goal using the trigger tag.

Each dynamic plan needs to define what operators can be used in the plan. This is done to
make it easier for the planner to find plans. If the planner only needs to check the operators
relevant to the active goal instead of checking all possible operators a lot of time is saved
and the plan returned more quickly. Saving time is extremely important when planning in
a real time environment as it would reduce the believability of the scene if an agent would
stop every now and then while a new plan is being generated. The Suggestion plan on the
other hand needs to have access to all available operators as it is unknown which operators
are relevant. It can also be configured how long the dynamic plans have to come up with a
plan. The plan classes need to handle what to do when a plan has been found, when a plan
failed or when a plan was aborted. The plan classes also construct a planning domain so
that a plan can be tested without affecting the world state. An AgentDynamicPlan super
class, which extends the DynamicPlan was created to encapsulate that functionality so
that each planning class only needs to implement logic specifically for their needs. The
SuggestionDynamicPlan calls the PlanningAgent to reevaluate the suggestions when no

plan has been found.

Each operator is a class that implements the Jadex Operator interface. The operator needs
to implement three functions. First it needs a function to get the description of the domain
itis working in. Secondly a function which updates the planning domain with information
regarding what happens when the operator is executed. This function also defines the
preconditions of the operator so that the operator will not be tried until all of its conditions
have been fulfilled. Finally the operator defines a function to execute its actions in the
virtual environment when a plan has been found. An operator is selected as a part of a
plan if it effects the planning domain in such a way that in gets the plan a step closer to

achieving the goal state.

49

Chapter 5

Results

There are various ways to evaluate our resulting software. We can evaluate the system
as a whole or we can evaluate each part of the system separately. Even though a lot has
been accomplished, the system is by no means complete as will be discussed in the next
chapter. The ultimate contribution of the system is the support for increased believability
of agents without the user needing to micro-manage their behaviours. So believability is
what we would want to evaluate in the end. Just as important though is evaluating the
architecture of the system. The architectural qualities of the technology delivered should
be evaluated with the following questions in mind: is it easy to use, can it be extended,

are the modules independent of each other and how does the system perform.

5.1 Believability

Believability is something that people sense when they see characters interacting within
the context of a particular environment. The observed behaviour needs to fulfill certain
expectations based on the norms established by the game or story. Evaluating believability
is not something that can be easily measured with standard tools. It can only be evaluated
by capturing the sensations and experiences of users of a finished interactive environment.
Do our agents look more believable than before we applied our approach? This is the

question we would like to answer when evaluating the increase in believability.

One of the major dangers when creating believable characters is that they will fall into
the Uncanny Valley (Mori, 1970). The Uncanny Valley is a hypothesis that when a robot,
or in our case an agent, looks almost human but not quite, then the observer will feel

slight discomfort towards it. This feeling is magnified when the human-like entity starts

50 Dynamic Planning for Agents in Games using Social Norms and Emotions

moving. As our system has not yet been connected to a high quality graphics and anima-
tion engine with life-like human agents, being concerned about hitting the the Uncanny
Valley would be premature as well as comparing it to state of the art game systems. How-
ever that is something that should be done when those standards of graphics have been
achieved.

For now we will compare the current system with the system prior to the addition of
our work. Believability is hard to evaluate and strongly depends on the quality of the
generated agents and their animation. At the current state a full formal evaluation has
not been performed but should be done in the future in a controlled environment using
independent human subjects to rate the system’s believability. We will instead start by
taking a close look at the behaviours generated by the system and discuss how well they
meet our expectations. We will do this through informal tests on few specific scenarios.
The scenarios are used to evaluate how well the system handles the original requirements
of having agents that personally appraise and react to situations, dynamically plan their
actions, follow social rules of the society they are in and show emotions as well as use

them when making decisions.

5.1.1 Test scenarios

Figure 5.1: A scenario where an avatar starts a conversation with an NPC. From left to
right: (1)An approaching avatar turns towards the NPC and greets by waving to him. (2)
The NPC greets back. (3)The avatar continues to approach the NPC. (4)Avatar stops close
to the NPC and issues a close salutation. (5) The NPC greets back and the conversation
can start.

