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Abstract

This thesis presents the NV-tree (Nearest Vector tree), which addresses the
specific problem of efficiently and effectively finding the approximate k-
nearest neighbors within large collections of high-dimensional data points.
The NV-tree is a very compact index, as only six bytes are kept in the in-
dex for each high-dimensional descriptor. It thus scales extremely well when
indexing large collections of high-dimensional descriptors. The NV-tree ef-
ficiently produces results of good quality, even at such a large scale that the
indices can no longer be kept entirely in main memory. We demonstrate this
with extensive experiments presenting results from various collection sizes
from 36 million up to nearly 30 billion SIFT (Scale Invariant Feature Trans-
form) descriptors.

We also study the conditions under which a nearest neighbour search pro-
vides meaningful results. Following this analysis we compare the NV-tree to
LSH (Locality Sensitive Hashing), the most popular method for ε-distance
search, showing that the NV-tree outperforms LSH when it comes to the
problem of nearest neighbour retrieval. Beyond this analysis we also dis-
cuss how the NV-tree index can be used in practise in industrial applications
and address two frequently overlooked requirements: dynamicity—the abil-
ity to cope with on-line insertions of new high-dimensional items into the
indexed collection—and durability—the ability to recover from crashes and
avoid losing the indexed data if a failure occurs. As far as we know, no other
nearest neighbor algorithm published so far is able to cope with all three
requirements: scale, dynamicity and durability.
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Útdráttur

Í þessari ritgerð setjum við fram vísinn NV-tré (e. NV-tree) sem lausn á
ákveðnu afmörkuðu vandamáli: að finna, á hraðvirkan og markvirkan hátt,
nálgun á k næstu nágrönnum í stóru safni margvíðra gagnapunkta. NV-tréð
er mjög fyrirferðarlítill vísir, þar sem aðeins sex bæti eru geymd fyrir hvern
margvíðan lýsivektor (e. descriptor). NV-tréð skalast því mjög vel þegar því
er beitt á stór söfn margvíðra lýsivektora. NV-tréð skilar góðum niðurstöðum
á skömmum tíma, jafnvel þegar vísarnir komast ekki fyrir í minni. Við
sýnum fram á þetta með niðurstöðum tilrauna á söfnum sem innihalda frá 36
milljónum upp í nærri 30 milljarða SIFT (e. Scale Invariant Feature Trans-
form) lýsivektora.

Við rannsökum einnig þau skilyrði sem þurfa að vera fyrir hendi til að leit
að næstu nágrönnum skili merkingarbærum niðurstöðum. Í framhaldi af
þeirri greiningu berum við NV-tréð saman við LSH (e. Locality Sensitive
Hashing), sem er vinsælasta aðferðin fyrir ε-fjarlægðarleit, og sýnum að NV-
tréð er mun hraðvirkara en LSH. Til viðbótar við þessa greiningu ræðum
við hagnýtingu NV-trésins í iðnaði og uppfyllum tvær þarfir sem oft er litið
framhjá: breytileika (e. dynamicity)—getu til að höndla í rauntíma viðbæ-
tur við lýsingasafnið—og varanleika (e. durability)—getu til að endurheimta
vísinn og forðast gagnatap ef um tölvubilun er að ræða. Að því er við best
vitum, uppfyllir enginn annar þekktur vísir allar þessar þrjár þarfir: skalan-
leika, breytileika og varanleika.
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Chapter 1

Introduction

Nearest neighbour search in high-dimensional space is a theoretical problem that has im-
pact on many practical applications. These practical applications range from content-
based image retrieval and copyright protection through finding correlations in stock data
or geo statistics (e.g. in the field of metrology) up to analysing and aligning similar or-
ganic molecules with desired properties. Nearest neighbor search is therefore a field of
interest for many different research communities, and over the last two decades signifi-
cant research effort has been spent trying to improve its efficiency. In the work described
in this thesis, we have focused on one particular field of usage—search for visual content
in the context of near-duplicate detection for images and videos for the purpose of detect-
ing copyright infringements. Such techniques have many applications, such as copyright
detection and multimedia forensics, and our emphasis is on the properties required for
large-scale industrial applications.

1.1 From Labs to the Real World

It must be mentioned at this stage that the database index described in this thesis is the
foundation of the Icelandic start-up company Videntifier Technologies and has been de-
ployed in practise within law enforcement. The main area of usage is the analysis of large
amounts of illegal image and video content, typically content depicting the sexual abuse
of children or extreme terrorist and hate-speech propaganda that is distributed over the
world wide web. The technology is already in use with the ICSE database of Interpol, the
CRIS system of the US National Center of Missing and Exploited Children (NCMEC),
the UK Home Office and the UK secret service. Each of these organisations deals with
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collections of tens of millions of image files and video files, with a combined total length
of more than 100,000 hours.

Obviously these large collections of multimedia cannot be processed any longer by hu-
mans and must be supported by computer automation. The computer logically connects
visually similar content, so that the investigator can quickly compare and analyse only
relevant visual information and—in the best case—connect with some additional intelli-
gence that thus helps to recover the victim and find the perpetrators of the crime. An-
other closely related application is the pre-analysis of content found on seized storage
devices, presented in the two publications and one keynote in the Multimedia in Foren-
sics workshops (Lejsek, Ásmundsson, Daðason, et al., 2009; Lejsek et al., 2010; Lejsek,
2010).

Special emphasis is put on the scalability of the proposed algorithm, a property that is
heavily underestimated in practical life. Due to the proliferation of high-speed Internet,
and the spread of mobile phones and digital cameras, the sheer number of image and
video files distributed goes into the trillions. So even in small, well-defined niche appli-
cations the collection quickly grows to millions or even billions of files. This fact has
been addressed to some extent within the research community, as scalability is central to
many recent research contributions. But in real life many managers and business leaders
have not yet understood that problems might become significantly more complex with
scale and thus performance parameters correlated with problem size are often not consid-
ered.

The vast majority of the research contributions focusing on scalability are designed to
work in main memory only and explicitly disregard disks. The reason for this design
decision lies in the emphasis on performance, as working with a multimedia collection in
memory helps guaranteeing small response times. Therefore, these techniques typically
compress severely the representation of the multimedia features to fit more and more
data into memory in order to keep the disks out of the way. However, such indexing
schemes cannot handle collections larger than main memory and we believe that this is not
a sustainable strategy for industry—that eventually data quantity will win over memory
capacity.

In the real world, applications dealing with multimedia material must also face two very
important challenges in addition to scalability. The first challenge is dynamicity—the
ability to cope with on-line insertions of new high-dimensional items into the indexed
collection while the system is up and running. Facebook, for example, claims that its
collection grows by roughly 1.4 billion images every week; coping with such dynamic
collections has not been considered in the literature of nearest neighbor retrieval. The



Herwig Lejsek 3

second challenge, which has not been studied in recent literature either, is durability—the
ability to recover from crashes and avoid losing the indexed data if a failure occurs.

It turns out that, as far as we know, no nearest neighbor algorithm published so far is
able to cope with scale, dynamicity and durability. This may have prevented companies
from developing business models around multimedia similarity searches. In this thesis,
we have therefore proposed the NV-tree, a disk-based high-dimensional index, which
handles all three industry requirements. While the work on compressing descriptors to
fit larger and larger collections into memory is important, we believe that an index that
gracefully adapts to disk-based processing is an equally important building block for truly
scalable multimedia applications.

1.2 Contributions

The remainder of this thesis is organised into five chapters. Chapter 2 describes the state
of the art in high-dimensional indexing and then summarizes the differences between the
proposed NV-tree structure and alternative approaches. The main contributions of this
thesis are then presented in Chapters 3 to 5, before concluding in Chapter 6.

As each of Chapters 3 to 5 is based on one publication (or two, in the case of Chapter 5)
this order represents a time-line of our investigation into the properties of the NV-tree.
Note that since the results are obtained over a long period of time, the hardware used to
obatin the initial results is now outdated. We believe, however, that this does not invalidate
those results and the demonstrated tradeoffs.

The main contributions of Chapters 3 to 5 can be summarised as follows:

• In Chapter 3 we first propose the NV-tree, a disk-based data structure that gives
good approximate answers with a single random disk read, even for very large
collections of high-dimensional data. Furthermore, searching the NV-tree incurs
negligible CPU overhead, making it suitable for main-memory based processing.
We describe the fundamentals of the NV-tree, as well as different strategies for its
construction.

Second, we analyze the properties of a large-scale copy detection application using
the well known SIFT descriptors (Lowe, 2004). We show that SIFT descriptors are
very distinctive and have high contrast. Furthermore, we show that using contrast-
based ground truth sets is necessary to obtain meaningful results for all queries.
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Third, we analyze the performance of the NV-tree and show that the NV-tree works
well for our workload. We show that using a single NV-tree yields high recall, but
also a number of false positives. By combining the results from two or three NV-
trees, however, most of those false positives can be avoided while retaining the high
recall.

Fourth, we compare the NV-tree to two competing data structures. In particular, we
focus on LSH which is currently a popular high-dimensional indexing method. We
show that LSH can return results of similar quality, but only by using many more
disk reads.

• In Chapter 4 we then look at the performance implications of redundancy in the
original NV-tree, caused by overlapping partitions. We show that it is simply
necessary to remove the overlap when indexing ever larger collections of high-
dimensional feature vectors. We show that removing the overlap does in fact re-
duce result quality, but we propose three different strategies to “re-capture” that
result quality; these strategies more than compensate for the losses due to lack of
redundancy.

Secondly, we present two performance studies which compare the new “overlap-
free” NV-tree with previous results, showing that although more non-overlapping
NV-trees are required for retrieval quality, each index is so much smaller that re-
trieval is actually faster and that retrieval quality and performance are not affected
significantly when the collection size grows to 2.5 billion descriptors.

• In Chapter 5 we finally demonstrate how to enforce ACID properties (atomicity,
consistency, isolation, and durability) within the NV-tree for a large class of impor-
tant applications, and show that with our implementation dynamic inserts can be
efficiently managed.

We then show detailed performance evaluations of the scalability of the NV-tree
using standard image benchmarks embedded in collections of up to 30 billion high-
dimensional vectors. Our analysis of the literature shows that these are by far the
largest single-server experiments reported anywhere.

Overall, we show that the NV-tree is not only an extremely scalable approximate index-
ing strategy, but also a unique approximate nearest neighbor search system that achieves
scalability, dynamicity and durability, and thus meets industrial standards for a database
management solution.
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Chapter 2

Background

There are many studies in the literature that address the problem of nearest neighbour
search in high-dimensional space. In this chapter we sketch the development since the
early 1980s and how the community has slowly been progressing towards solving this
phenomenon that we refer to today as the curse of dimensionality. This term was coined
by Bellmann (1961), who was the first to point out that this problem was far from trivial
and—as we know today—is only solvable (in a meaningful way) for data collections with
well-defined characteristics.

As all of our experiments are related to content-based image retrieval we start by briefly
introducing the developments in this particular domain in order to give the reader a bet-
ter understanding of the overall problem domain and the applications this thesis targets.
As our focus is squarely on methods for near-duplicate detection, other related areas are
not considered, such as methods for semantic content analysis, classification or cluster-
ing. See Datta, Joshi, Li, and Wang (2008) and Chang (2011) for detailed surveys of the
field.

2.1 Content-Based Retrieval

Since the early days of content-based image retrieval, computer vision researchers have
tried to capture the most important visual characteristics of a given piece of content in
so-called feature vectors. In these early days such vectors only extracted the most basic
features, namely color and simple shape information, and encoded this information into a
high dimensional vector, typically ranging from 64 to 256 dimensions. In these vectors,
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each entry is typically a number computed from specific properties of the content, such
as particular range of pixel colors in a color histogram.

In order to query such a content-based retrieval system, the user could either perform
a query by example (e.g., choosing a displayed image and asking for images similar to
the selected one) or specify a specific color distribution. As a similarity metric, most
researchers chose Minkowski metrics, in particular Euclidean or Manhattan distance, be-
cause of their simple implementation and relatively low computational complexity.

In the 1980s the typical strategy for performing content-based retrieval was to extract
only a single, global feature vector from every piece of visual content. This strategy
made the overall description of the content very imprecise because each vector failed to
capture details of the visual content and also because these feature vectors were often
compressed (e.g., through dimensionality reduction) to apply good high dimensional in-
dexing techniques that were both fast in computation and high in retrieval quality. Due
to the imprecision of the description, these strategies exhibited severe lack of robustness
against simple image modifications; color histograms, for example, can be foiled simply
by cropping away parts of an image that are of minor interest. Also their recognition
power suffers since extracting just one major shape or texture is not descriptive enough
for a whole image, which usually contains many small details which are important for our
perception.

In order to overcome the lack of recognition power due to using just one global descrip-
tor, Florack, ter Haar Romeny, Koenderink, and Viergever (1994) devised the use of a
fine-grained image recognition scheme for grey-level images based on local descriptors.
Each of these local descriptors describes a small, local area of the image, so-called visual
interest points. Such interest points are calculated using specific visual algorithms and
typically reflect areas with specific visual characteristics (e.g., edges, corners, or contrast
changes). The number of descriptors per image can vary significantly, depending on the
size, resolution, quality and contents of the images. For typical images, several hundreds
of descriptors may be created; for large, high quality images, even more than a thousand
descriptors. To know which image a descriptor has been computed from, image identifiers
are stored together with the descriptors.

Lowe (1999) introduced the so-called SIFT (Scale Invariant Feature Transform) local de-
scriptor method by making efficient use of scale-space theory and the Gaussian kernel
(DoG = Difference of Gaussians) for interest point detection. The scale-space theory was
developed by Lindeberg (1994) and discussed in the concept of interest point detection
by (Lindeberg, 1998). It finds interest points when the DoG generates a blob-like structure
at a particular image scale, which happens especially in areas of the image with strong
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contrast changes. Brown and Lowe (2002) improved the method in 2002 by introducing
inter-pixular point locations and Lowe (2004) described in even more detail the param-
eter choices and the encoding of the gradient histogram around the interest points into a
characteristic 128-dimensional feature vector of unified length.

Local descriptor schemes have shown to be robust to many different types of image mod-
ifications (e.g., see Amsaleg (2014) for a summary of the literature). They are insensitive
to a whole variety of different transformations, such as resizing, color variation, crop-
ping, rotation, jpeg-compression, mirroring, various illumination changes, partial occlu-
sions, etc. In order to evaluate the robustness of different local descriptor schemes, the
copyright protection benchmarking tool Stirmark, created by Petitcolas et al. (2001), is
typically used. Stirmark takes a set of images and transforms them using various graph-
ical filters, including rotation, rescaling, cropping, affine distortions, jpeg-compression,
convolution filters, and many combinations of such transformations.

Local image descriptors can be extended to video retrieval, either by computing de-
scriptors for key frames or by finding descriptors that are prominent in many frames.
See Laptev (2005) for a survey of video retrieval methods.

To visually compare two images using a local descriptor scheme, the two descriptor sets
are compared by calculating the Euclidean distance between each pair of descriptors;
short distances indicate a match, while longer distances indicate differences. The strategy
for identifying similar images (e.g., near-duplicates) within a large image collection is
very similar. In this case a k-nearest neighbor query is run for each local descriptor
computed on the query image. Each retrieved nearest neighbor “votes” for the image
in the collection that it is computed from. Then, the most similar images are found by
ranking the images according to their number of votes. In general, the number of images
receiving at least one vote is very large. If the database does not contain any image that
is similar to the query image, then the votes of all the images returned are roughly similar
and of small values. In contrast, if one or more images are indeed similar, then they have
many more votes.

Because of their high robustness and their fast extraction speed the SIFT descriptors have
become a de-facto standard in the field of content-based image retrieval and we used them
as reference descriptors throughout the entire thesis. It must be mentioned, however, that
there exist a whole range of alternative algorithms that might even perform better for cer-
tain transformations. Performance evaluations of various local descriptor schemes were
reported by, for example, Mikolajczyk and Schmid (2003, 2005) and Lejsek, Ásmunds-
son, Jónsson, and Amsaleg (2006).
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Furthermore, as mentioned in the Introduction, most recent research contributions focus-
ing on scalability are designed to work in main memory only and explicitly disregard
disks. This is done, e.g., by aggregating the many SIFT descriptors to a single (or a few)
very high-dimensional descriptor, which is then indexed. The reason for this design is
that working with a multimedia collection in memory helps guaranteeing small response
times. Good representatives of this approach are the VLAD descriptors by Arandjelovic
and Zisserman (2013) and work by Jégou et al. (2012).

In this thesis, we use large SIFT collections because we are focusing on the scalability of
retrieval; since the SIFT descriptors produce very large collections of descriptors, they are
the perfect candidate for our experimental evaluations. While the work on compressing
descriptors to fit larger and larger collections into memory is also important, we believe
that an index that gracefully adapts to disk-based processing is an equally important build-
ing block for truly scalable multimedia applications.

2.2 Exact Nearest Neighbor Algorithms

Early proposals for handling high-dimensional vectors date back to the 1980s. First ap-
proaches, such as the R-tree and KD-tree, have shown to work well for relatively low-
dimensional data with dimensionality of up to 10–15. When turning to higher dimen-
sional spaces, however, these approaches turned out to deliver worse performance than a
sequential scan through the whole collection.

In the following years several other solutions for solving neighbor search in higher di-
mensional space have been discussed. Most of them were derived from the above men-
tioned data structures (e.g., the SR-tree by Katayama and Satoh (1997) or the K-D-B-tree
by Robinson (1981)), but none of them worked particularly well for large collections of
high-dimensional data.

Then in 1999 and 2000 two independent papers were published that changed the research
direction on this topic significantly. Beyer, Goldstein, Ramakrishnan, and Shaft (1999)
and Hinneburg, Aggarwal, and Keim (2000) studied the question of under what circum-
stances nearest neighbor search in high-dimensional space actually creates meaningful
results. Their conclusion was that nearest neighbor search for a given query vector was
only meaningful when the neighbor vectors were significantly closer to the query vector
than all the other vectors in the collection. In the case when vectors were randomly dis-
tributed over the whole high-dimensional space, all vectors are nearly equidistant to each
other, thus rendering the retrieval of nearest neighbors totally pointless.
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2.3 Approximate Nearest Neighbor Algorithms

Due to this fact, researchers began looking into approximate indexing methods. It started
with approximating an exhaustive search through the whole descriptor collection (Weber,
Schek, & Blott, 1998) and then diverted into three different directions. One line of work
is based on indexing data clusters. One of the most representative technique is the hierar-
chical k-means decomposition of the data collection: Voronoi cells are created to partition
and store the high-dimensional vectors, and the cells are organized as a multi-level tree
to facilitate traversal and improve response time (Fukunaga & Narendra, 1975). Many
variants of this basic idea have been proposed (e.g., see (Li, Chang, Garcia-Molina, &
Wiederhold, 2002; Nistér & Stewénius, 2006; Fraundorfer, Stewénius, & Nistér, 2007;
Philbin, Chum, Isard, Sivic, & Zisserman, 2007; Chierichetti et al., 2007; Philbin, Chum,
Isard, Sivic, & Zisserman, 2008; Guðmundsson, Jónsson, & Amsaleg, 2010)). This work
has been extended to cope with collections of up to 30B descriptors, using distributed
“big data” techniques such as Hadoop, resulting in the DeCP algorithm (Guðmundsson,
Amsaleg, & Jónsson, 2012; Shestakov, Moise, Guðmundsson, & Amsaleg, 2013; Moise,
Shestakov, Guðmundsson, & Amsaleg, 2013; Guðmundsson, 2013).

A second line of work developed around the idea of approximate (fuzzy) hashing. Fuzzy
hashing approaches typically only look for neighbors within a certain distance radius of
the actual query vector. The earliest notable approximate method was Locality Sensitive
Hashing (LSH), which is an approximate hashing scheme initially proposed by Gionis,
Indyk, and Motwani (1999) for Hamming distance and later extended to handle Euclidean
distance by Datar, Indyk, Immorlica, and Mirrokni (2006). Basically, LSH uses a large
number of hashing functions to project high-dimensional vectors onto segmented random
lines. At query time, the hash tables are probed with the query vector, and candidates from
all these hash tables are then aggregated to find the true neighbors. The performance of
such hashing schemes is highly dependent on the quality of the hashing functions. Hence,
many approaches have been proposed to improve hashing (e.g., see (Weiss, Torralba, &
Fergus, 2008; Jain, Kulis, & Grauman, 2008; Tao, Yi, Sheng, & Kalnis, 2009; Wang,
Kumar, & Chang, 2010; Paulevé, Jégou, & Amsaleg, 2010; Zhang, Agrawal, Chen, &
Tung, 2011; Jin et al., 2013)) as well as to reduce the number of hash tables, which in
turn diminishes the high storage costs of these tables (Lv, Josephson, Wang, Charikar, &
Li, 2007; Joly & Buisson, 2008). Tuning hash functions is reported to be a complicated
task and some schemes try to automatically adapt to the data distribution (Bawa, Condie,
& Ganesan, 2005).
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A third approach is based on the idea of a search tree structure. The NV-tree is one
proponent of this group. Another piece of work which has influenced the idea of the
NV-tree significantly is the concept of median rank aggregation. This concept was first
applied by Fagin, Kumar, and Sivakumar (2003) and builds upon the idea that not the
actual feature vectors are stored in the indexing structure but rather references that are
aggregated over a whole set or indexing structure, returning the feature with the highest
references as the nearest neighbour, the one with second highest as the second highest
and so on. Major drawback of that algorithm, whose basic search structure is a set of B+-
trees, is the excessive search across the individual trees making it necessary to aggregate
about 5% of the total data collection. Yet another approach in the category of search trees
are the Metric tree by Uhlmann (1991) and a variant named Spill-tree proposed by Liu,
Moore, Gray, and Yang (2004), which is a tree-structure based on splitting dimensions in
a round-robin manner, and introducing (sometimes very significant) overlap in the split
dimension to improve retrieval quality.

There are a couple of very recent approaches. Muja and Lowe (2014) proposed, through
the FLANN library, a series of high-dimensional indexing techniques based on random-
ized KD-trees, k-means indexing and random projections. Jégou, Douze, and Schmid
(2011) proposed a slightly different high-dimensional indexing scheme, called product
quantization. It has been demonstrated that indexing data clusters works best when the
representatives truly capture the location of points in the high-dimensional space, that is,
when using a very large value for k. This is indeed observed by Nistér and Stewénius
(2006). As it is computationally difficult to run k-means with a very large k (in the or-
der to several hundred millions to billions), however, product quantization decomposes
the high-dimensional space into low-dimensional subspaces which are indexed indepen-
dently. This produces very compact code words representing the vectors that, when used
together with an asymmetric approximate distance function, exhibit very good perfor-
mance for a moderate memory footprint. Several variants of product quantization have
been published (e.g., see (Xioufis, Papadopoulos, Kompatsiaris, Tsoumakas, & Vlahavas,
2014; Ge, He, Ke, & Sun, 2014; Kalantidis & Avrithis, 2014; Heo, Lin, & Yoon, 2014));
in particular Sun, Wang, Xu, and Zhang (2013) propose an indexing scheme based on
product quantization, using ten computers to fit the 1.5 billion images collection they
index in memory.
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2.4 Discussion from a Database Perspective

Overall, most of the high-dimensional indexing schemes for nearest neighbor search dis-
regard disks. They typically tackle the scalability problem by relying on clever and ef-
fective compression mechanisms for the feature vectors—the best example may be the
schemes based on product quantization. However, there is a limit to the number of im-
ages that can be indexed. According to Jégou et al. (2011), an extremely well optimized
indexing scheme based on product quantization needs 32 to 128 bytes per image for near
duplicate detection, and several kilobytes for object recognition. Even with the most
compact representation, it is thus difficult to go beyond 10 billion images as a computer
with more than 320 GB of main memory becomes quite expensive. Going to distributed
settings is possible, but this adds significant complexity and increases the likelihood of
failures. Please note also that the ability of most indexing techniques to cope with dy-
namic inserts remains a question, in particular at such a large scale.

Many variants of the original R-trees and KD-trees do take disks into account and sup-
port dynamic inserts. Concurrency control algorithms have been developed for these two
indexing schemes and they can be made fault tolerant by implementing the write-ahead-
logging protocol. These two approaches, however, are known to perform poorly when
indexing very large collections of high-dimensional data. Multiple randomized KD-trees,
as presented by Muja and Lowe (2014), cope much better with scale. The datasets they
used were large, both when a single server was used and when distributed search across
multiple machines was used to cope with the 80 million tiny images of Torralba, Fergus,
and Freeman (2008). However, it has not yet been demonstrated that randomized KD-
trees can handle collections containing a billion vectors or more. The API in the FLANN
library for randomized KD-trees only allows for bulk-loading the index, with no sugges-
tion that dynamic inserts are supported. Note, however, that the index can be pushed to
disk and later read back, but no comment on recovery is provided by Muja and Lowe
(2014).

The Spill-tree has shown to work for a collection of up to 1.5 billion high-dimensional
feature vectors representing the same number of images (Liu, 2006; Liu, Rosenberg, &
Rowley, 2007). In that study two thousand workstations were used, presumably having
at least a terabyte or two of total main memory. Due to the significant added complexity
using such massive amounts of resources cannot be considered economical. Already Gray
and Putzolu (1987) and Gray and Graefe (1997) showed that using very large main mem-
ory is not economical; that data which is accessed less frequently than every five minutes
should not be kept in main memory.
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Sun et al. (2013) needed 10 common servers to support real-time search on 1.5 billion
images. Each server indexed between 100 and 200 million images with about 60 GB
of memory. While large-scale collections are addressed well by this work, it is com-
pletely main-memory oriented which explains why the aggregated memory of ten servers
is needed to fit the collection. Disks are not used, so the index is not persistent and does
not resist failures, and no information on dynamic inserts is given. If one server fails, the
entire system is down and re-indexing the images might be needed. Similar comments
can be made about the work described by Jégou et al. (2011) where 2 billion vectors are
indexed (on a single machine, however).

Zäschke, Zimmerli, and Norrie (2014) combine binary patricia-tries (Nickerson & Shi,
2008) with a multi-dimensional approach similar to quadtrees while being navigable
through hypercubes. The resulting PH-tree is able to store its data pages on disk to pro-
vide persistent storage for the indexed data and Zäschke et al. (2014) claim the PH-tree
can handle updates, but neither consistency issues nor support for the ACID properties of
transactions are discussed.

The only method which addressed scale similar to that reported in this thesis, is the DeCP
algorithm (Moise, Shestakov, Guðmundsson, & Amsaleg, 2013; Guðmundsson, 2013).
This work, which stems from the same research group as the work reported in this the-
sis, focuses on a very simple disk-based clustering method—essentially the first step of
a k-means clustering algorithm—but uses a large number of workstations to index the
collection and answer queries. While the scale of the experiments is indeed impressive,
the philosophy of the system is quite different: it is dedicated to processing large batches
of queries and cannot run interactively. Furthermore, that work has not addressed the
dynamicity and durability requirements.

The NV-tree is a disk-based data structure, which builds upon a combination of projec-
tions of data points to lines and partitioning of the projected space. By repeating the
process of projecting and partitioning, data is eventually separated into small partitions
which can easily be fetched from disk with a single disk read, and which are highly likely
to contain all the close neighbors in the collection. In this thesis we develop the NV-
tree as a full-fledged database solution, addressing all three requirements of scalability,
dynamicity and durability.
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Chapter 3

Overlapping NV-tree

This chapter addresses approximate disk-based search in very large high-dimensional col-
lections. It makes several major contributions:

• First, we propose the NV-tree, a disk-based data structure that gives good approx-
imate answers with a single random disk read, even for very large collections of
high-dimensional data. Furthermore, searching the NV-tree incurs negligible CPU
overhead, making it suitable for main-memory based processing. We describe the
fundamentals of the NV-tree, as well as different strategies for its construction.

• Second, we analyze the properties of a large-scale copy detection application using
the well known SIFT descriptors (Lowe, 2004). We show that the SIFT descriptors
are very distinctive and have high contrast, even in large collections. Furthermore,
we show that using contrast-based ground truth sets is necessary to obtain mean-
ingful results for all queries.

• Third, we analyze the performance of the NV-tree and show that the NV-tree works
well for our workload. We show that using a single NV-tree yields high recall, but
also a number of false positives. By combining the results from two or three NV-
trees, however, most of those false positives can be avoided while retaining the high
recall.

• Finally, we compare the NV-tree to two competing data structures. In particular, we
focus on LSH which is currently a very popular high-dimensional indexing method.
We show that LSH can return results of similar quality, but only by using many more
disk reads.

The remainder of this chapter is organized as follows. First, we present the NV-tree in
Section 3.1, and its implementation details in Section 3.2. Then we present the collec-
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tion and workload used in our experiments in Section 3.3. In Section 3.4, we analyze the
ground-truth result quality of our workload, and in Section 3.5 we describe the perfor-
mance of the NV-tree. In Section 3.6 we compare the performance of the NV-tree to that
of LSH. We conclude with a summary in Section 3.7.

3.1 The NV-tree

The NV-tree (Nearest-Vector-tree) is a disk-based data structure designed to answer k-
nearest neighbor search in very large collections of high-dimensional feature vectors in
an approximate, yet very efficient way. In essence, it transforms costly nearest neighbor
searches in the high-dimensional space into efficient uni-dimensional accesses using a
combination of projections of data points to lines and partitioning of the projected space.
By repeating the process of projecting and partitioning, data is eventually separated into
small partitions which can be easily fetched from disk with a single disk read, and which
are highly likely to contain all the close neighbors in the collection.

The curse of dimensionality suggests that close descriptors might get separated by a parti-
tion boundary when partitioning the space. Therefore, the NV-tree also adds redundancy
by allowing the partitions to overlap. Due to the redundancy, good approximate results
are obtained by processing a single partition. The drawback, of course, is higher storage
requirements.

In this section we first outline the algorithms for NV-tree creation (Section 3.1.1) and
search (Section 3.1.2). Then we consider strategies for projections (Section 3.1.3) and
partitioning (Section 3.1.4). Finally, we highlight key properties of the NV-tree (Sec-
tion 3.1.5). The implementation of the NV-tree is described in Section 3.2.

3.1.1 NV-tree Creation

Overall, an NV-tree is a tree index consisting of: a) a hierarchy of small inner nodes,
which are kept in memory during query processing and guide the descriptor search to
the appropriate leaf node; and b) larger leaf nodes, which are stored on disk and contain
references to actual descriptors.

When the construction of an NV-tree starts, all descriptors are considered to be part of a
single temporary partition. Descriptors belonging to the partition are first projected onto
a single projection line through the high-dimensional space. Strategies for selecting the
projection lines are discussed in Section 3.1.3.
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The projected values are then partitioned into disjunct sub-partitions based on their po-
sition on the projection line. For each pair of adjacent partitions, an overlapping sub-
partition, covering 50% of both partitions, is created for redundant coverage of the parti-
tion borders. Information about all these sub-partitions, such as the partition borders on
the projection line, form the inner node of the first level of the NV-tree. Strategies for
partitioning are described in Section 3.1.4.

To build subsequent levels of the NV-tree, this process of projecting and partitioning is
repeated for all the new sub-partitions using a new projection line at each level, creating
the hierarchy of inner nodes. The process stops when the number of descriptors in a sub-
partition falls below a specified limit designed to be disk I/O friendly (this limit includes
extra space for subsequent insertions). A new projection line is then used to order the
descriptor identifiers of the sub-partition, and the ordered identifiers are written to a leaf
node on disk.

3.1.2 NV-tree Nearest Neighbor Retrieval Process

During query processing, the query descriptor first traverses the hierarchy of inner nodes
of the NV-tree. At each level of the tree, the query descriptor is projected onto the projec-
tion line associated with the current node. The search is then directed to the sub-partition
with center-point closest to the projection of the query descriptor. This process of pro-
jection and choosing the right sub-partition is repeated until the search reaches a leaf
node.

The leaf node is fetched into memory and the query descriptor is projected onto its projec-
tion line. The search then starts at the position of the query descriptor projection. The two
descriptor identifiers on either side of the projected query descriptor are returned as the
nearest neighbors, then the second two descriptor identifiers, etc. Thus, the k/2 descriptor
identifiers found on either side of the query descriptor projection are alternated to form
the ranked k approximate neighbors of the query descriptor. Note that if the leaf does not
contain k identifiers, then only the identifiers in the leaf are returned.

Note that since leaf partitions have a fixed size, the NV-tree guarantees query processing
time of a single disk read regardless of the size of the descriptor collection. Larger col-
lections need deeper NV-trees but the intermediate nodes fit easily in memory and tree
traversal cost is negligible.

As the results are based on a projection to a single line, however, false positives do arise
when processing a leaf node. Since distances can not be calculated, other means of re-
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moving false positives are required. The method we use to eliminate false positives is
based on aggregation of the ranked result sets from multiple NV-trees, which are built
independently over the same collection. Since each NV-tree is based on random projec-
tions, the contents of the ranked results are very likely to differ, except for descriptors that
are actual near neighbors. Therefore false positives can largely be eliminated by applying
any rank aggregation method to combine results from more than one NV-tree index. The
effectiveness of this method is studied in Section 3.5.3.

3.1.3 Projection Strategies

Projecting high-dimensional data points to random lines was introduced by Kleinberg
(1997) and subsequently used in some other high-dimensional indexing techniques (Fagin
et al., 2003; Datar et al., 2006; Liu et al., 2004). Such projections have two main benefits.
First, in some cases, they can alleviate data distribution problems. Second, they allow for
a clever dimensionality reduction, by projecting to fewer lines than there are dimensions
in the data. Random lines are best generated isotropically in a quasi-orthogonal manner
(requiring a minimal angle between pairs of lines).

In the NV-tree, projection lines are used at each level of the tree, and hence a strategy
is needed for selecting those lines. The default strategy is a Random strategy, which
picks random lines as described above; this strategy is simple and data independent. The
retrieval quality, however, can be improved with data-dependent generation of lines, for
example using the well known Principal Component Analysis (PCA). Instead of picking
a random line for a partition, PCA can be run to determine its best projection line; the
line with the largest projection variance. Running PCA for each partition, however, is
computationally expensive because there are many partitions and each partition holds
many points. We have therefore devised a faster Approximate PCA strategy for selecting
projection lines, which we describe in the remainder of this section.