In our first scenario the avatar is supposed to start a conversation with an NPC. Previously
the avatar’s user would click on the NPC he wants to talk to, the avatar would go straight
up to the NPC and start a conversation. With the addition of the planner and appraisal
module a more detailed approach is automated. As can been seen in figure 5.1 the avatar

starts by turning towards the NPC, in this case the bartender, and waves his hand (a distant

Palli R Prainsson 51

salutation), he then waits for a response and then starts approaching the NPC. When the
avatar has moved to within a certain distance he stops and greets him again by bowing his
head slightly and saying "hi’ (a close salutation). The NPC reciprocates the gesture and
the conversation can start. The emotional part of the system can influence the situation
in few ways. It can show visual cues of the emotional state or how an event affects the
agents. For example the avatar might become happy and smile when his salutation is
reciprocated by the NPC. Also if the NPC would be angry or not like the avatar he might

decide to ignore him instead of greeting him back.

GOAL: Order drink (User)
> Approach Bartender

GOAL: Greet Agent Goal (User)
> Greet Player(Event triggered)
Suggestions Created Expectation created

GOAL: Greet (Suggestion)
- Greet Bob(Event triggered)
Expectation fulfilled

= Approach Bartender (cont.)

> Greet Bartender(Event triggered)
Expectation created Suggestions created

GOAL: Greet (Suggestion)

> Greet Player (Event triggered)
Expectation fulfilled

= Order drink(Event triggered)
Expectation created Suggestions created

GOAL: Serve (Suggestion)
= Make drink

> Serve drink({Event triggered)
Expectation fulfilled
Suggestion created

GOAL: Say Thanks (Suggestion)
- Thank Bartender

Figure 5.2: A step-by-step of what goes on in the system for a scenario where an avatar
orders a drink.

In the second scenario, which we will explain in more detail to show the inner workings of
the system (see figure 5.2), we have three agents, the player controlled avatar, a bartender
NPC and another avatar called Bob. In this scenario the player would like to order a
drink from the bartender. The user starts by giving his avatar an order drink command,
which creates a new user goal, the avatar creates a plan how to achieve that goal and
his first action is to approach the bartender. As the player’s avatar is approaching the
bartender, Bob’s user issues his avatar a command to greet the player’s avatar and a user
goal is created for Bob. Bob creates a plan and executes the only action of the plan, greet

player. This action triggers an event which creates a expectation for Bob to be greeted

52 Dynamic Planning for Agents in Games using Social Norms and Emotions

back and suggestions for the player to respond to that event. The suggestions creates a
new suggestion goal as the player’s avatar decided to follow the social rule and greet Bob
back. Now the player has two goals but as they do not conflict, his plans are dynamically
altered to fulfill both goals. The agent has a new action planned to greet Bob which is
executed. This also triggers an event and that event fulfills Bob’s expectation of being
greeted back. This interaction between the player’s avatar and Bob affects the two avatars
socially and emotionally both internally and towards each other. That Bob greeted the
player’s avatar made the player’s avatar like Bob a little more as well as improve his mood
a little and the same for Bob when the player’s avatar fulfilled his expectation by greeting
him back. The player’s avatar has now fulfilled his suggestion goal and can continue
on with the previous user goal of ordering a drink. The player’s avatar continues his
approach towards the bartender. When the player’s avatar is close enough to the bartender
the next planned action is taken which is to greet the bartender, this triggers a very similar
situation as happened between Bob and the player’s avatar as the bartender greets back.
The third and final action, order drink, of the original goal is then executed and that goal
is now completed. This action triggers an event which creates an expectation for the
player’s avatar to get a drink and suggestions on how to respond for the bartender. The
bartender decides to do the acceptable thing and serve the order so a new suggestion goal
is created. This goal requires a plan of two actions to make the drink and to serve it to the
player’s avatar. The latter actions triggers an event. This event fulfilled the player’s avatar
expectation of getting a drink and this makes him very happy. The event also creates
suggestions for the player’s avatar and as he is quite happy about getting his drink and he
starts to smile, he also decides it is the socially acceptable thing to thank the bartender.

The player’s avatars creates a new suggestion goal and thanks the bartender.