Before starting the NV-tree creation, a large set of isotropic, quasi-orthogonal random
lines is generated and kept in a line pool in main memory. During line selection, the
partition about to be projected is first sampled. The data points in this small sample are
projected onto all the pre-computed lines, and a fraction of the lines with the highest
variance is selected. A larger sample of the same partition is then extracted and projected
onto only the selected lines. Fewer lines are in turn selected, again the ones with the
highest variance. By repeating this process a few times, a single line is finally elected as
the projection line of the partition.
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Instead of choosing the single best possible line for the partition, determined by costly
PCA calculations, this efficient process picks a “reasonably good” line from the large line
pool by using many cheap projection calculations over small samples.

3.1.4 Partitioning Strategies

A partitioning strategy is likewise needed for the NV-tree. In the following, we describe
three strategies, Balanced, Unbalanced and Hybrid. We end with a discussion of their
implications.

The Balanced strategy partitions data based on cardinality. Therefore, each sub-partition
gets the same number of descriptors, and all leaf partitions are of the same size. Although
node fanout may vary from one level to the other, depending on the desired tree height
and leaf size, the NV-tree becomes balanced as each leaf node is at the same height in the
tree.

It has been observed in the literature that the density of projections of high-dimensional
data sets onto a random line generally follows a normal distribution. As a result, the
absolute distance between partition boundaries varies significantly along the line with the
Balanced strategy. Dense areas in the data space have very close boundaries, while sparse
areas have more distant boundaries. This strategy may therefore separate close data points
from dense areas while storing together distant data points from sparse areas, which can
reduce the accuracy of the search.

The Unbalanced partitioning strategy avoids this problem, by using distances instead of
cardinalities. In this case, sub-partitions are created such that the absolute distance be-
tween their boundaries is equal. All the data points in each interval belong to the associ-
ated sub-partition. With this strategy, however, the normal distribution of the projections
leads to a significant variation in the cardinalities of sub-partitions. Due to the repeated
application of the partitioning strategy, the NV-tree becomes unbalanced as dense areas
are partitioned more often than sparse areas.

To implement the Unbalanced strategy, we calculate the standard deviation σ and mean
m of the projections along the projection line. Then a parameter α is used to determine
the partition borders as . . . ,m− 2ασ,m− ασ,m,m+ ασ,m+ 2ασ, . . .. Small adjacent
sub-partitions are merged until the resulting cardinality hits the leaf node size limit and
then written to disk. Sub-partitions containing many data points, on the other hand, are
subsequently re-partitioned. Overlapping partitions are created similarly, using σ, m and
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α, by shifting the borders by 0.5. For example, the central overlapping partition borders
are m− 0.5ασ and m+ 0.5ασ.

The sub-partitions farthest away from the mean are likely not to be partitioned again,
as their cardinality is such that they fit into a leaf node. Conversely, partitions close to
the mean are likely to require further partitioning. Thus, the “center” of an Unbalanced

NV-tree is typically partitioned deeper than its “sides”.

The Unbalanced strategy tends to produce significantly larger trees, due to two reasons.
First, it frequently creates trees that are deeper on average than the Balanced strategy.
Due to the overlapping partitions, each additional level in the tree roughly doubles its
size. Second, as partitions no longer contain precisely the same number of descriptors,
leaf partitions tend to be less filled, resulting in higher space requirement. To give an
example, consider a sub-partition which has one more descriptor than would fit in to a leaf
partition. In this case, at least three partitions would be created (including the overlapping
partition) in place of the one, giving rise to both problems described above.

In order to alleviate this data explosion problem, we propose the Hybrid strategy. This
strategy follows the Unbalanced strategy until a sub-partition is of a size that could fit
in l leaf partitions (including extra space for insertions; we have found l = 6 to be a
good number). The Balanced strategy is then used to construct the leaf partitions. As a
result, leaf partitions are better utilized and the tree is shallower, resulting in smaller space
requirements.

Overall, the Unbalanced strategy requires twice as much space as the Balanced strategy,
while the Hybrid strategy is much closer to Balanced in size. We have observed that
Unbalanced and Hybrid NV-trees yield equivalent results, but significantly better than
Balanced NV-trees.

Note that all strategies can be partitioned aggressively, by specifying many sub-partitions
in the Balanced strategy or a small α in the Unbalanced strategy. Aggressive partitioning
tends to produce shallow and wide NV-trees, while a “gentle” partitioning scheme tends
to produce deep and narrow trees. Aggressively built NV-trees occupy less disk space but
may yield lower recall.

3.1.5 Summary

Overall, an NV-tree consists of a hierarchy of small inner nodes, which fits in memory,
and larger leaf nodes, which are stored on disk and contain descriptor identifiers. In this
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section, we have described the processes for index creation, index search, and insertions
and deletions, as well as alternative strategies for the index creation.

One fundamental property of the NV-tree is that it requires a single disk read per query
descriptor. This property holds even with very large descriptor collections, making query
processing cost largely independent of the collection size.

Another fundamental property of the NV-tree is that this single disk read is used to return
approximate results in a ranked order, rather than distance order. Having a ranked result
list has three major consequences. First, since no distance calculations are required, little
CPU cost is incurred, even for large collections. Second, the descriptors themselves need
not be stored within the leaf nodes, making it possible to store many descriptor identifiers
in a single leaf node, which increases the likelihood of having actual neighbors in that leaf.
The redundancy introduced with overlapping partitions further increases that likelihood.
Third, as the results are based on a projection to a single line, false positives do arise when
processing a leaf node. Since distances can not be calculated, other means of removing
false positives are required.

3.2 NV-tree Implementation Overview

One NV-tree is stored in three different files: 1) the line pool file, which stores the details
of each random line created for the tree; 2) the in-memory file, which stores the hierarchy
of inner nodes that is kept in memory during query processing; and 3) the leaf file, which
stores all the leaves of the NV-tree.

The NV-tree is written in C++. Upon invocation, the NV-tree server first reads the line
pool file and the in-memory file, and opens the leaf node file. At that point, it can receive
requests for searches and insertions. During insertions, the server also takes care of the
maintenance of the files; insertions are discussed in Chapter 5.

In the remainder of this section, we give a high-level description of the implementation of
the NV-tree. The description focuses on the Unbalanced partitioning strategy, which re-
quires the more complicated implementation. We first outline the index creation process.
Then we describe the data structures used for storing intermediate nodes and leaf nodes,
respectively.
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3.2.1 NV-tree Creation

As described in Section 3.1.1, the NV-tree is constructed via repeated applications of
projection and partitioning. During the NV-tree creation process, the descriptor collection
is first sampled to create the initial projection line, as described in Section 3.1.3. The
collection is then sampled yet again, using a larger sample, to determine approximate
values for the α, m, and σ parameters, described in 3.1.4 (this is done to avoid sorting the
entire collection). Finally, the entire collection is scanned, and each descriptor is projected
to the initial random line. The descriptor is then assigned to the appropriate (one or two)
sub-partitions and written to temporary files for those sub-partitions. This whole process
is then repeated for each of the temporary files in a depth-first manner. When a leaf
partition is formed, the (projected value, descriptor identifier) pairs of the leaf partition
are sorted in memory by their projected values, and written to the leaf node.

3.2.2 Intermediate Nodes

As mentioned above, the NV-tree is composed of a hierarchy of small intermediate nodes
that eventually point to much larger leaf nodes. Each intermediate node contains four
arrays:

• Child: This array points to child nodes of the intermediate node, including those
child nodes created for overlapping sub-partitions. The child nodes may in turn be
intermediate nodes or leaf nodes.

• Partition Border: This array keeps track of the upper and lower borders of each
child node along the projection line. This array is used during insertions to guaran-
tee that each descriptor is inserted into all relevant sub-partitions.

• Search Border: This array is used to direct the query descriptor search to the
appropriate child node. This is done by using projection values that are half-way
between the upper and lower partition borders of adjacent child nodes.

• Projection Line: As described in Section 3.1.3, the potential projection lines are
kept in a line pool in memory. This array stores pointers into the line pool, which
point to the projection lines of the child nodes.

Each intermediate node typically has a fan-out of 2–32, including the overlapping parti-
tions. These intermediate nodes therefore require little space and can easily be kept in
main memory.
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3.2.3 Leaf Nodes

All leaf nodes are kept in a single large file on disk. Each leaf node is the size of a
suitable I/O granule and contains (projected value, descriptor identifier) pairs. For effi-
ciently finding the pair of the leaf, which has its projected value closest to the projection
of the query descriptor, leaves are organized by the projected values in a sorted look-up
table.

The leaf nodes can also be organized in a sparse manner, where fewer projected values are
stored, and interpolation is used to find the “correct” location in the leaf. With the sparse
organization, almost twice as many descriptor identifiers can fit into the leaf partition.
This typically results in half the number of leaf nodes, and a correspondingly smaller
index. The reduced space requirement comes at the potential cost of more inaccurate
query results, as the exact position of descriptors along the projection line is not available.
When evaluating this optimization, however, we observed next to no influence on the
result quality. Our implementation therefore typically only stores every 16th projected
value; this setting is used throughout the whole thesis.

3.3 Experimental Setup

In this section, we describe the experimental environment used in our performance stud-
ies. First, we describe the descriptor collection and query workload used in all the exper-
iments. Then we describe the result quality metrics studied in our analysis.

All experiments in this chapter were run on DELL PowerEdge 1850 machines, each
equipped with two 3GHz Intel Pentium 4 processors, 2GB of DDR2-memory, 1MB CPU
cache, and two (or more) 140GB 10Krpm SCSI disks. The machines run Gentoo Linux
(2.6.7 kernel) and the ReiserFS file system.

3.3.1 Descriptors and Queries

In this study we use the well-known SIFT (Scale Invariant Feature Transform) method
(Lowe, 1999, 2004), which is a standard method in the image processing community for
extracting local features from images. The SIFT extraction process is performed over sev-
eral scales of the image and finds interest points where the contrast changes significantly.
Once the interest points have been identified, the signal around them is encoded into a
128 dimensional vector, which is normalized to a length of 512.
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The descriptor collection was obtained by extracting local features from an archive of
about 150 thousand images obtained with permission from the local newspaper Morgun-
blaðið (www.mbl.is). The images are largely high-quality press photos, which are highly
varied in content. In order to reduce the number of descriptors extracted from each photo,
the images were first resized such that their larger edge was 512 pixels. The resulting
descriptor collection contained a total of 179,443,881 SIFT descriptors.

We have created query descriptors by modifying copies of images from the collection,
following the approach of Lejsek et al. (2006), using the Stirmark benchmarking tool
by Petitcolas et al. (2001). The image transformations include rotation, rescaling, crop-
ping, affine distortions and convolution filters. SIFT descriptors cope rather well with
most of these distortions at the image level (Lowe, 2004; Lejsek et al., 2006), meaning
that a significant percentage of interest points are found in the same location as in the
original image and that the corresponding descriptors are relatively close in the Euclidean
space. But the transformations also include distortions which the SIFT descriptors have
been shown not to handle well (Lejsek et al., 2006).

3.3.2 Result Quality Metrics

We place a strong emphasis on recall, for two main reasons. First, we expect only a few
answers to each query, unlike more interactive applications. Second, large scale applica-
tions typically arise with local descriptors, where many descriptors provide evidence of
matches. Such local descriptors can typically tolerate some false positives, as they are
distributed randomly among all the data items. A small number of false positives is thus
acceptable, but strong recall is imperative.

Computing result quality requires the definition of a ground truth set against which the
results are compared. In the literature, one of two different approaches is typically used
to define the ground truth set. The first approach is to run an exact k-nearest neighbor
search for every query descriptor, leading to a result set of fixed cardinality, but with
arbitrary distances. The second approach is to run an exact ε-range search for each query
descriptor, which returns all neighbors within distance of ε from the query point, leading
to a result set with a bounded distance, but of arbitrary cardinality. In both cases, an
exhaustive sequential scan is typically used to ensure that the result lists defining the
ground truth truly reflect the contents of the descriptor collection. The result quality of
the indexing scheme in question can then be computed by comparing its results to these
ground truth sets. Of course, both methods are highly sensitive to the choice of k or ε,
respectively.
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Results by Beyer et al. (1999) and Shaft and Ramakrishnan (2006), however, have shown
that high dimensional data sets must exhibit some contrast to be indexable and to draw
any meaningful conclusion from search results. In this work, contrast means that a nearest
neighbor must be significantly closer to the query point than most other points in the
dataset in order to be considered meaningful. In the absence of contrast, collections suffer
from vanishing variance and instability of near neighbors, which preclude the construction
of meaningful result sets.

A direct consequence of the theoretical analysis of Shaft and Ramakrishnan (2006) is
that it is possible to construct a contrast-based ground truth set, against which indexing
schemes can be compared. In order to construct such a set, a sequential scan may be used
to determine, for each query descriptor, all the descriptors in the dataset that fulfill a given
contrast criteria.

Using a contrast-based ground truth set has several theoretical benefits. First, the size of
the ground truth set tends to be small compared to the k-nn approach, which collects (irrel-
evant) neighbors regardless of their distance from the query descriptor. Second, using the
contrast-based ground truth alleviates the two typical problems that ε-range search faces.
On one hand, when query points fall in very dense areas, very many vectors are returned
using an ε-range query, although the results are hardly distinguishable from each other.
On the other hand, when query points fall in sparse areas, no results may be returned us-
ing an ε-range query, while there may be many useful answers in the collection. Overall,
therefore, building a ground truth based on contrast will allow more reliable result quality
measurements.

According to Lowe (2004), computing SIFT over an image collection produces a con-
trasted set of descriptors. In his work, Lowe considered the nearest neighbor n1 of a
query descriptor q meaningful if and only if d(n2, q)/d(n1, q) > 1.8, where n2 is the
second nearest neighbor (Lowe, 2004). When the nearest neighbor passed the criteria
threshold, then further checks were run to see whether n1 was indeed a modified copy of
the query descriptor. If the nearest neighbor did not pass the criteria threshold, then n1

was rejected and no answer returned. Since, for many applications, a query may have
more than one meaningful result, we adapt Lowe’s criterion, by saying that returned
neighbor ni is meaningful with respect to contrast c (default value of c is 1.8) when
d(n100, q)/d(ni, q) > c.

Note that in a result list ranked by distance, the constraint d(n100, q)/d(ni, q) > c need
only be checked for at most i ∈ 1, . . . , 99; when the first neighbor is found that does
not satisfy the criterion no more neighbors need checking. Also note that we can in fact
generalize Lowe’s criterion by saying that returned neighbor ni is meaningful with respect
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to contrast c up to rank j when d(nj, q)/d(ni, q) > c, where j ≥ 2 and i < j. In our work
we have found, however, that with j between 2 and 100, the number of descriptors passing
the contrast criterion grows fast, while for j > 100 it grows slowly. We have therefore
used j = 100 in the remainder of this analysis.

Using this contrast criterion, it is possible to build a ground truth set for an application.
In the next section, we analyze the quality of these three approaches to generating the
ground truth sets for our application from the results of a sequential scan.

3.4 Analysis of Ground Truth

The goal of this section is to analyze the properties of the query workload and descriptor
collection and establish a meaningful ground truth set for our experimental studies. To that
end, we have chosen 500,000 query descriptors at random from the workload described in
Section 3.3.1. We have then run a sequential scan to calculate the 1,000 nearest neighbors
for each query descriptor, yielding 500 million neighbors in all.

Note that the semantics of the copyright protection application, from which the workload
is drawn, is such that for each query descriptor precisely one descriptor in the collection
is a correct match, while the remainder should be considered false matches. In our col-
lection, a total of 248,852 query descriptors found a correct match among the top 1,000
neighbors, or slightly less than 50%. While this may at first seem a low percentage, it is
still a good recognition performance considering that some query descriptors originated
from severely modified images (Lejsek et al., 2006). What we seek in this section is
a general method for building a ground truth set, which includes a large number of the
248,852 correct matches and only a small number of false matches.

3.4.1 Ground Truth Based on k-NN

When taking a close look at the individual results we observed that the correct matches
that appeared among the 1,000 nearest neighbors were in most cases ranked first in the
result set. This indicates that by far the best choice for building a ground truth based
on k nearest neighbors, would be by choosing k = 1. But even with k = 1, however,
more than half of the neighbors in the ground truth set would be false matches. Further-
more, for many other applications, choosing a ground truth set of k = 1 would be too
restrictive.
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Figure 3.1: The distribution of all neighbors based on distance to the query descriptor.

3.4.2 Ground Truth Based on ε-Distance

We now analyze how the absolute distance between the query descriptor and returned
neighbors affects the result quality. Figure 3.1 shows the distribution of all 500 million
neighbors depending on the distance of each neighbor to the query descriptor. The x-
axis shows the absolute distance (corresponding to varying ε), while the y-axis shows
the number of neighbors with approximately that distance (the point at 0 corresponds
to a distance of 0, while the point at 5 corresponds to the distance range (0, 5], and so
on). We observe that the number of descriptors stays rather uniform and small for short
distances. Once the distance surpasses 25, however, we can see an exponential increase
in the number of neighbors at each distance range (note the logarithmic scale). Recall that
in our application almost all of these descriptors are false matches.

Figure 3.2, on the other hand, shows the cumulative distance distribution of the correct
matches. In the figure, the x-axis is the distance from the correct match to the query
descriptor, while the y-axis shows the cumulative fraction of correct matches found below
that distance. From the figure we see that about two thirds of the correct matches can be
found within an ε-distance of 100, and that within this distance they are rather uniformly
distributed. The final third lies beyond a distance of 100, where the likelihood of finding
further neighbors slowly becomes smaller; the last correct matches can actually be found
at a distance of 370.
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Figure 3.2: The cumulative distribution of correct matches based on distance to the query
descriptor.

More importantly, however, Figure 3.2 shows that fewer than 20% of the correct matches
are found at a distance smaller than 25, which is where the number of false matches started
increasing exponentially. Thus, it is impossible to select a global ε for building a ground
truth set which includes a large number of correct matches and only a small number of
false matches.

3.4.3 Ground Truth Based on Contrast

Finally, we consider the effect of contrast on the quality of the ground truth set. Figure 3.3
shows an analysis of the correct matches based on different thresholds of the contrast
criterion. The x-axis shows the contrast c, while the y-axis shows the percentage of correct
matches with contrast higher than c, defined in Section 3.3.1 as d(n100, q)/d(ni, q) > c.
The figure shows that 36% of the correct matches are more than five times closer in
distance than the 100th nearest neighbor in the result list. For c = 1.8, which is the value
that Lowe recommended, 186,290 out of 248,852 correct matches, or about 74.9%, pass
the contrast threshold. About 20% of the correct matches have a contrast threshold lower
than 1.5, and are therefore rather hard to detect from the false matches.1

1 A small portion of the correct matches has contrast smaller than 1, which means that they were found
at a rank higher than 100.
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Figure 3.3: The cumulative distribution of correct matches based on contrast.
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Figure 3.4: Distribution of neighbors passing the contrast criterion by distance to query
descriptor, for various contrast thresholds.

Figure 3.4, on the other hand, shows the effects of the contrast criterion on the number
of descriptors that pass the threshold filter (these include the correct matches). This time,
the x-axis shows the absolute distance from the result descriptor to the query descriptor,
while the y-axis shows the number of descriptors found at each distance. Overall, we
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observe that a contrast threshold of c = 1 shows an exponential increase in the number of
descriptors (similar to Figure 3.1, but at a smaller scale since at most 100 neighbors are
considered), while all values of c ≥ 1.5 avoid this behavior and show a well controlled
number of descriptors; the higher the threshold, the fewer descriptors are returned.

Comparing Figures 3.3 and 3.4, we see that choosing a higher contrast threshold results
in lower recall but fewer false matches, and vice versa. Comparing these to Figures 3.1
and 3.2, however, we see that any choice from 1.5 to 2.5 performs very well compared to
the ε-based criterion. So the threshold of 1.8, proposed by Lowe, seems reasonable.

With the threshold c = 1.8, a total of 248,212 descriptors pass the contrast filter.2 As
described above, the number of descriptors that are both correct matches and pass the
c = 1.8 contrast criterion is 186,290. Thus, about 75.1% of the descriptors in the contrast-
based ground truth set are correct matches and about 24.9% are false matches.

3.4.4 Discussion

The analysis above shows that using a contrast-based criterion to construct the ground
truth set is clearly preferable to using either k nearest neighbors or ε-distance, as using the
contrast-based criterion yields the best ratio between correct matches and false matches
(about 3:1 for c = 1.8). Furthermore, as described in Section 3.3.2, it is the only approach
with solid theoretical underpinnings. As a result, we use contrast-based ground truth sets
in the remainder of this thesis. We typically use c = 1.8 to build the ground truth set, but
we also illustrate some results using c values ranging from 1.0 to 2.5.

Furthermore, the quality of the ground truth set is strong evidence that the distinctiveness
of the SIFT descriptors holds even at large scale, which shows that we can expect small
and meaningful result sets for nearly all query descriptors.

3.5 NV-tree Performance

In this section, we start by describing the NV-tree configurations used in the experiments.
Then we present two experiments which analyze key properties of the NV-tree. In Sec-
tion 3.5.2 we discuss an experiment with a single NV-tree index, which shows that the NV-
tree yields high recall, especially with neighbors having high contrast. In Section 3.5.3
we then discuss an experiment with up to three NV-trees, which demonstrates that with

2 The fact that this number is similar to the number of correct matches in the sequential scan results is
purely by coincidence.
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such configurations false positives can be largely eliminated, while keeping most of the
high recall.

3.5.1 NV-tree Configuration

For all experiments reported in this section, we used the following NV-tree configura-
tion:

• We have used leaf partitions consisting of six disk pages (24 KB). As leaf nodes are
sparse (keeping a projected value for every 16th descriptor identifier), a maximum
of 5,579 descriptors identifiers can be stored per leaf. Leaf nodes are typically filled
to 67% of capacity, leaving room for insertions. Recall that using sparse leaf nodes
generally reduces the index size by half without affecting result quality. For all of
the experiments, the in-memory hierarchy fits in less than 60MB of main memory.

• We used the Approximate PCA strategy to select the random lines. We generated an
initial line pool of 1000 lines,3 where each pair of lines has a minimum angle of 72
degrees. Starting with a very small sample from the partition (typically 0.01%), we
select a set of 128 potential random lines. In each subsequent round, the sample size
increases exponentially, while the set of potential lines decreases exponentially, un-
til a single line is selected after three rounds. Approximate PCA generally increases
recall by 10% over random lines.

• We used the Hybrid partitioning strategy with α set to 0.55. Before partitioning, a
sample of about 5% of the points in a partition are used to determine m and σ (see
Section 3.1.4). The Hybrid strategy generally yields about 5% higher recall than
a Balanced strategy, but equivalent to the Unbalanced, while only requiring about
20% more space than the Balanced partitioning strategy.

• We retrieved 1,000 descriptors from each NV-tree (in one experiment we vary this
number).

With this configuration, the index creation took less than 16 hours per NV-tree and one
NV-tree requires about 50 GB of disk space (about twice the size of the collection). We
created three NV-trees in total, as some experiments use two or three NV-trees.

The NV-tree search is almost exclusively I/O bound, as CPU time is typically 1–3% of
the total query processing time. Furthermore, the NV-tree is designed such that a single

3 We have experimented with line pools ranging from 64 lines to 4,000. Generally, retrieval quality
increases slightly with line pool size, but so does index construction time. We have found 1,000 lines to be
a good trade-off.
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Figure 3.5: Recall for a single NV-tree retrieving 1000 Nearest Neighbors per query.

disk read is required for each tree. Therefore, the performance analysis focuses on index
size, index creation time, and running time of the search. Note, however, that disk times
are highly hardware dependent and may vary significantly based on the size and location
of the index on disk, as well as how full the disk is, as we are using an off-the-shelf file
system.

Nevertheless, one NV-tree needs about 12.5 milliseconds to return the 1,000 neighbors of
a query descriptor, which is essentially the time required for a single random disk read.
This can be contrasted with our highly optimized sequential scan, which takes 14 seconds
per descriptor in a batch query process. When 3 NV-trees are used, the response time is
about 38.5 ms.

3.5.2 Experiment 1: A Single NV-tree

In this experiment we ran the 500,000 queries and retrieved each time 1,000 nearest neigh-
bors from a single NV-tree. We then used several contrast-based ground truth sets having
different c values to compute recall and the number of false positives.
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Recall

Figure 3.5 shows the recall of the search computed against four contrast-based ground
truth sets for c ranging from 1 to 2.5. The x-axis shows the distance from the retrieved
neighbors to the query descriptors, and the y-axis shows the fraction of meaningful neigh-
bors returned for each distance category.

Consider first the ground truth set where c = 1.0. In this case, the 100 closest neighbors
to the query descriptor form the answer. Overall, with this setting, descriptors which are
closer to the query descriptor than 25 in distance are always found. For larger distances,
the recall drops significantly. Recalling, however, the corresponding line from Figure 3.4
where the number of neighbors for c = 1.0 is increasing exponentially, then the reason for
such a strong decline for distance larger than 25 is rather obvious; as very many neighbors
are returned, the meaningful ones become only a small fraction.

Turning to the other recall lines when using ground truth sets having c ∈ {1.5, 1.8, 2.5},
we observe that the recall is much higher. While recall is still near-perfect only for dis-
tances smaller than 25, the recall is significantly higher in the range 25–100. Turning
back to Figure 3.2 which showed that about two thirds of the meaningful neighbors are
found at a distance closer than 100, this tells us that the single NV-tree is finding most of
the meaningful neighbors and, in fact, the NV-tree is able to find 65.8% of all meaningful
neighbors.

Interestingly, varying the contrast threshold between 1.5 and 2.5 does not affect quality
in the range from 0 to 100, because the NV-tree copes very well with contrasted data and
finds most of the meaningful neighbors. Two interesting effects are worth noting when
the distance goes beyond 100, however. First, the fluctuations in that range are due to
the small number of neighbors. Second, we observe that using c = 2.5, no neighbors are
found beyond a distance of 130; at that point the other descriptors are not far enough to
allow any descriptors to pass this threshold. A similar effect occurs with c = 1.8 at a
distance of about 180. In the remainder of our experiments we use the ground truth set
defined by c = 1.8, as proposed by Lowe.

False Positives

The NV-tree index performs approximate searches. Given that the ground truth set of
descriptors that passes the contrast criterion is quite small as we have observed, most of
the returned neighbors are indeed false positives. Since the NV-tree does not store the
actual descriptor (it stores only its identifier) and retrieving the descriptor from disk to
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compute distances is infeasible in practice, there are no means to filter out these false
positives using a single NV-tree.

In general, some applications may tolerate false positives while others, such as applica-
tions with strong precision constraints, may not. Requesting only a handful of nearest
neighbors from a single NV-tree tends to reduce the number of false positives, but it af-
fects recall quite significantly (not shown). On the other hand, it is possible to reduce the
number of false positives by using more than one NV-tree; this is the topic of the next
experiment.

3.5.3 Experiment 2: Additional NV-trees

In this section we study the result quality obtained by using two or three NV-trees together
to yield nearest neighbors. Take first the case of two indices. A technique called median
rank aggregation (Fagin et al., 2003) can be used to combine the two ranked lists from the
two indices. Median rank aggregation essentially traverses both ranked lists and outputs
as the nearest neighbor the first descriptor seen in both lists, as the second neighbor the
second descriptor seen in both lists, and so on. When three indices are used, we can
either return as the nearest neighbor the first descriptor seen in any two indices, or in all
three. These three strategies are called 2/2, 2/3 and 3/3, respectively, where a/b means
that b indices are used and the first descriptor to be seen in a of those is returned as the
nearest neighbor; in all cases we discard descriptors seen in fewer than a indices. In this
terminology a single index is 1/1. We first study briefly retrieval performance and recall,
and then focus on false positives.

Performance

The query response time (not shown) is proportional to the number of indices used; using
a single index took 12.5 ms while using three indices took about 38.5 ms.

Recall

Figure 3.6 shows the recall of the four strategies considered (1/1, 2/2, 2/3, and 3/3). For
this experiment the partition fetched by the search for each NV-tree was entirely pro-
cessed, yielding as many descriptors as possible for each configuration. As the figure
shows, the overall shape of the recall curves is similar when using more indices, The 2/2
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Figure 3.6: Recall by aggregating the result lists of two or three independent NV-trees.
c = 1.8.

and 3/3 strategies always perform worse than 1/1. This is because some relevant descrip-
tors may, by chance, miss one of the two or three necessary partitions, and thus not be
considered part of the answer.

Turning to the 2/3 strategy, we see that for descriptors with short distances, it performs
better than 1/1. This is due to the fact that these relatively close descriptors are more likely
to be found in two corresponding partitions of three possible, than in the single correct
partition of a single index. For descriptors that are farther away the tables turn, however,
as then it is difficult for those descriptors to land in two corresponding partitions. Overall,
however, the 2/3 strategy has slightly higher recall than the 1/1 strategy; in the following
we therefore focus on the 2/3 strategy.

False Positives

The major motivation for searching more than one NV-tree, however, was not to obtain
higher recall but to reduce the number of false positives. The overall strategy used for this
purpose is as follows: Each of the three NV-trees is probed to yield a (ranked) result set
of a specific size. Then these results sets are traversed to yield nearest neighbors to the
query descriptor as described above. This time, however, only a few such “aggregated”
neighbors are retrieved; we even consider retrieving a single such neighbor. The expec-
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Figure 3.8: False Positives of 2/3 NV-trees based on number of neighbors retrieved.

tation is that these aggregated nearest neighbors will be very meaningful, as they appear
close to the query point in at least two NV-trees; thus we expect to retain the high recall,
while removing most false positives.
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Figure 3.7 shows the recall of this approach. The x-axis shows the size of the result set
obtained from each index. Each line of the figure shows the recall for a given number of
aggregated nearest neighbors; recall that the sequential scan returns 248,212 neighbors.
Considering first the overall shape of the lines, we see that, as expected, small result sets
give low recall. When larger result sets are collected as input to the rank aggregation,
however, recall improves. Beyond retrieving 1,000 descriptor identifiers from each index,
the recall curve becomes flat and result sets over 2,000 descriptor identifiers show next to
no recall gains.

Turning to the effects of retrieving additional aggregated nearest neighbors in Figure 3.7,
we see that recall is improved significantly when going from one to two aggregated neigh-
bors. By returning just one aggregated neighbor, we obtain a very reasonable recall of
more than 130,000 meaningful neighbors (out of the 248,212). By returning two neigh-
bors, recall improves to over 155,000 and with 10 aggregated neighbors we reach over
160,000 meaningful neighbors. Larger results sets achieve only minor improvements, but
as we will see in a moment they increase the number of false positives significantly.

Figure 3.8 shows the number of false positives for the same experiment. As before, the x-
axis shows the size of the result set obtained from each index, and each line of the figure
shows the false positives returned for a given number of aggregated nearest neighbors.
Overall the figure shows that as the result set size grows and as more aggregated nearest
neighbors are returned, the number of false positives returned grows very sharply. About
15% of all queries return more than 10 nearest neighbors, and 2.5% even more than 100
neighbors; these query descriptor are clearly landing in very dense areas. Note that, in
comparison, the number of false positives returned by a sequential scan ranges from about
15 million when 30 nearest neighbors are returned to about 3 billion when 6,000 nearest
neighbors are returned.

Combining the results shown in Figures 3.7 and 3.8, we see that returning a result set of
1,000 descriptor identifiers from each index is necessary for recall, but we should limit
the number of aggregated nearest neighbors returned very significantly, in order to limit
the number of false positives.

Finally we briefly discuss the 2/2 and 3/3 configurations. As already shown they yield
lower recall, about 136,000 and 119,500 descriptors, respectively. On the other hand,
with these configurations, the false positives drop by another order of magnitude. For the
3/3 setup collecting a maximum of five neighbors at a result set size of 1000 gives only
16,000 false positives with a recall of 119,500 meaningful neighbors. Therefore, if false
positives must be reduced at all costs, then this setup is the right choice.
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3.5.4 Discussion

Overall, these experiments show that the NV-tree is a very good data structure for approx-
imate nearest neighbor search in high dimensional space. This is because the construction
of the NV-tree essentially respects the local contrast of the descriptor collection and en-
codes it into the partitions of the indexes.

In general, the NV-tree returns more than 99% of the meaningful neighbors that are found
below a distance of 25. For neighbors beyond this distance the detection rate drops signif-
icantly, but overall about two thirds of the meaningful neighbors are found. Using a single
NV-tree, the returned results have high recall, but contain a high number of false positives.
By combining two or three NV-trees, those false positives can largely be eliminated while
retaining the high recall.

3.6 Comparison to Related Work

The two major data structures most related to the NV-tree are the Spill-tree (Liu et al.,
2004; Liu, 2006; Liu et al., 2007) and Locality Sensitive Hashing (LSH) (Gionis et al.,
1999; Datar et al., 2006). In this section, we first briefly compare the NV-tree to the
Spill-tree, before focusing on LSH in the remainder of the section.

3.6.1 The Spill-tree

The Spill-tree is, like the NV-tree, based on repeated partitioning of the descriptor col-
lection into overlapping partitions, and then using a similar search algorithm to process a
single leaf node. It has significant differences, however.

Most importantly, the Spill-tree only partitions the data into two partially overlapping
partitions at each level, resulting in a much taller tree which in turn leads to significantly
larger disk space requirements. Additionally, the overlapping factor is globally defined
and does not consider the distribution of the data points along the projection line. Since
the projected high-dimensional data tends to produce a normal distribution on the line,
intermediate splits are very likely to have large portions of the data in common, resulting
in a very limited usefulness of those splits. In the worst case, when most of the data
falls in both partitions, the authors recommend re-partitioning without any overlap and
subsequently directing the search to both partitions (the guaranteed query processing time
is sacrificed in this case). This approach is called a hybrid Spill-tree. While the higher
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query processing time of the hybrid Spill-tree may be acceptable for small collections in
a main-memory setting, the performance impact for large collections and/or disk-based
settings can be significant. Finally, each Spill-tree leaf node contains a set of descriptors
rather than a ranked list, leading to high storage consumption and expensive distance
calculations.