The third scenario is a duplicate of the second scenario except now the player’s avatar does
not like Bob. Here we will only describe in detail what differs from the scenario above.
The player gives his avatar a command to order a drink. The avatar starts approaching
the bartender. Bob’s user gives a greet player command, Bob greets the player’s avatar
and as before this triggers an event. Bob creates an expectation to be greeted back and
suggestions are created for the player’s avatar on how to respond to the event. The player’s
avatar generated the same set of suggestions however as he now dislikes Bob, he decides
based on his emotions to not select the socially acceptable way to greet him but instead
selects to ignore Bob, so no new goal is created. This means that Bob does not receive
any event to fulfill his expectation of being greeted back. When the deadline for the
expectation to be fulfilled passes Bob’s attitude towards the player’s avatar worsens and
he shakes his fist at him in fury. The player’s avatar however just continues on with his

goal to order a drink.

Palli R Prainsson 53

The final scenario is again a duplicate of the second scenario except now the social rule
of how to respond to a greet is to stop and have a chat with the other agent. The player’s
avatar still has the goal to order a drink, so he starts by approaching the bartender. Bob
then greets the player which triggers an event which creates an expectation for Bob as in
previous scenarios and suggestions for the player’s avatar, however now as is defined in
the social rules for this scenario the player’s avatar must also stop and have a chat with
Bob. Here we encounter a problem as the new goal and the order drink goal can not be
achieved simultaneously as was the case in the second scenario but the avatar still tries

and gets stuck in a limbo between both goals.

These scenarios show that the agents can personally appraise and react to situations as
could be seen when Bob greeted the player’s avatar while he was approaching the bar-
tender. The player’s avatar appraised that event, it affected him emotionally and socially
and he responded by greeting Bob back in one scenario and in another he decided to ig-
nore him. The agents can create complex plans and are able to alter them if the situation
they are in demands it. The final scenario however shows one of the limitations that the
system currently has, which is how to dynamically handle conflicting goals. The scenar-
ios also show on several occasions that the agents can follow the social rules of the society
they are in as long as they are encoded as social rules. The agents are also able to show
emotional responses as when the player’s avatar smiled when he received his drink and
also Bob shaking his fist in fury when the player’a avatar ignored him. The emotions also
play a part in deciding what actions to take as happened when the player’s avatar decided

not to greet Bob back but to ignore him as described in the third scenario.

5.1.2 Informal User Evaluation

The system was given to a few naive users for an informal evaluation, where they were
free to walk around the environment populated with NPCs and strike up conversations
with them, and they were asked to comment on their experience. These informal tests
indicate that the addition of the planning and appraisal module gives an impression that
the agents are following some sort of social protocol. In addition to the agent’s awareness
of being in a conversation, as in the previous system, the agent now seems to plan ahead
and interact with other agents in a more complex and what we consider a more believable

manner.

Compared with the social norm improvements the emotional aspect was not immediately
recognised by the users. The visual aid for the display of emotion is that the agent will

smile or frown depending on the situation, at first glance this can be quite hard to see if

54 Dynamic Planning for Agents in Games using Social Norms and Emotions

the user is not looking directly at the face. The facial expression also stays until the agent
is no longer happy or angry so the expression is not highlighted by appearing and then
going away in quick succession. The emotional state is also more internal which is hard to
evaluate. Moreover when users perform an action that has not yet been configured for the
planner or the appraisal module in forms of rules, actions, goals and plans the believability
of the agents takes a hit. Also when users figured out what affects the emotional state of
the agent they started to abuse that knowledge which should be taken into consideration
when configuring and improving the system, as players in a massive multiplayer game
would most likely also abuse such limitations. Implementing some sort of short term
memory helps the agent to prevent repetitive actions, but more work needs to be done in

the future in that area.

5.2 System architecture and performance

5.2.1 Architecture

One of the goals of this project was to create a basic system for dynamic planning that
could be easily extended. The system can be extended in various ways, such as by adding
new rules to the appraisal modules, adding operators, plans and goals to the planner. It is
also quite easy to plug an altogether new module into the system, it only needs to imple-
ment the communication interfaces and from there it can receive and send information to

the other modules.

Adding new rules to the appraisal module can range from being quite easy to being re-
quired to alter the other modules as well. A new rule that will only need to use data and
actions that are already in the system, will only have to be added to the rule configura-
tion file. A more complex rule which adds completely new behaviour in the agents and
uses data not being generated and stored already, might have to add new goals, plans and
operators to the planner, add new animations and steering behaviours to the virtual envi-
ronment and add data to the knowledgebase or a new way to query existing data. Even
though it sounds difficult to add a new complex rule to the system, it is in fact not so.
Adding and retrieving data from the knowledge base is done through well defined inter-
faces so adding new methods to retrieve or store the new data is quite easy. Adding new
concepts, relations and functions to the knowledge base is done by adding them to the
system’s initialization file of the knowledge base. Same goes for the planner, adding new
operators, plans and goals requires an update to a configuration file for the planner agents.

A small class for each new operator, plan or goal is also needed. These classes need to

Palli R Prainsson 55

implement an interface that the planner uses when constructing and executing a plan. If
a new operator is created a new command might be needed to be sent and received by
the virtual environment and acted out by the agent. This requires adding a new command
message to the communication layer, a method that handles that message on the virtual
environment side and then adding animations and possible even new steering behaviours

to the agent.

The modules of the system were also designed to be independent of each other. This is
achieved by having all communication between the modules go through a communication
layer so that if one module is not running the other modules will not stop. This also
provides the possibility to easily replace a module with a new one. For example a new
planner could be added in place of the current one. All that would be needed is for
the new planner to implement the communication interfaces and no alteration would be
needed to the other modules. As was mentioned above this also makes it easy to integrate

a completely new type of module to the system.

5.2.2 Performance

For a system to be able to function in a massive multiplayer game, it needs to be able
to handle lots of data and perform its tasks in a fast and reliable manner. Currently the
virtual environment in use does not perform too well with high a number of agents so
that overall system performance test has not been performed, however some performance
measurements have been performed on various sub-parts of the system. The tests were all
performed on a Dell Latitude D820 laptop with a 2.0 Ghz Intel dual core processor and 2
GB of RAM.

We performed time measurements on the parsing of the expressions in the rules configu-
ration file in the appraisal module. We also measured the time it takes to evaluate them
as it needs to be evaluated each time it is invoked as data might have changed while an
expression only needs to be parsed once. As can be seen in table 5.1 parsing the expres-
sions takes the longest time but as the expressions are only parsed when the system starts
it has low impact on the performance of the system. The evaluation of the expression is
more important and being able to evaluate 100.000 expression in less then a second is
very acceptable. In the current system there are currently 6 complex expressions (similar
to those measured) and around 30 simple expressions. The complex expressions are eval-
uated each time an event occurs for each agent involved with that event and the simple

expression are evaluated more often.

56 Dynamic Planning for Agents in Games using Social Norms and Emotions

Table 5.1: Rule parsing and evaluation time measurements

Case X 1.000 X 10.000 X 100.000
Parsing 203ms 1.406 ms 13.234 ms
Evaluating 15 ms 109 ms 825 ms

Evaluating & Parsing 234 ms 1531 ms 14.594 ms

Inserting and retrieving data from the PowerLoom knowledge base was tested for both
the virtual environment and the planner and appraisal module. The virtual environment
connects to the knowledge base from a python client to a java XML-RPC interface and the
other two modules connect using Java API calls as both the modules and the knowledge
base run as Java programs. The results shown in table 5.2 demonstrate some concerns re-
garding retrieval of data from the knowledge base. Also there was a big concern regarding
inserting data from the virtual environment but that was tackled by sending the data to the
knowledge base interface in chunks, that is all data for every agent was gathered together
and sent as one big chunk over the XML-RPC connection and then on the Java side each
insert command is then sent to PowerLoom through the Java API. As can be seen in table
5.3 this method shows considerable improvement. The virtual environment mainly adds
data to the knowledge base so that the bad performance in getting data is irrelevant at this
time, but might be a problem at later stages if the environment will depend on data created
by other modules. The planner and the appraisal module only fetch data when they need
it except for the planner which gets information on what each agent detects every 200

milliseconds and that is too infrequent to be of any concern.

Table 5.2: Inserting and retrieving agent position from knowledge base measurements

Case X 1.000 X 10.000 X 100.000
Java retrieve 250 ms 1.187 ms 9.875 ms
Java insert 63 ms 328 ms 2.672 ms

Python retrieve 2.503 ms 24.365 ms 239.907 ms
Python insert 2.485 ms 23.061 ms 228.150 ms

Table 5.3: Inserting chunks of data to the knowledge base measurements
Case X 1.000 X 10.000 X 100.000

Python chunk insert 80 ms 818 ms 7.902 ms

An important feature of the system is the sending and receiving data through a socket
communication between the virtual environment and the appraisal and planner modules.