In order to understand the space requirements of the Spill-tree, we have considered how
it would deal with our collection of 180 million descriptors. Given the nature of high-
dimensional projections, we expect average overlap to be about 66, 7%. We also assume
a node size of 6,000 descriptor identifiers; note that this is larger than the NV-tree nodes
and leaves no space for insertions. In order to determine the depth of the Spill-tree,
we must then solve the equation 180, 000, 000 × 0.667x = 6, 000, which yields x =

25.5. The Spill-tree would thus require 26 hierarchies, resulting in 180, 000, 000 × (2 ×
0.667)26 = 300 billion pointers to descriptors, requiring more than a terabyte of data just
to store descriptor identifiers. If, as proposed, the actual descriptors are stored, the space
requirements become larger by two orders of magnitude.

Since the Spill-tree clearly has orders of magnitude higher storage requirements and gives
weaker query performance than the NV-tree in a disk-based setting, we do not consider it
further.

3.6.2 Locality Sensitive Hashing

In the remainder of this section we focus on Locality Sensitive Hashing which we believe
to be the most competitive method to our proposed NV-tree for very large collections. In
the following, we first describe the algorithm behind Locality Sensitive Hashing. Then,
we present our adaptation of LSH to a disk-based setting and explain how the various
parameters affect performance and quality of the search. Subsequently, we compare LSH
to the NV-tree, before concluding with a discussion.

Unlike most other nearest neighbor search methods, the algorithmic idea behind Locality
Sensitive Hashing is not based on a tree structure, but on hashing the data points into
buckets. The chosen hash functions are constructed so as to guarantee that very close
points coincide in the same bucket with much higher likelihood than those far apart. LSH
was first published for the binary Hamming space by Gionis et al. (1999) and then later
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extended to lp norm by Datar et al. (2006). Most of its applications, however, have used
rather small collections which could easily fit in memory.4

One major benefit of LSH is the simplicity of its algorithmic idea. Each descriptor is
projected onto a set of k random lines through the search space. The lines are partitioned
into fixed sized intervals (determined by a radius r) and each of the intervals is named
by a symbol. Projecting to k lines gives k symbols, which are then concatenated to a
word of length k. These words are built over an alphabet, whose cardinality is defined
by the number of partition intervals, and form a kind of locality sensitive fingerprint. The
smaller the radius r is chosen, the more intervals are created and hence the more symbols
the alphabet contains. Note, however, that the probability of individual symbols is very
different, because the projected points are normally distributed along the projected line.
Increasing the number of partitions on the projected lines increases the variety of words
at a fixed size k, but also increases the chance that close descriptors generate a different
fingerprint.

In order to efficiently search for descriptors, they are hashed via a standard hash function
into a hash table. Since LSH does not apply overlapping and the likelihood of separating
two close neighbors also increases with fingerprint length k, it needs several such hash
tables (parameterL in LSH notation) to guarantee a certain probability in recall. With very
large databases, however, each additional hash table causes one additional I/O, making
these additional tables very costly.

During query processing with LSH, the query descriptor q needs to look up the appropriate
buckets for all L hash tables. q is therefore projected to all k lines for each individual table
and the result is concatenated to a k length fingerprint which then references the bucket in
the hash table that must be read from disk. For all candidate descriptors referenced in this
bucket, the LSH algorithm computes the precise distance between the descriptor and the
query point q. When the given descriptor falls within the selected ε-distance (the radius r)
it is included in the result set; otherwise it is dismissed. After all L hash tables have been
looked-up this way, all descriptors in the result set are sorted according to their distances
to q and returned.

4 A disk-based strategy was developed by Ke, Sukthankar, and Huston (2004). Since it was only tested
on a small collection which was easily buffered in memory, it cannot be taken as a conclusive disk-based
evaluation of LSH.
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3.6.3 Adapting LSH to Disk

In order to run LSH in our context, it would have been necessary to keep not only the
indices of the hash tables in main memory but also the whole descriptor collection as ac-
tual distances need to be computed. As our descriptor collection consumes about 22 GB,
this approach is impossible. Furthermore, keeping the collection on disk and performing
a random disk read to fetch each descriptor in the result is also unacceptable.

For our experimental evaluation we adapted the original LSH implementation (Andoni &
Indyk, 2005) to disk, using a standard sorting library. In the interest of a fair comparison
between the NV-tree and LSH we do not compare the running times of the search, since
the NV-tree executable is very well tuned and we did not wish to spend the same time
on optimizing the LSH algorithm. We can, however, make a fair comparison by simply
counting disk reads.

The settings recommended for memory-based LSH create a very large number of hash
tables. In order to make LSH more competitive to the NV-tree, we have studied the
result quality of LSH with relatively few hash tables. In the remainder of this section, we
therefore take a closer look at how to tune the quality of LSH in the context of very few
hash tables. Since the parameters k, L, and r, as well as the cardinality of the result set,
are strongly dependent on each other, we split our evaluation into two experiments. First
we set the number of hashtables to L = 3 and vary the word-size parameter k from 6 to 12
(adjusting the radius r accordingly). In the second experiment we take the most suitable
configuration of the former experiment and evaluate the quality when varying the number
of hash tables (effectively varying the number of disk reads required for the search).

Figure 3.9 show the distribution of the result set size for the 500,000 queries, using LSH
with three hash tables. LSH does not give any guarantee on how many neighbors are
returned, so when increasing the fingerprint size k we need to shrink the radius r corre-
spondingly in order to keep the average number of nearest neighbors at several hundreds.
The x-axis shows the quantiles of the distribution, while the y-axis shows the result size
set at each quantile. The figure shows that by reducing fingerprint size k and radius r the
cardinality of the result sets grows slightly but becomes more stable. Longer fingerprints
and larger radius generally yield fewer neighbors, but have the drawback that for 5–10%
of the results the answer set grows extremely large. The LSH setup with k = 6 and r = 25

returns on average 1,305 neighbors, but in the worst case 10,572 nearest neighbors. The
setup with k = 12 and r = 80, on the other hand, returns on average on 445 neighbors,
but can return as many as 83,041.
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Figure 3.9: Distribution of result set size for LSH with three hash tables (L = 3).

The setup with k = 10 and r = 65 was chosen in the continuation, and the number of hash
tables L was varied. Figure 3.10 shows that the increase in nearest neighbors is roughly
linear for most of the quantiles. The largest result sets are proportionally smaller, because
of the existence of duplicates and because it is unlikely that many hash tables yield very
large buckets.

The major benefit of LSH over the NV-tree is the size of the index, which is due primarily
to the overlapping partitions of the NV-tree. LSH needs three integers per hash table
entry: one for numbering the hash bucket; one as a control hash; and finally the descriptor
identifier. Since the hash bucket number is only used for sorting the table on disk, it can be
removed afterwards, resulting in 8 bytes per descriptor on disk. With sparse leaf nodes, on
the other hand, the NV-tree only stores a little over 4 bytes per descriptor. Due to the non-
overlapping nature of LSH, however, each hash table requires only about 2.1 GB of disk
space, which is significantly lower than the storage needed for a single NV-tree.

3.6.4 Recall of LSH

We now turn to a comparison of the LSH and NV-tree data structures. Figure 3.11 shows
a comparison of the recall of three LSH hash tables to a single NV-tree. As the figure
shows, with this setting, LSH yields significantly lower recall than that provided by the
NV-tree. LSH has, on the other hand, the desirable property that it retrieves in most
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Figure 3.10: Distribution of result set size for LSH with varying number of hash tables
(k = 10, r = 65).
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Figure 3.11: Recall for different LSH setups (varying word size and radius) with three
hash tables (L = 3).

cases a significantly lower number of false positives (not shown). Finally, we point out
that LSH makes no distinction between low and high contrast, as it is an ε-approximate
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Figure 3.12: Recall for LSH with varying number of tables (k = 10, r = 65).

search. This was already known from the design of LSH, but we have observed this fact
in our evaluation.

Furthermore, Figure 3.11 shows that a large radius r combined with larger k returns better
results. This effect levels off, however, once the radius gets too large, because normal
distribution and large symbol buckets along the lines make certain symbols appear much
more frequently than others. Therefore, the LSH configuration with k = 12 and r = 80

gives only minor improvements over k = 10 and r = 65.

Figure 3.12 compares the recall of LSH with varying number of hash tables (k = 10, r =

65), to that of a single NV-tree index. The figure shows that by increasing the number of
LSH hash tables, the recall quality improves steadily. Note, however, that this improved
quality comes at the cost of extra disk reads, and that those disk reads are not of a fixed
size and might in some cases go beyond the I/O granularity of today’s hard drives, which
is typically 128KB. Furthermore, it is well known that both small and large disk reads
are more costly than reads of an optimal size. Combining the cost of each read with the
number of disk reads, we see that LSH has a much higher response time.

Figure 3.12 shows that the point where LSH outperforms the NV-tree lies roughly at
L = 8 hash tables, so we can say that the NV-tree can deliver the equivalent recall quality
with single disk read that LSH can with eight disk reads. The average number of false
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positives for L = 9 hash tables is 1,201, so we can also say that here the NV-tree and LSH
yield the same “performance”.

3.6.5 Filtering False Positives

As we did for the NV-tree, it is also possible to filter false positives from the LSH results.
In this case we need to aggregate the result sets of the individual LSH hash tables. As ex-
plained in Section 3.6.3, adapting LSH to disk precludes any actual distance calculations,
and therefore filtering false positives based on distances is impossible. Furthermore, a
rank based approach cannot be used, as the buckets are essentially sets which have no in-
ternal ranking. Instead, we have taken the approach used by Baluja and Covell (2006) and
filter false positives by simply counting the number of occurrences of each descriptor in
the result sets from all the hash tables and ranking the result accordingly. Close neighbors
are likely to be found by many hash functions, and their occurrence count will therefore
be high. Then, we take a fixed number of neighbors from this ranked list and declare these
as the aggregated nearest neighbors.

Figure 3.13 shows the recall of this method. As the figure shows, LSH gives high recall
with this method when we have a large enough number of tables to provide a distinguish-
able ranking among the aggregated result sets. As the figure furthermore shows, however,
LSH only manages to catch up with a three-index NV-tree setup once we collect neigh-
bor sets from 24 different LSH hash tables. Again, this is a ratio of 1:8 in favor of the
NV-tree.

Looking further at the false positives shown in Figure 3.14, we see no significant dif-
ferences when using more LSH hash tables. In contrast to the NV-tree, it is completely
dependent on the number of nearest neighbors, as LSH practically guarantees with very
high probability very large results sets for all queries. The generation of a small and
meaningful answer set is then just a matter of ranking the neighbors.

3.6.6 Discussion

As we have seen in the experiments, LSH and NV-tree can give similar quality for nearest
neighbor search in high dimensional space. In order to provide a fair comparison of both
methods we have put emphasis on choosing a sound selection of the parameters for both
techniques. The results show that the NV-tree trades off disk space for the benefit of better
query performance while LSH trades off search time for a smaller index on disk.
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Figure 3.14: False positives for the NV-tree and LSH (k = 10, r = 65).

When false positives are tolerated, the NV-tree is about 8 times faster, but uses 50 GB of
disk space vs. 8 × 2.1 GB = 16.8 GB for LSH, or 3 times more disk space. The same
trade off can be seen when we filter as many false positives as possible, as then the NV-
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tree needs three disk reads from 150 GB of disk space while LSH needs about 24 disk
reads from 50.4 GB of disk space.

One of the clear benefits of the NV-tree is that it always loads fixed sized partitions from
disk, while the number of descriptor identifiers in a single LSH hashtable bucket can be
very large. This behavior may lead to unpredictably large result sets of almost 100,000
neighbors for our setup or unpredictably small result sets, which in turn leads to unpre-
dictable I/O sizes.

The main drawback of the NV-tree is the space requirements due to the redundancy cre-
ated by overlapping partitions. It is unclear whether the advantage of the overlapping
NV-tree over LSH holds for very large collections, as the growth of the NV-tree could
negate any advantages of main memory buffering. The space requirements for LSH at
large scale, on the other hand, are less predictable: more hash tables will likely be needed
for result quality, but how many more is unclear. As we will see in the next chapter, how-
ever, the redundancy within the NV-tree can be successfully eliminated without losing
result quality; with that modification, each NV-tree is smaller than an LSH hash table and
there are fewer NV-trees than LSH hash tables, making the NV-tree clearly the superior
approach.

3.7 Summary

In this chapter we have proposed theNV-tree, which is a disk-based data structure that
gives good approximate answers with a single random disk read, even for very large col-
lections of high-dimensional data. Furthermore, searching theNV-tree incurs negligible
CPU overhead, making it suitable also for main-memory based processing. We have
described the fundamentals of the NV-tree, as well as different strategies for its construc-
tion.

We have then analyzed the properties of a large-scale copy detection application using
the well known SIFT descriptors. We show that the SIFT descriptors are very distinctive
and have high contrast, which is necessary for large-scale applications. Furthermore, we
show that using contrast-based ground truth sets is necessary to obtain meaningful results
for all queries. We have shown that the NV-tree returns very good approximate results for
this workload, and we believe that the NV-tree can be used for any large-scale application,
where the data set can be shown to have contrast and yield meaningful results.

Finally, we have shown that the NV-tree as well as LSH are two good indexing schemes
for nearest neighbor search in high dimensional space. While both methods are built on
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the concepts of projection to lines and partitioning, however, they have very different
properties. The NV-tree is a tree-structure which guarantees fixed size I/O operations
and a maximum size on the result set. LSH is hashing based and might in extreme cases
return very large result sets. The overlapping NV-tree trades off disk space for the benefit
of fewer disk reads during the search, while LSH focuses on rather small index sizes, but
needs more accesses to disk during the search process. In the next chapter, we address the
space requirements of the overlapping NV-tree, thus eliminating its main weakness.
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Chapter 4

Non-Overlapping NV-tree

The original proposal of the NV-tree, presented in the previous chapter, included signifi-
cant overlap in the index to compensate for partitioning problems in the high-dimensional
space. The main contribution of this chapter is an enhanced version of the NV-tree, which
is entirely free of overlap. Simulation results by Ólafsson, Jónsson, Amsaleg, and Lejsek
(2011), focusing on the balanced NV-tree, strongly indicated that the overlap could be re-
moved by using more than one index and merging the results from the individual indices.
As each non-overlapping index is much smaller, the overall performance is improved.
This chapter extends that work to the unbalanced NV-tree and makes the following major
contributions:

• First, we analyze the performance implications of the redundancy caused by over-
lapping partitions and show that it is simply necessary to remove the overlap.

• Second, while removing the overlap does reduce result quality, we propose to use
three different strategies to “re-capture” the result quality, which more than com-
pensate for the losses due to lack of redundancy.

• Third, we present a performance study which compares the new “overlap-free” NV-
tree with previous results, showing that although more non-overlapping NV-trees
are required for retrieval quality, each index is so much smaller that retrieval is
actually faster.

• Fourth, we present a second performance study, which shows that retrieval quality
and performance are not affected significantly when the collection size grows to 2.5
billion descriptors.

Overall, our results show that the NV-tree is a scalable approximate indexing strategy,
which yields results of acceptable quality. When the indexed data can be entirely kept in
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main memory, then the NV-tree is extremely fast as very little computation is performed
to find the k-nn. When the data collection to index is large, then the NV-tree gracefully
adapts to efficient disk-based processing as a single disk access is required per query
point.

This chapter is organized as follows. First, Section 4.1 details the negative impact of
the redundancy on the index size and creation time, as well as on the search process.
Section 4.2 then presents three strategies to improve the quality of the results returned
by the NV-tree, which were degraded by the lack of redundancy. Section 4.3 compares
both versions of the NV-tree and shows the overlap-free one outperforms the version with
overlap. Then, Section 4.4 gives indications on the performance of the NV-tree when
indexing a collection made of 2.5 billion SIFT descriptors. Section 4.5 then summarizes
the chapter.

4.1 The Case Against Redundancy

The operlapping NV-tree uses overlapping partitions to achieve result quality with only a
single disk read, thus adressing problems related to the curse of dimensionality. Redun-
dant storage, however, impacts negatively the size of the index and its construction time,
as well as the ability to use several trees to consolidate the results returned to the users.
This section discusses these two negatives impacts and motivates the need to remove all
redundancy from the NV-tree as the only viable way to hit the billion scale.

4.1.1 Index Size and Construction Time

It is possible to roughly estimate the size of an NV-tree index with redundancy using the
following model. The depth of the tree can be computed by d = logf (

n
l
), where n is the

number of descriptors in the collection, l is the number of descriptors per leaf node (recall
that leaf nodes only store descriptor identifiers) and f is the fan-out at each level. Due to
the overlap between partitions, each descriptor is represented in multiple leaf nodes in the
tree, yielding a redundancy factor of r = (2f−1

f
)d.

For the experiments in the previous chapter, a collection of n = 180 million descriptors
(22.2GB) was indexed with a fixed fan-out of f = 5 and an approximate node filling rate
of 70% leading to approximately l = 4036 descriptors on average per leaf node. Then
d = log5(

180×106

4036
) = 6.65 and the redundancy factor is therefore r = (2×5−1

5
)6.65 = 49.9,
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which leads to a total storage requirement of 180 million × 6 Bytes × 49.9 = 50.2GB,
which is consistent with the reported storage requirements of about 50GB.