As was mentioned in chapter 4 we use a Google Protocol Buffer to encapsulate the data

Palli R Prainsson 57

before sending it over the socket connection. Table 5.4 shows that in a system with mas-
sive numbers of agents some alterations might be needed to increase the performance of
the socket communication, for example by putting the data into chunks before sending.
In the current implementation data is mainly sent from the planner to the virtual environ-
ment in the form of commands and sending events from the environment to the appraisal
module. Both of these messages are sent only when an agent needs to perform an action
or has caused something to happen by performing an action, so the average agent is rarely

sending more then a few messages each second.

Table 5.4: Sending and receiving data through a socket connection
Case X 1.000 X 10.000 X 100.000

Sending & receiving 492 ms 3.657 ms 37.360 ms

The time it takes from creation of a goal to finding an executable plan takes around 50
milliseconds for the most complex plans currently available in the system, such as the
one described in the scenario in previous chapter, to around 10-20 milliseconds for easier
plans. A complex plan can consists of needing to select 5 or more different operators from
9 available operators to achieve the goal. The current performance of the system gives no
cause for concern, however it has not been tested using more than 15 agents due to the

limitations of the virtual environment.

58

59

Chapter 6

Conclusion and Future work

6.1 Contributions

This project contribution is primarily in the field of interactive social game environments.
The designers of these game environments have been over the last few years focusing on
creating picture perfect environments with realistic looking characters and agents with
impressive game play Al. Even though agents provide high quality game play, there is
something missing as they move around and interact with the environment and other
agents. The agent does not react and behave in a manner that is appropriate according
to the agents game world and this affects the users’ ability to immerse themselves in the

game.

The work done as part of this thesis is an addition to previous and ongoing work done
by Claudio Pedica and others on CADIA Populus, which is a tool to design social situa-
tions in an interactive virtual environment, where the agents contribute and react to social
stimuli around them, making them look more aware and life like. Our addition extends
the reactive behaviours already in the system, with more complex social scenarios that
require planning. These social scenarios are achieved by introducing social norms into
the agents as goals that need to be achieved. The agent appraises the environment and the
situations he is in and uses the rules of his social norms to interact with other agents in
an appropriate way by executing plans created by the planner. Emotions have also been
added to the system. These emotions affect the agents in the way they behave and which
actions they take. Having the addition of social norms and emotions the agents will now
be able to alter their actions due to events occurring in the virtual environment. The user’s

experience will improve as the agent will perform actions in accordance with social rules

60 Dynamic Planning for Agents in Games using Social Norms and Emotions

familiar to the user, which will help inform the user of what kind of social situations his

avatar is in.

6.2 Limitations and Future work

As this work should be considered a contribution to a larger project, still in progress there
are several limitations to what can currently be delivered. The idea behind the appraisal
module comes from the appraisal theory of Lazarus and to achieve the full power of
that theory more effort must be put into adding more coping strategies. Currently only
planning based coping has been implemented. In addition some work needs to be done
on the appraisal of an event in a similar way as is done in EMA and was described in a
previous chapter. The calculations done in the appraisal module on how an event affects
an agent, as well as the calculations of the desirability of the suggestions generated from

an event are quite simple and could be improved through further research.

The current emotional module can easily be manipulated to invoke certain emotional state
as was mentioned in the evaluation chapter. This could be fixed by improving the calcu-
lations as mentioned above as well as by introducing discounting of emotions. That is the

value of emotions will, over time, approach neutral state again.

The expansion of the emotional spectrum is needed. The current implementation only has
two emotions, anger and joy. The addition of some basic emotions such as fear, surprise,

sadness and disgust would increase the emotional believability of the agents.

The system’s current limitations of handling the creation of a new goal when another goal
is currently active needs to be addressed in such a way that the more important goal will
be put into focus and the second goal will be dropped or suspended if it is possible to go
back to that when the primary goal has been achieved. Also it should be checked if both
goals can be run at the same time, by creating a plan that fulfills the goal state of both

goals.

Architecturally the system’s use of several different communication protocols is some-
thing that should be addressed to make the connection between the modules simpler. This
could be achieved by using black- or whiteboards for messages between modules. The
boards could also be used as a knowledge base and therefore eliminating the need for
another 3rd party system. This could also help spread the modules and even parts of a

module to more machines for better scalability.