For a collection of 2.5 billion descriptors, however, the depth would increase to d = 8.28

and the redundancy factor to r = 130.4, which yields a final index size of 2.5 billion ×
6 Bytes × 130.4 = 1.8TB. While such space requirements are still feasible with today’s
hard drive capacities (despite the fact that the index has grown 6 times larger than the
actual descriptor data), the factor that makes such a setup intolerable is the index creation
time. Given that index creation takes 15 hours for 180 million descriptors, an estimate of
24 days can be given for a 2.5 billion descriptor collection.

Completely removing the redundancy of overlapping partitions from the NV-tree creates
an index of 13GB for a 2.5 billion descriptor collection in about 15 hours, which is 38
times less than the estimated construction time for a single overlapping NV-tree.

4.1.2 Searching in Multiple Trees

While the NV-tree is designed to adapt well to disk-based processing, its performance
is best when the entire index is cached in main memory. Since results with good recall
and a reduced number of false positives are returned when several NV-trees are used
simultaneously, it is interesting to determine how many NV-trees can be cached in a given
amount of RAM.

It is quite clear that the redundancy in the NV-tree is in this case a serious problem as
each index is very large. For example, each index used in the previous chapter was about
50GB; no index could therefore be entirely cached, and a disk read was invariably needed
per index to answer each query. In contrast, without redundancy, that same index would
be about 1.1GB. It would easily fit in main memory, as well as a few additional NV-trees,
all together returning high quality results very efficiently since no disk reads would be
involved.

Figure 4.1 illustrates these tradeoffs between the overlapping NV-tree and the version
without redundancy. The x-axis varies the collection size, while the y-axis shows the
number of overlapping and non-overlapping indices that fit within 64GB of main mem-
ory. The figure clearly shows the exorbitant difference in index size between the two
NV-tree types, due to the exponential growth of the overlapping NV-tree. While an over-
lapping NV-tree for a ten million descriptor collection is only 15 times as large the non-
overlapping version, the ratio rises up to 53:1 for a 215 million descriptor collection (the
largest overlapping NV-tree to fit in memory).
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Figure 4.1: Comparison of overlapping and non-overlapping NV-trees that fit within
64GB.

Removing redundancy from the NV-tree is therefore also useful at search time, as it allows
to use more indices simultaneously.

4.2 Overlap-Free NV-Tree

Removing overlapping from the NV-tree is the key to scaling up the indexed collections.
Not surprisingly, the quality of the results drops with removal of the overlapping; it de-
creases from about 66% (see the previous chapter) to about 48% (reported in the experi-
ments of Section 4.3).

This loss in quality does not affect neighbors that are close to the query point in the
high-dimensional space (within a small ε threshold) and well contrasted, i.e., significantly
closer than other data points. It does, however, affect neighbors that are well contrasted,
but not close in terms of distance. As we wish to preserve the key advantage of the
NV-tree over index structures based on ε thresholds, of being much less affected by the
actual distance, we therefore propose to use the following three strategies to address this
reduction in the result quality: (i) Creating additional NV-trees; (ii) Creating deeper NV-
trees with smaller leaf nodes; and (iii) Reading additional leaf nodes.
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Note that none of these strategies is particularly novel. It is their combined effect that is
the novelty of this chapter, however, as they make the NV-tree truly scalable to very large
collections. In fact, we show in Section 4.3 that the combined strategies improve recall
beyond the original results.

4.2.1 Creating Additional Indices

Creating many indices built over the same data collection, querying them in parallel, and
aggregating their results improves quality. Due to their reduced sizes, several overlap-
free NV-tree are also likely to fit in main memory. When the collections are really big,
however, then disk accesses are mandatory and the cost of retrievals will be linear with the
number of indices. An appropriate operating point can thus be determined when trading
quality against I/Os for applications with specific performance requirements.

4.2.2 Deeper Trees with Smaller Leaf Nodes

We ran extensive experiments to determine the best size for the leaf nodes. We found that
one page leaf nodes (i.e., 4KB) provided the best recall and the least false positives. This
can be explained by the additional projections and partitioning steps required to reduce
the number of descriptors in such small leaf nodes, compared to leaf nodes of a larger
size. These additional steps help to better capture the true neighborhood on the points
in space. Creating trees with such small leaf nodes was not an option with overlapping
NV-trees, however, since each additional level of the tree almost doubled its size.

4.2.3 Reading Additional Leaf Nodes

For many index structures, the approach taken to increase (or even guarantee) result qual-
ity is to descend to multiple leaf nodes and merge the results. A natural extension of that
approach for the NV-tree would be to choose the two adjacent sub-partitions at each level
in the tree, and to retrieve neighbors from all leaf nodes found in this manner. This ap-
proach, however, is not feasible for two reasons. First, it would violate the design criterion
of having at most a single I/O per index; each additional leaf node would require accessing
disks. Second, since there would be very many leaves and each leaf only contains ranking
information, merging the results into a meaningful order would be difficult.

It is therefore infeasible to descend into the tree along multiple paths starting from the root
of the tree. Instead, it is possible to consider multiple leaf nodes once the second lowest
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level of the tree is reached. At that level, 6 parent nodes define 36 leaf nodes of 4KB each,
filling the Linux 128KB I/O granule. When the search reaches that penultimate level, then
it reads adjacent partitions in the two most relevant parent nodes to eventually fetch from
disk up to four leaf nodes (among those 36) that can be read (with high likelihood) within
a single I/O. In order to merge descriptors from different leaf nodes, we propose to assign
a priority to each of the four leaf nodes. The priority is based on the distance from the
projected value of the query descriptor to the center point of the partition.

4.3 Comparative Experiments

We have implemented and evaluated all three adaptations to the NV-tree data structure
proposed above, and compared them to the performance results of the overlapping NV-
tree. First, Section 4.3.1 gives an overview of the experimental setup. Then, Section 4.3.2
presents performance measurements of the index construction and query performance,
while Section 4.3.3 analyses the result quality.

Note that since a) the overlapping NV-tree has already been shown in Chapter 3 to sig-
nificantly outperform LSH in terms of the number of indices (NV-trees vs. LSH hash
tables) and b) with our modifications each NV-tree is smaller than an LSH hash table, this
comparison is sufficient.

4.3.1 Experimental Setup

We used the same workload as in Chapter 3, but repeat the key information here for
completeness. The set of 179,443,881 128-dimensional SIFT descriptors was obtained
by extracting local features from an archive of about 150,000 high-quality press photos.
In order to evaluate the query performance of the NV-tree, we extracted 500,000 query
descriptors from transformed versions of images from our collection. We then used the
contrast-based ground truth defined in Chapter 3.

The experiments in this section were run on DELL PowerEdge 1850 machines running
Gentoo Linux (2.6.7 kernel), each equipped with two 3GHz Intel Pentium 4 processors,
2GB of DDR2-memory, 1MB CPU cache, and two (or more) 140GB 10Krpm SCSI disks
with the ReiserFS file system.
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Figure 4.2: Retrieval time of NV-tree configurations for a collection of 180 million de-
scriptors.

4.3.2 Indexing and Retrieval Performance

The major goal of the non-overlapping NV-tree is to reduce the index creation time. The
creation time for a single non-overlapping NV-tree is about 2 hours, compared to more
than 15 hours for the overlapping NV-tree (Lejsek, Ásmundsson, Jónsson, & Amsaleg,
2009). Furthermore, each non-overlapping tree consumes about 1 GB of disk space,
compared to 50 GB for the overlapping NV-tree.

The retrieval time is also reduced significantly due to the smaller index size. Figure 4.2
shows the retrieval time for different configurations of the overlap-free NV-tree. The x-
axis shows the number of indices used, while the y-axis shows the average time to retrieve
the k nearest neighbors for each query descriptor. Since the main memory is 2 GB, some
of which is used for the operating system, a single overlap-free NV-tree can be kept in
memory, and the retrieval time is only 1.6 ms per query descriptor. The search time
increases, however, when aggregating from more indices; it is 7.3 ms per descriptor for
two indices, up to 37 ms for 6 indices.

For our disks, a random disk read takes about 12.5 ms, yielding an expected retrieval time
of 75 ms for 6 indices. The retrieval time is reduced, however, since the small size of the
indices facilitates both buffering and disk locality. In contrast, the retrieval time of the
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Figure 4.3: Recall of NV-tree configurations for a collection of 180 million descriptors.

much larger overlapping NV-tree does indeed grow by about 12.5 ms per index, resulting
in 37.5 ms for three indices.

Finally, Figure 4.2 shows that the overhead of reading additional leaf partitions is about
40% (with or without priority assignment), despite the fact that all leaf partitions are
designed to fall within a single disk read. The first reason is that one logical I/O may end
up as two physical I/Os. The second reason is due to disk buffering, as the likelihood of
finding a single leaf in buffers is significantly higher than that of finding a whole range of
subsequent pages.

4.3.3 Result Quality

We now study the impact of the proposed techniques on result quality. Figure 4.3 shows
the recall of the different NV-tree configurations. As before, the x-axis shows the number
of indices used to answer queries, but the y-axis now shows the recall relative to the
sequential scan.

Figure 4.3 shows that recall is relatively low for a single non-overlapping NV-tree in any
configuration. With additional indices, however, recall is improved significantly to the
point where it exceeds the 65.8% recall reported in Chapter 3. Furthermore, the figure
shows that while the major quality improvements are caused by adding indices and a
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partitioning level, further improvements are seen by reading additional partitions, in par-
ticular with the priority-based scheme. Overall, we observe the best trade-off between
performance and quality with 3 indices (75.4% total recall). Adding further indices yields
up to 82.6% recall, but at a cost of higher retrieval time (×3) and larger database size
(×2).

Detailed analysis shows that with a single non-overlapping index, many close neighbors
are lost, which the overlapping NV-tree can find easily due to the redundancy in the leaf
partitions. By aggregating results from more than one non-overlapping NV-tree, however,
results are improved across all distance ranges; close neighbors are always found, and
more distant neighbors are more likely to be found than with the overlapping NV-tree.
Note that, in contrast, the strategy of adding additional trees did not show any additional
benefits in terms of recall for the overlapping NV-tree.

4.4 Large-Scale Experiments

In this section we present our detailed experiments on a collection of 2.5 billion SIFT
descriptors. First, Section 4.4.1 gives an overview of the experimental setup. Then, Sec-
tion 4.4.2 presents query performance measurements, while Section 4.4.3 analyses the
result quality.

4.4.1 Experimental Setup

This descriptor collection has been obtained from 2.5 million images downloaded from
the Flickr image sharing website, plus the images used in Section 4.3. The images
were processed as before, resulting in a total of 2,485,568,191—nearly 2.5 billion—128-
dimensional SIFT descriptors.

We used the same query workload as in the previous experiment, consisting of 500,000
query descriptors. Although the descriptor collection is an order of magnitude larger, we
assume the same ground truth set of 248,852 descriptors, as running a sequential scan to
determine a new ground truth is much too time-consuming. This may artificially lower
the result quality, but as we shall see the effect is relatively small.

As the experimental setup used in the previous section was quite dated, we obtained a
moderate server computer containing two Intel Xeon E5420 CPUs running at 2.50GHz,
12MB L2 Cache, and 32 GB of DDR 2 main memory, running at a clock speed of 667
Mhz. Due to the high storage requirements for such a large descriptor collection, as well
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Figure 4.4: Retrieval time of NV-tree configurations for a collection of 2.5 billion descrip-
tors.

as for performance, the server was equipped with 6 hard drives. Three 1.5 TB hard drives
are used for storing the NV-tree indices, one for the operating system and related tasks,
and two to store the descriptor collections and result files.

4.4.2 Indexing and Retrieval Performance

Each NV-tree consumes about 13 GB of disk space, and takes about 15 hours to construct.
As the server has 32 GB of main memory, at most two indices can fit in memory, while
configurations with three or more NV-trees can only be partially loaded into memory. In
order to get a better understanding of the impact of buffering on NV-tree performance,
we measure both a “cold start” where the buffers are empty, and a “warm start” where
leaf partitions from the measured NV-trees are loaded into memory in a round-robin fash-
ion until the memory is full. Filling the buffers can take several minutes, depending on
the number of indices, but full buffers are clearly more representative of the long-term
performance of the system.

Figures 4.4 and 4.5 show the retrieval time and throughput, respectively, for the two
buffering approaches. Note that only a single CPU core was used in each case. As the
figures show, query processing is very efficient using one or two indices when buffers are
full; each query descriptor requires only 0.3 ms of processing time, yielding a remarkable
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Figure 4.5: Throughput of NV-tree configurations for a 2.5 billion descriptor collection.

throughput of 3,500 queries per second. Once the indices do not fit into memory, how-
ever, retrieval time increases significantly, to 12 ms for three indices and up to 50 ms for
six indices, with a corresponding reduction in throughput.

Comparing to the “cold start” strategy, the preload time clearly pays off when the indices
fit as a whole into main memory. When they do not, the heavy load of additional I/O
accesses soon dilutes the performance gains achieved by preloading so the performance
gains are only marginal. Nevertheless, the throughput, using three indices in continuous
operation, is about 81 descriptors per second.

4.4.3 Result Quality

Figure 4.6 shows the recall for the large collection, compared to the collection used in
the previous section. As the figure shows, recall is about 8% lower across the range of
indices. Nevertheless, the recall is still quite acceptable, and nearly equivalent with the
recall of a single overlapping NV-tree for the 180 million descriptor collection.
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Figure 4.6: Recall of NV-tree configurations for a collection of 2.5 billion descriptors.

4.5 Summary

In this chapter, we have proposed the non-overlapping NV-tree and demonstrated that it
works extremely well for providing approximate nearest neighbor search in very large
collections of high-dimensional descriptors. Using our preferred configuration of three
NV-trees, we achieve 66.0% recall for a collection of 2.5 billion SIFT descriptors. Query
processing is also efficient, in particular when the indices can be kept in main memory, as
each CPU core can answer up to 3,500 queries per second.



59

Chapter 5

Industry Strength NV-tree

Decades of research in databases have proven that very efficient, scalable, dynamic and
durable systems can be built. Efficiency is such that while the database fits in memory,
processing its contents is extremely fast, and when the database exceeds the memory size,
then disks are used as efficiently as possible—scalability beyond main memory limitations
is not a problem with database technology. The data structures that are fundamental to
databases all allow dynamic inserts and protocols for correctly handling simultaneous in-
serts have been defined—dynamicity is thus not a problem with database technology. Effi-
cient methods to enforce the ACID properties of transactions1 which protect the database
from all sorts of failures, have been very clearly specified—durability is therefore not a
problem either with database technology.

So why is it that high-dimensional nearest neighbor algorithms from the literature rarely
scale beyond main memory limitations, cannot cope with dynamic inserts, and do not
address durability issues? We believe that this is because a database perspective has
been lacking from the world of high-dimensional indexing schemes. We argue that such
schemes: must provide ACID transactional properties; must be disk-based for coping with
dynamic insertions, failures, and scale; must carefully balance resources to avoid bottle-
necks; and must consider the trade-offs between response time and throughput.

In this chapter we present our implementation of the two desirable properties of dynam-
icity and durability within the NV-tree. We make the following main contributions:

1 ACID is an acronym which stands for Atomicity—either the transaction is completed or any impact
of its partial execution is removed; Consistency—correct transactions take a database from one consistent
state to another; Isolation—each transaction is isolated from concurrent execution of other transactions; and
Durability—the effects of a completed transaction are not lost in the event of crashes.
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• We demonstrate how to enforce ACID properties within the NV-tree for a large
class of important applications, and show that with our implementation dynamic
inserts can be efficiently managed.

• We then show detailed performance evaluations of the scalability of the NV-tree
using standard image benchmarks embedded in collections of up to 30 billion high-
dimensional vectors. Our analysis of the literature shows that these are by far the
largest single-server experiments reported anywhere.

Overall, we show that the NV-tree is not only an extremely scalable approximate indexing
strategy, but also a unique nearest neighbor search system that meets industrial standards
for a database management solution.

The remainder of this chapter is organized as follows. In Section 5.1 we describe briefly
the characteristics of the applications we have in mind, and discuss their impact on the
implementation of the ACID properties within a high-dimensional indexing scheme. We
then describe how the NV-tree index can be extended to support dynamic inserts. We first
describe the overall insertion process for a single NV-tree in Section 5.2, then describe
the enforcement of the necessary ACID properties for a set of NV-trees in Section 5.3,
and subsequently evalute the performance of dynamic updates in Section 5.4. Finally, in
Section 5.5 we evaluate the performance and result quality of the NV-tree using the largest
single-server experiments reported in the literature, before summarizing our findings in
Section 5.6.

5.1 Application Characteristics and ACID Properties

Large collections of multimedia objects, and thus high-dimensional vectors, are typically
dynamic and require efficient insertions. Furthermore, these insertions must be concurrent
with searches as web-scale collections cannot be taken offline for maintenance. It is
therefore important to implement them as transactions.

While this seems completely obvious from a database perspective, it is a rare paper about
high-dimensional indexing that ever discusses mechanisms to recover from failures, let
alone implement the ACID properties. Instead, it is implicitly assumed that the entire
index can be recreated from scratch if a serious crash happens. We believe, however, that
this is not acceptable from an operational point of view, as it may take weeks to index a
sufficiently large data collection. Worse, the raw data may even not be available anymore,
as it may have been provided by the data owner or a third party.
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While traditional techniques for enforcing ACID properties of transactions can be used,
both the data structure and the applications have particular characteristics that in some
cases require special attention but in other cases allow for efficient implementation. The
typical application we are concerned with is a web-scale similarity-based multimedia ser-
vice, such as a copyright protection service or a forensic analysis service, where queries
are multimedia items that are transformed into high-dimensional vectors. Such services
typically have strong performance requirements for query processing, but also a steady
stream of new material to include in the collection.

Vectors corresponding to individual multimedia objects are inserted together. Typically,
this is a large number of vectors; e.g., around one thousand vectors in an image database
and a much larger number for more complex media objects. Furthermore, insertions can
be batched, allowing a focus on throughput. We observe, for example, that in many of
today’s large scale media services, such as YouTube, media does not become immediately
available, as it is first processed by the services in potentially multiple ways before mak-
ing it available. For such media sharing sites, media files to be protected from copyright
violations are most likely added by administrators. And in the case of forensic applica-
tions, police forces insert data only rarely, for example as a result of new offensive media
collections being discovered.

Thus there exists a class of applications where it is safe to assume that (a) updates are
made centrally, and (b) that throughput is more important for this update thread than re-
sponse time. For such applications, it is feasible to serialize insertions such that only one
insertion transaction is running at each time, which greatly simplifies the implementa-
tion of the insertion process. Due to serialization, two insertion transactions will never
conflict, which means that a simple locking mechanism based on tree-traversals is suffi-
cient to enforce isolation. Because insertions are never aborted and they never deadlock,
ensuring atomicity is only needed when the system crashes. Furthermore, since at most
one insert transaction is running concurrently, enforcing durability is greatly simplified.
Finally, since there are no constraints on the vectors, as such, the traditional notion of con-

sistency does not apply here (or alternatively, with these applications, atomicity implies
consistency).

Note that deletions may occur, although they will be very rare in practice. Deletions can
be implemented using very similar techniques to those implementing insertions described
below. By adding the deleted media item to a list of deleted media, we can avoid returning
partially deleted items; when deletion is finished the item can be removed permanently
from this list. Note that the vector collection is never updated, however, as a modified me-
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dia item will typically yield a very different set of vectors; updates must thus be modelled
as deletions followed by insertions.

5.2 Insertions

Insertion to NV-tree leaves proceeds as follows. When the correct leaf node is found,
using the exact same process as during search, the position within the leaf node is cal-
culated and the identifier is inserted in the designated position. During index creation,
leaf nodes are not filled completely (typically they are between 50% and 85% full, and
about 70% full on average) in order to leave space for such insertions. Once a leaf node
is filled, however, it must be split in order to provide more storage capacity within the
tree. This split operation is a complex and expensive operation which must be carefully
implemented; the remainder of this sub-section describes the details of the split operation
and its implementation.

5.2.1 The Split Operation

The basic method to split a node is very similar to the index construction process. A new
internal node is created with two new leaf nodes as children. A projection line is then
assigned to the internal node using the same method as during index construction. The
contents of the full leaf node are projected along the projection line and inserted to the
appropriate leaf. Each leaf is then also assigned a projection line and the contents of the
leaf ordered based on the projection to that line.

Using this basic method, however, the index would quickly become very deep, as each
leaf would always be split into two leaves and all the new internal nodes would have
only two children. A better method is to consider a group of l leaves together, and re-
distribute their contents to l + 1 leaves. We chose to go one step further, and consider
the group of leaves described in Chapter 4 as the unit of splits; when that group exceeds
6× 6 = 36 leaves, the group is split into multiple new groups, typically between 4 and 8
new groups, depending on the distribution of the high-dimensional vectors in the original
group undergoing a split.
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5.2.2 The Leaf-Group Database

In order to project the contents of the filled leaf and its neighbors, it is necessary to use
the original vectors, as a) a new projection line may be chosen for the internal nodes, and
b) each new leaf has a new projection line. As the actual vectors are not stored in the
leaf nodes, they must be retrieved from disk. Since they are randomly distributed over the
whole vector collection, however, a naive implementation would result in a large number
of very costly random disk accesses for each split.

A more efficient implementation is to maintain an independent vector database for each
NV-tree. Each tuple in each database stores the identifier of the vector, all of its compo-
nents (the values for all its dimensions), as well as the leaf-group identifier within which
it is stored in the corresponding NV-tree. Each database is organized according to a clus-
tering index defined over the leaf-group identifiers. Therefore, all the vectors that are
together within one leaf-group of one NV-tree are together in the database, hence the
“leaf-group database” name we use here. It is thus efficient to load all the vectors be-
longing to the leaf-group that is being split, which minimizes the number of random I/Os
that must be performed. The multiple NV-trees indexing the same collection have very
different vectors in their respectives leaves because the construction of each index uses
the pseudo-random projections discussed in Chapter 3. Therefore, the grouping of vec-
tors per leaf-groups differs across NV-trees, explaining why there is one such independent
leaf-group database per NV-tree indexing the collection of vectors.

To further improve efficiency, inserts and updates in the leaf-group databases are buffered
in memory. A thread pushes to the leaf-group databases the contents of the buffer, inde-
pendently from the thread pushing to disks the updates to the leaves within the leaf groups
of the NV-trees that are splitting. The buffer is also clustered according to the identifiers
of the leaf-groups, which facilitates propagating the updates to the databases. While vec-
tors in the leaf-group databases are clustered by the identifier of their leaf group, no other
order is imposed on the vectors within each group, simplifying implementation.

Storage technology is progressing, however, and the ubiquitous SSDs (Solid State Disks)
are quickly becoming viable for large-scale industrial data stores. With SSDs, issu-
ing many small random reads is much more efficient, which means that it may not be
(performance-wise) necessary to cluster the vectors per leaf-group and to maintain one
database per NV-tree. Instead, maintaining a unique database where the full vectors are
stored sorted on their identifiers, and that is randomly accessed by the split operations
is likely to be as efficient, while consuming less storage space. Fully understanding the
impact of SSD technology is part of our future research agenda.
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5.3 Enforcement of ACID Properties

In this section, we consider the enforcement of ACID properties of transactions during
NV-tree insertions. As mentioned above, traditional consistency concerns do not apply
here. We therefore start by considering isolation for a single NV-tree in Section 5.3.1,
then consider atomicity and durability in Section 5.3.2, before addressing some practical
issues relating to concurrent insertions to multiple NV-trees in Section 5.3.3.

5.3.1 Isolation

Isolation is implemented using a standard locking algorithm adapted from the B+-tree. A
search thread starts by obtaining a read lock on the root. Before accessing a child node,
the thread must then obtain a read lock on that node. At that point, the lock on the parent
can be released. Finally, the leaf group selected for retrieval is locked and only released
after all necessary identifiers have been retrieved from the designated leaves. Note that
locks are implemented using pthread mutexes; each internal node contains the mutexes
for all its children and the leaf groups are locked as a unit since they are treated as a unit
during both retrieval and node splits. Note also that the overhead of obtaining locks is low
and hence locking is always activated.

The insertion process uses the same locking mechanism, except that finally an exclusive
lock is acquired for the leaf group, preventing concurrent insertions into and concurrent
retrieval from that leaf group. In the case of a leaf group split, a new internal node is
created pointing to all the newly created leaf groups; the lock on the original leaf group is
sufficient to protect the modification of the parent node.

Since each query or insertion transaction needs to access multiple trees multiple times, it is
necessary, however, to consider the overall interaction between search and insertion trans-
actions. Recall that insertion transactions are serialized; they are therefore assigned with
ever-increasing transaction identifiers (TIDs) which are stored with each inserted vector.
Isolation is enforced by omitting from the query result vectors with transaction identifiers
larger than that of the last transaction that committed before the search started.

5.3.2 Atomicity and Durability

For atomicity and durability, we adapt the standard write-ahead logging protocol (e.g.,
see (Gray et al., 1981; Mohan, Haderle, Lindsay, Pirahesh, & Schwarz, 1992)). Note
that while it is difficult to prove the correctness of the implementation of durability, the
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implementation has been tested methodically by pausing operations in certain places and
crashing the computer; in all cases has recovery been successful.

The write-ahead log is distributed to a number of files. The vector collection log file

contains all inserted vectors. A global log file is used for logging information necessary
for the overall recovery process. Finally, each NV-tree has its own index log file, which
stores the information necessary to undo and redo split operations. Special care is taken
not to overwrite the disk space belonging to leaf groups that have been split until the
splitting transaction has committed. The fact that a single insertion transaction is writing
to each index helps to simplify the process, as only committed vectors exist immediately
after commit.

The recovery manager uses regular checkpoints to facilitate efficient recovery. During
checkpoints, the contents of the entire NV-tree are flushed to disk and information about
the status of the internal nodes is stored in a checkpoint file. The leaf-group database
itself is already synchronized on disk, aside from the contents of the leaf-group buffer; to
avoid writing to the entire leaf-group DB, the contents of the buffer are also stored in the
checkpoint file. Two different checkpoint files are used, so that the previous checkpoint
is valid until the completion of the current checkpoint. Furthermore, checkpoints are
only taken immediately after an insertion transaction commits, which means that after the
checkpoint everything is consistent on disk and contains only committed vectors.

During recovery, the latest checkpoint file is first read and the status at the time of the
checkpoint is adopted for the internal nodes, the leaf nodes and the leaf-group DB. Then
the split operations are retrieved from the index log file, and those split operations that
were performed due to committed transactions are re-played on the internal structure,
while other split operations are ignored. At this point, the internal structure is correct, as
of the time of the crash, but vectors may be incorrectly included and/or missing. Next,
therefore, vectors that belonged to uncommitted transactions, but made it to the leaf nodes
of the NV-tree are removed; note that no such vectors are ever found in the leaf-group
DB, because they are only added to the leaf-group buffer when the transaction is ready
to commit and the checkpoint is only written after commit. Finally, the vector collection
log file is used to re-insert the committed vectors that did not make it to disk, both to the
NV-tree and the leaf-group DB, taking care to avoid re-insertion to the split leaves.

Note that since the insertion operations are serialized and do not conflict, the undo and
redo phases can be performed in any order. Since vector removal requires moving other
vector identifiers in the leaves, however, it makes sense to do that before inserting new
identifiers that would subsequently need to be moved.
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The recovery process also supports crashes within the recovery process itself, or repeated
crashes. The process starts by recovering the memory based structure into the last consis-
tent stage before the crash, and no disk writes are necessary during this stage that would
interfere with or complicate subsequent recovery efforts in the case of repeated crashes
during the recovery process. Only after successful recovery of the indices in memory, and
after the system has successfully generated a checkpoint for each index, will the system
invalidate the log files and accept insert or query requests. As there are always two sepa-
rate checkpoint files, even a crash during a checkpoint does not invalidate the correctness
of the structure, nor complicate the recovery progress. The only performance related pa-
rameter during recovery is the time passed since the last successful checkpoint. When the
crash happens immediately after the checkpoint, the recovery process is short as hardly
any undo and redo operations must be carried out. If the crash happens long after the
last checkpoint, on the other hand, or during the generation of a new checkpoint, then the
recovery effort is significant as there will be many undo and redo operations, in addition
to a large number of split operations, that must be taken care of.

5.3.3 Practical Issues with Multiple NV-trees

When inserting to multiple NV-trees, each tree is preferably located on a separate hard
drive (as are the log files) so that the full write-back capacity of the disks can be used
for the leaf-group DB thread. In the early stages of our implementation, we inserted
synchronously to all NV-trees in the system, as we expected the performance of insertion
to be rather uniform. We immediately observed a major performance bottleneck, however,
as only about 40% of the available disk capacity of the three available hard drives was
used, thus significantly reducing the total insertion throughput of the system.

The reason for this reduced insertion throughput was twofold. First, the number of disk
operations caused by an insert transaction can differ significantly between NV-trees de-
pending on the number of split operations required (this is by far the most expensive
operation). A significant amount of time was thus spent waiting for the slowest NV-tree
(which would be different from one transaction to the other) to finish the current insertion
transaction before the next one could start.

The second, and more serious, cause for the reduction in disk throughput was caused by
a problem in the Linux disk scheduler we were using. To avoid idle disk time, the buffer
manager decouples disk write operations as seen by the applications from the actual disk
operations by delaying the write-back of dirty pages as long as possible. The performance
of the write-back scheduler degrades, however, in the case of intensive access to many
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hard drives at the same time. When the buffer cache size fills above a certain threshold
of main memory, the internal scheduler stops all further disk operations and bursts a full
write to a single disk, rather than triggering writes to several disks at once. During these
bursts all other interaction with the disks is blocked, up to several minutes in the worst
case, meaning that the other disks are spinning idle as they had long finished their part of
the current insertion transaction.

In order to compensate for this problem, we decoupled the insertion process (as well as
logging and checkpointing) for each NV-tree. Each NV-tree can thus be inserting from a
different transaction, but they must all process the transactions in the same order. Since
transactions may progress differently across different trees, more than one uncommitted
transaction may have inserted vectors to some trees before a crash. Due to the ordering
of transactions, however, the last NV-tree to finish a transaction decides the commit time
and transactions will therefore commit in the same order, and all the techniques described
above are unaffected by this change. Using this optimization, disk utilization was im-
proved from about 40% up to 75% to 80%, without violating the previously described
ACID properties.

5.4 Performance of Index Maintenance

In this section we investigate the performance of dynamic inserts, while guaranteeing
ACID properties, as described above. As the index experiences splits upon inserts, it
is also important to verify that the evolution of the data structure does not dramatically
impact the ability of the NV-tree to correctly identify nearest neighbors. We first discuss
insertion throughput and then result quality.

5.4.1 Experimental Setup

This experiment was designed to show the two interesting cases that govern the perfor-
mance of inserts. First, when the index fits in main memory, inserts are done in memory
and later asynchronously pushed to disks, resulting in excellent performance. The second
case arises when the index is larger than memory. In this case, it might be required to load
from disks the data pages into which inserts take place, which is not only slow, but also
interferes with writing back updated pages. We therefore expect this second case to show
much worse performance.
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Figure 5.1: Insertion throughput (three NV-trees; six hard disks; 32 GB of main memory).

To illustrate these two cases, we used a machine with only 32GB of main memory. We
started by indexing a collection of 36 million vectors with three NV-trees. This is a tiny
collection which can be indexed very quickly, and the resulting NV-trees together occupy
slightly more than 500MB. We then ran sequences of 1,000 insertion transactions. Each
transaction is inserting 100,000 new vectors into the three NV-trees, which means that
each sequence of insertion inserts 100 million new vectors. We then observed the time it
takes for each sequence to complete. We repeated this process and ran multiple sequences
until each of the NV-trees contained nearly 2.5 billion vectors, occupying about 328 GB
each.

5.4.2 Insertion Throughput

Figure 5.1 shows the evolution of the insertion throughput (measured by vectors inserted
per second) for the duration of this workload. In the beginning of this workload, all
three NV-trees fit into main memory and the throughput is excellent, around five thousand
vectors per second. After running 16 such transactions, thus inserting 1.6 billion vectors,
the 3 NV-trees no longer fit in main memory. After that point, Figure 5.1 clearly shows
the insert behavior corresponding to the second case discussed above, where the rate of
inserts slows down significantly due to conflicting disk operations. It should be noted,
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however, that with throughput of 500 vectors per second, each insertion only takes 2 ms.,
which is significantly less than one disk operation per insertion.

The most important aspect of this experiment is not the reduced performance of inserts
after 1.6 billion vectors have been inserted and the index no longer fits in memory. (With
the machine used in the experiments described in the next section, memory would have
been exhausted after having inserted close to 25 billion vectors.) Rather it is the fact that
even when the collection no longer fits in memory, dynamic maintenance of the index is
still possible as the insertion throughput degrades gracefully.

While we have not formally measured the overhead of enforcing the ACID properties of
the NV-tree, we still believe that the overhead is insignificant. The logging mechanism for
transactions does not impact the overall performance as it is operated independently from
the insertion threads for each individual NV-tree. As the log file is stored on a separate
disk, it also does not compete with the I/O demand of the insertion process. Node splits
are logged on the same drive as the index is residing, however, but the amount of data that
needs to be logged is tiny in comparison to the I/O operations required for performing the
actual split. Thus, also here the overhead can be considered negligible.

The only major effect on performance is due to the generation of checkpoints, where all
leaf nodes residing in main memory are written back to disk. Checkpoints are thus be-
coming increasingly expensive with the size of the index; this is most likely one of the
factors explaining why the insertion throughput of insert transactions is slightly decreas-
ing over time even when the whole index fits in memory. Considering, however, that one
NV-tree index with 2.5 billion vectors is only about 14 GB in size, and that it only takes
about 45-90 seconds to write back that amount of data on today’s hard drives, these delays
affect overall performance only marginally.