Palli R Prainsson 61

6.3 Conclusion

Even though the system is not perfect it gives a really good starting point for implement-
ing emotions and social norms into massive multiplayer game environments. It is possible
to extend the current modules for years to come. The architecture of the system also pro-
vides a good support for adding completely new modules to it. The three modules we
have currently included provide us with a system where agents are able to show emo-
tional responses to dynamic events occurring in the environment. The agents can perform
complex social behaviours and react to the social behaviours of other agents. The user can
give his avatar high level commands, who will then try to achieve that goal in a socially
believable manner. This system also provides us with an excellent platform for further

research into integrating human behaviours into autonomous agents.

62

63

Bibliography

Aylett, R., Dias, J., & Paiva, A. (2006). An affectively driven planner for synthetic
characters. In D. Long, S. F. Smith, D. Borrajo, & L. McCluskey (Eds.), Icaps
(p. 2-10). AAAI (conf/aips/2006; 2007-11-23)

Cassell, J., Bickmore, T., Campbell, L., Vilhjalmsson, H., & Yan, H. (2001). More than
just a pretty face: conversational protocols and the affordances of embodiment.
Knowledge-Based Systems, 14, 55-64. (ID: 257; written)

Chalupsky, H., MacGregor, R., & Russ, T. (n.d.). Powerloom manual [Computer software
manual]. (Available at http://www.isi.edu/isd/LOOM/PowerL.oom)

Fikes, R. E., & Nilsson, N. J. (1971). Strips: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2, 189-208.

Frank, J., & Jonsson, A. K. (2003). Constraint-based attribute and interval planning.
Constraints, 8(4), 339-364. (2004-02-12)

Gillies, M., & Ballin, D. (2004, July 19-23). Integrating autonomous behavior and
user control for believable agents. In Autonomous agents and multi-agent systems
(p. 336-343). ACM Press. (ID: 481)

Gratch, J., & Marsella, S. (2004, 12). A domain-independent framework for modeling
emotion. Cognitive Systems Research, 5(4), 269-306.

Hall, E. T. (1966). The hidden dimension. New York, NY: Doubleday.

Hill, R. W., Gratch, J., Marsella, S., Rickel, J., Swartout, W., & Traum, D. (2003). Virtual
humans in the mission rehearsal exercise system. KI Special Issue on Embodied
Conversational Agents, 03(4), 5-10. (ID: 466)

Hofstede, G. H. (2001). CultureSs consequences : comparing values, behaviors, institu-
tions, and organizations across nations. California: Thousand Oaks, Calif : Sage
Publications,.

Jonsson, A. K., McGann, C., Pedersen, L., latauro, M., & Rajagopalan, S. (2005). Au-
tonomy software architecture for lorax (life on ice robotic antarctic explorer). In
B. Battrick (Ed.), Proceedings of the i-sairas 2005. AG Noordwijk, The Nether-
lands: ESA Publications Division.

64 Dynamic Planning for Agents in Games using Social Norms and Emotions

Kendon, A. (1982). Conducting interaction: Patterns of behavior in focused encounters.
Cambridge University Press.

Lazarus, R. S. (1991). Emotion and adaptation. New York: Oxford.

Marsella, S. C., & Gratch, J. (2009). Ema: A process model of appraisal dynamics.
Cognitive Systems Research, 10(1), 70-90. (Modeling the Cognitive Antecedents
and Consequences of Emotion)

Mascarenhas, S., Dias, J., Enz, S., & Paiva, A. (2009). Using rituals to express cultural
differences in synthetic characters. In S. Decker Sichman & Castelfranchi (Eds.),
(p- 305-312). IFAAMAS.

Mehrabian, A. (1996). Pleasure-arousal-dominance: A general framework for describing
and measuring individual differences in temperament. Current Psychology, 14(4),
261-292.

Mori, M. (1970). The uncanny valley. Energy, 7(4).

Ortony, A., Clore, G. L., & Collins, A. (1988). The cognitive structure of emotions.
Cambridge University Press.

Pedica, C. (2009). Spontaneous avatar behaviour for social territoriality.

Pedica, C., & Vilhjdlmsson, H. H. (2009). Spontaneous avatar behavior for human ter-
ritoriality. In Z. Ruttkay, M. Kipp, A. Nijholt, & H. H. Vilhjalmsson (Eds.), Iva;
lecture notes in computer science (Vol. 5773, p. 344-357). Springer. (conf/iva/2009;
2009-09-21)

Pedica, C., Vilhjdlmsson, H. H., & Larusdéttir, M. (2010). Avatars in conversation:
The importance of simulating territorial behavior. In J. M. Allbeck, N. I. Badler,
T. W. Bickmore, C. Pelachaud, & A. Safonova (Eds.), Iva (Vol. 6356, p. 336-342).
Springer.

Pokahr, A., Braubach, L., & Lamersdorf, W. (2005a). A goal deliberation strategy for bdi
agent systems. In T. Eymann, F. Kliigl, W. Lamersdorf, M. Klusch, & M. N. Huhns
(Eds.), Mates; lecture notes in computer science (Vol. 3550, p. 82-93). Springer.
(conf/mates/2005; 2006-01-26)

Pokahr, A., Braubach, L., & Lamersdorf, W. (2005b). Jadex: A bdi reasoning engine. In
G. Weiss, R. Bordini, M. Dastani, J. Dix, & A. Fallah Seghrouchni (Eds.), (Vol. 15,
p. 149-174). Springer US.

Pokahr, A., Braubach, L., Walczak, A., & Lamersdorf, W. (2007). Jadex: Engineer-
ing goal-oriented agents. In D. G. Fabio Luigi Bellifemine Giovanni Caire (Ed.),
Developing multi-agent systems with jade. Wiley.

Si, M., Marsella, S., & Pynadath, D. V. (2006). Social norm models in thespian: Us-
ing decision theoretical framework for interactive dramas. In Proceedings aisbS06
(p. 70-77). AISB.

Palli R Prainsson 65

Silva, L. de, & Padgham, L. (2004). A comparison of bdi based real-time reasoning
and htn based planning. In G. I. Webb & X. Yu (Eds.), Australian conference on
artificial intelligence; lecture notes in computer science (Vol. 3339, p. 1167-1173).
Springer. (conf/ausai/2004; 2004-12-10)

Smith, C. A., & Lazarus, R. S. (1990). Emotion and adaptation. In L. A. Pervim (Ed.),
(p- 609-637). NY: Guilford Press.

Thangarajah, J., Padgham, L., & Harland, J. (2002). Representation and reasoning for
goals in bdi agents. In M. J. Oudshoorn (Ed.), Acsc; crpit (Vol. 4, p. 259-265).
Australian Computer Society. (conf/acsc/2002; 2004-08-24)

Thorisson, K. R. (1999). A mind model for multimodal communicative creatures &
humanoids. International Journal of Applied Artificial Intelligence, 13, 449-486.

Tomlinson, B., & Blumberg, B. M. (2003). Alphawolf: Social learning, emotion and
development in autonomous virtual agents. In (Vol. Vol. 2564, p. 35-45). Springer
Berlin / Heidelberg.

Traum, D. R., Swartout, W. R., Marsella, S., & Gratch, J. (2005). Fight, flight, or
negotiate: Believable strategies for conversing under crisis. In T. Panayiotopoulos,
J. Gratch, R. Aylett, D. Ballin, P. Olivier, & T. Rist (Eds.), Iva (Vol. 3661, p. 52-64).
Springer.

Vilhjalmsson, H. (1997). Autonomous communicative behaviors in avatars. (ID: 414;
Media Arts and Sciences)

Vilhjalmsson, H. (2004). Animating conversation in online games. In M. Rauterberg
(Ed.), Entertainment computing icec 2004. Berlin: Springer.

Walczak, A., Braubach, L., Pokahr, A., & Lamersdorf, W. (2006). Augmenting bdi
agents with deliberative planning techniques. In R. H. Bordini, M. Dastani, J. Dix,
& A. E. Fallah-Seghrouchni (Eds.), Promas; lecture notes in computer science (Vol.
4411, p. 113-127). Springer. (conf/promas/2006; 2007-09-10)

Weld, D. S., Anderson, C. R., & Smith, D. E. (1998). Extending graphplan to handle
uncertainty & sensing actions. In Aaai/iaai (p. 897-904). (2002-01-03)

66

School of Computer Science
Reykjavik University
Menntavegi 1

101 Reykjavik, Iceland

Tel. +354 599 6200

Fax +354 599 6201
www.reykjavikuniversity.is
ISSN 1670-8539