5.4.3 Retrieval Quality

To evaluate the query performance of the NV-tree, we borrow the worklload and ground
truth defined in Chapter 3. We included these 248,212 vectors in the database of 36
million distracting vectors, computed from a set of random images downloaded from
Flickr. Once this database was created, we ran the same 500,000 queries as before and
computed their recall, i.e., we count how many of these 248,212 ground truth vectors are
found. We repeated that same workload after every insertion transaction (of 100 million
vectors), to observe how the quality of the answers evolves as the database grows.
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Figure 5.2: Recall, increasing the insert load, two NV-tree settings

Figure 5.2 plots the recall percentage from the 500,000 queries described above, as the
collection grows in size. The figure shows a configuration where the results are aggregated
from three NV-trees. As the figure shows, recall drops slowly as the collection grows,
which was expected. For comparison, the figure also contains a dashed line indicating the
result quality when the NV-trees for the 2.5 billion vectors is constructed from scratch via
bulk loading. As the figure shows, the results for the dynamically created NV-trees and
the bulk-loaded NV-trees are identical, meaning that dynamicity has no impact on result
quality.

5.5 Large-Scale Experiments

In the previous sections we have shown how to transform the NV-tree from a disk-based
high-dimensional index to a full-fledged database solution for scalable nearest-neighbor
retrieval, by allowing dynamic updates and supporting the ACID properties of transac-
tions, thus ensuring dynamicity and durability. We now report on scalability experi-
ments, where we have embedded standard image benchmarks into a collection of nearly
30 billion vectors, demonstrating the extreme scalability of our database solution and
showing that it is a complete industry-strenght solution for large-scale approximate high-
dimensional indexing.
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5.5.1 Experimental Setup

To evaluate the query performance of the NV-tree, we yet again use the ground truth de-
fined in Chapter 3. We briefly recall the definition of this ground truth for completeness.
We used a sequential scan to determine the 1,000 nearest neighbors of 500,000 query vec-
tors, all coming from a collection of 180 million SIFT vectors. Analyzing the resulting
500M neighbors, we identified 248,212 vectors as being contrasted enough to be consid-
ered the true nearest neighbors of the query vectors. Contrast here is directly derived from
criterion of (Lowe, 2004); a neighbor is considered a true neighbor if it is significantly
closer than neighbor number one hundred.

We then embed these 248,212 vectors within vector sets of varying cardinalities to dis-
tract the search. These sets of distracting vectors have been created by extracting SIFT
features from nearly 30 million images randomly downloaded from Flickr. These images
are ignored here, however, as we solely focus on nearest neighbor retrieval of individual
vectors. The resulting distractor sets contain about 30 million vectors, 180 million, 300
million, 2.5 billion, 3 billion and nearly 30 billion vectors, respectively. For the sake of
completeness, Table 5.1 gives the exact figures for the collections used in this experi-
ment.

These experiments focus primarily on recall, i.e., how many of these 248,212 ground truth
vectors are found using the original set of 500,000 queries when varying the number of
distractors, but we also report on the retrieval performance. We are not aware of any other
single-server experiments ever published where recall measurements are obtained from
searching the nearest neighbors of individual query vectors lost within nearly 30 billion
distracting vectors.

We ran experiments using a Dell r710 machine that has two Intel X5650 2.67Ghz CPUs.
Each CPU has 12MB of L3 cache that is shared by the 6 actual and 6 virtual cores. There
are therefore 24 cores, 12 being real processing units. The RAM consists of 18x8GB
800Mhz RDIMMs chips for a total of 144GB. That machine is connected to a NAS 3070
from NetApp offering about 100TB of disk space, in a RAID configuration. We ran the
experiments using a single core. Some experimental settings involve multiple NV-trees;
they are probed one after the other—no parallelism is enforced here while this could be
trivially done. We focus mostly on one, two or three NV-trees, but report some results
with up to six NV-trees.
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Table 5.1: Distracting vector collections
Collection Size NV-tree size

Collection (SIFT vectors) (on disk) (one tree, on disk)

30M 28,799,690 4 GB 180 MB

180M 179,443,881 24 GB 1 GB

300M 305,443,749 40 GB 2 GB

2.5B 2,485,568,191 328 GB 14 GB

3B 3,040,856,472 401 GB 17 GB

30B 28,484,904,924 3.7 TB 162 GB

5.5.2 Quality of Nearest Neighbor Retrieval

Figure 5.3 shows the recall for various collections. The x-axis shows the size of the collec-
tion used in this study, while the y-axis shows recall obtained by using a varying number
of NV-trees. Up to three NV-trees were used against all the datasets. We also considered
using up to six NV-trees to improve recall; as such experiments are complicated and time
consuming, however, we used only two moderate size datasets for this purpose.

When using a single NV-tree, recall is relatively low. Close to 54% of the 248,212 ground
truth vectors are found when they are lost in the 30M collection. This percentage then
slowly decreases as the distracting collection grows, to about 38% when challenged by
the 30B collection.

Using additional indices dramatically improves performance, however. With the 30M
collection, recall jumps to 72% with two NV-trees and 79% using three NV-trees. At
the other end of the figure, with the 30B collection, recall is lower as before but remains
remarkably good given the size of the distracting collection: 52% with two NV-trees and
58% with three NV-trees.

Using more than three NV-trees provides a slight recall improvement, but not as dramatic
as going from a single NV-tree to two and three. Further increasing the number of NV-
trees is therefore not a worthy option, since it increases the pressure on the storage and
main memory. It also increases the retrieval cost as more trees must be probed.

5.5.3 Retrieval Performance

We now turn to the retrieval performance. We measured the response time of each indi-
vidual query as well as the throughput of the system, determining the number of query
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Figure 5.3: Recall, varying dataset sizes, varying the # of NV-trees

vectors it can process per second. As the results are highly dependent on hardware, and
memory size in particular, we focus on the key retrieval performance elements: the domi-
nating costs related to the CPU consumption and main memory latency when the NV-tree
indices fit in main memory; and the performance of disk reads when the indices can no
longer fit within memory.

Recall that the main memory of our server was 144 GB, which means that all the leaves of
three NV-trees can fit into memory for all collections except the 30B collection. When the
various indices fit entirely in main memory, then answering each query vector is extremely
fast. It takes a fraction of a millisecond to process one vector against one NV-tree, and
the throughput we observed ranged from 2,000 to 3,000 query vectors per second per
tree.

It should be noted, however, that this throughput can be achieved only when each NV-tree
index entirely resides in main memory, that is, once all its leaves are in RAM. The leaves
can be purposely loaded to memory before running queries, or loaded as a consequence
of the querying process. In the latter case, the first queries are slow as they need to fetch
data from disks, while subsequent queries are faster as they are more likely to find the
data they need in memory, loaded by previous queries.

When using the 30B collection, on the other hand, the main memory can not fit even all
the leaves of one NV-tree. Each query vector is likely to access a different random part of
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the index and no buffering policy copes with such demanding access patterns, meaning
that the system must retrieve data from disks for almost every query vector. The response
time is therefore much larger.

The duration of each I/O varies but typically is within a range of 5 to 20 milliseconds.
I/Os are largely random and it is extremely complicated to precisely know how they are
handled by the NAS NetApp server. It serves many users in parallel, has various level of
caches that we can neither control nor observe, and stripes the data across its disks in an
opaque manner. Overall, however, about 50 query vectors could be processed per second
per tree, as the NV-tree meets the design criterion of one disk read per query.

5.5.4 Discussion

Overall, as before, using three NV-trees is the best option. It proved to work extremely
well even when dealing with a truly large-scale collection and a challenging experimental
setup: the NV-tree can correctly identify the majority of the nearest vectors of each query
vector even when these vectors are lost in up to 30 billion distracting vectors. With three
trees, processing cost is moderate, the recall is excellent, and the storage demands are
very reasonable: only about 500GB are needed to keep all the leaves of three NV-tree
within main memory even for the 30B collection.

We conclude this discussion by reporting on the scalability of the experiments found in
the literature. We have extensively reviewed the existing works and retained the ones
where the high-dimensional indexing schemes that were proposed, as well as the scale
of the experiments run, contributed significantly to advancing the state of the art. In
addition to the work proposed in this thesis, we report scale of experiments in six other
high-dimensional indexing schemes. Figure 5.4 summarizes the results.

Joly, Frélicot, and Buisson (2003) was among the pioneers to design a video content-based
copy identification scheme relying on local features extracted around interest points; ex-
periments using 121M vectors were reported. Douze, Jégou, Sandhawalia, Amsaleg, and
Schmid (2009) proposed an indexing strategy that optimizes the trade-off between mem-
ory usage and precision. It is tested using a database of 110 million GIST vectors. An
early version of the NV-tree is described in (Lejsek, Ásmundsson, Jónsson, & Amsaleg,
2009) (see Chapter 3) and evaluated against 180M descriptors. Jégou et al. (2011) pro-
posed an indexing scheme based on the notion of product quantization and evaluated its
scheme by indexing 2B vectors. Lejsek et al. (2011) described the non-ACID NV-tree (see
Chapter 4) and the experiments in this paper used 2.5B local feature vectors. Jégou et al.
(2012) designed a very elegant local feature aggregation scheme enabling a very compact
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Figure 5.4: Comparison of the scale of experimental collections reported in the literature.
Black bars represent work reported in this thesis. Shaded bars represent multi-server
configurations, reported here for completeness.

representation in RAM of high-dimensional vectors while preserving most of their dis-
tinctive power. Their experiment used 100M super-vectors resulting from the aggregation
of several billion local feature vectors. Sun et al. (2013) also relied on the aggregation
scheme proposed by Jégou et al. (2012), indexing 1.5B images, but using 10 servers, how-
ever. In (Moise, Shestakov, Guðmundsson, & Amsaleg, 2013), about 100M images were
indexed, which amounts to managing close to 30B high-dimensional vectors. That work,
however, used the MapReduce programming model and the Hadoop framework, with the
serch experiments running on 90 computers. While the scale of the experiments in this
work is worth noticing, the philosophy of the system is quite different as it is dedicated to
processing batches of queries and cannot run interactively.

5.6 Summary

In this chapter we decribed how the NV-tree fulfills industry requirements, by enforcing
the ACID properties of transactions for a large class of important applications in the mul-
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timedia domain. Experiments show that with our implementation dynamic inserts can be
efficiently managed; when the index fits in memory, performance is excellent, but when
the index no longer fits in memory, performance degrades gracefully.

We then described detailed performance evaluations of the scalability of the NV-tree using
standard image benchmarks embedded in collections of up to 30 billion high-dimensional
vectors. As our analysis of the literature shows, these are by far the largest single-server
experiments reported anywhere. Overall, we have therefore shown that this extended NV-
tree is not only an extremely scalable approximate indexing strategy, but also a unique
nearest neighbor search system that meets industrial standards for a database management
solution.
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Chapter 6

Conclusions

Nearest neighbor search in high-dimensional space is an operation that is fundamental
to many applications. Recent progress in approximate high-dimensional indexing has
resulted in several approaches which can handle several hundred million to a few billion
high-dimensional vectors and exhibit excellent response times. However, when moving
from the research lab to the real world, scalability is not the only challenge that must
be met. To be useful in industry, a high-dimensional indexing method must also provide
dynamicity—the ability to cope with on-line insertions of new high-dimensional items
into the indexed collection—and durability—the ability to recover from crashes and avoid
losing the indexed data if a failure occurs.

6.1 Summary of Contributions

In this thesis we have proposed and described the NV-tree, an indexing structure which
is one instance of these scalable approaches. We described the fundamentals of the NV-
tree, different strategies for its construction and different strategies for traversing the tree
structure and aggregating the descriptor references.

Our experimental results show that the NV-tree scales very well, starting from collection
sizes of 30 million high-dimensional feature vectors up to collection sizes of nearly 30
billion. As our analysis of the literature shows, these are by far the largest single-server
experiments reported anywhere. For the collection sizes typically reported in the literature
the data could be easily hosted within main memory. Once entering the billion scale, how-
ever, this becomes increasingly difficult when memory requirements go into the hundreds
or thousands of GB.
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There is no doubt that utilizing main memory effectively in the retrieval process is of high
importance. The NV-tree supports this by replacing actual distance calculation by rank ag-
gregation, thus compressing the original feature vector down to a single one-dimensional
identifier which can be held in main memory much more easily. In the end, however,
we believe that data quantity will always win over memory capacity and therefore it is
important that performance degrades gracefully as memory capacity is exceeded, which
is not the case for alternative approaches, as discussed in Chapter 2.

Searching the NV-tree itself incurs negligible CPU overhead. When the index fits entirely
in main memory a single server computer with 2 quad-core CPUs can process between
150 and 250 thousand descriptor queries per second. This is equivalent to about 200
image queries, assuming that the average image yields around one thousand feature vec-
tors.

We have also analyzed the properties of a large-scale copy detection application using the
well known SIFT descriptors. We show that the SIFT descriptors are very distinctive and
have high contrast, even in large collections. Furthermore, we show that using contrast-
based ground truth sets is necessary to obtain meaningful results for all queries. We have
shown that the NV-tree returns very good approximate results for this workload, and we
believe that the NV-tree can be used for any large-scale application, where the data set
can be shown to have contrast and yield meaningful results.

In a comparison against the ε-distance based approximate hashing method LSH we dis-
covered that both LSH and the NV-tree are good indexing schemes for nearest neighbor
search in high dimensional space. While both methods are built on the concepts of projec-
tion to lines and partitioning, however, they have very different properties. The NV-tree
is a tree-structure which guarantees fixed size I/O operations and a maximum size on
the result set. LSH is hashing based and might in extreme cases return very large result
sets. Overall, the NV-tree gives better results using less disk-space, making it the superior
approach.

Finally, we have adapted the NV-tree to meet industry requirements, by enforcing the
ACID properties of transactions for a large class of important applications in the multi-
media domain. Experiments show that with our implementation dynamic inserts can be
efficiently managed; when the index fits in memory, insertion performance is excellent,
but when the index no longer fits in memory, performance degrades very gracefully. This
makes the NV-tree the only high-dimensional indexing method reported in the literature
which satisfies the three requirements of scalability, dynamicity and durability.
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6.2 Industry Impact

As mentioned in the introduction, the technology described in this thesis is already in
use at Videntifier Technologies (www.videntifier.com). Videntifier’s search en-
gine currently indexes and identifies videos from a collection of nearly 150 thousand
hours of video, at about 40x real time. Furthermore, about 700 hours of video material is
dynamically inserted to the ever-growing index every day.

The database service built upon the NV-tree index already has several large international
police organisations as clients, such as INTERPOL, the US National Center of Missing
and Exploited Children and the UK Home Office, supporting their efforts in fighting the
distribution of child abuse content over the internet and their responsibility to get hold
of perpetrators and rescuing the victims. Each of the three organisations holds large ref-
erence collections of illegal content that must be organised and made available to their
members and associates for intelligence work and forensic investigation. Typical collec-
tion sizes are in the order of a hundred thousand video hours and tens of millions of still
images.

A separate area of application is the fight against terrorist and hate-speech propaganda.
Videntifier also serves two clients in this domain. Very recently the company also looks
into business in the multimedia analysis domain, in particular by installing the Videntifier
client (including visual descriptor extraction) on end-user devices such as smartTVs and
tablet PCs. This kind of development requires massive throughput capabilities in terms
of visual identification as eventually many millions of concurrent devices will need to be
handled.

Of course the NV-tree is not the only technology that is incorporated in the products
and services Videntifier Technologies are offering to their clients, but it is the central
component and the company’s competitive advantage in the field of visual identification.
Other components—partially published in white papers and patents by the Videntifier
team–include:

• The Videntifier descriptors, a SIFT derivative that has shown to yield fewer, more
descriptive features than the original algorithm. Furthermore, the descriptors have
72 dimensions, which is significantly lower than SIFT and thus require less stor-
age space and processing time when calculating the projections (Daðason, Lejsek,
Jóhannsson, Jónsson, & Amsaleg, 2010; Lejsek et al., 2006) .

• A scalable descriptor filter used for representing video content by a stream of visual
descriptors with minimal redundancy and scene-level analysis. This is the basis for
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Videntifier’s capability to identify content at extremely high accuracy in terms of
time locality. In more than 95% of the cases a single video frame is enough to
reliably identify the video content down to the correctly matching reference scene
in the video.

• An algorithm to reliably filter false-positive matches based on the locations of the
matching descriptors within the image. This geometric alignment between the
query point locations and the reference points is state-of-the-art of verification, but
it is not always trivial to extract exact point locations. In the context of videos, in
particular, camera movements like panning and zooming can have significant influ-
ence on the descriptor locations. Therefore Videntifier Technologies developed an
algorithm which follows the camera movements during descriptor extraction and
thus tries to match descriptors into a global unified location.

Last but not least there are a range of user interfaces that have been developed to help
law enforcement investigators with their work. Such user interfaces are coupled with a
command-line interface that provides access to the NV-tree but also a traditional relational
database system storing meta-information about the individual video and image files, in-
cluding the exact timing information of individual scenes within a particular video. In
addition to handling static files, Videntifier Technologies also developed an interface of-
fering the capability of dynamically querying and inserting video streams, to identify ille-
gal content in real-time. Such applications are of interest to law enforcement (in particular
counter terrorism efforts), but also of interest in the domain of multimedia analysis.

6.3 Future Work

While this thesis presents a complete picture of the NV-tree, as a scalable disk-based high-
dimensional index, we nevertheless foresee significant future work in the domain. This
work can largely be divided into two directions: further scalability extensions and fur-
ther applications of the technology. Some of the application work was briefly mentioned
above; we therefore focus on the scalability extensions here.

A key emphasis of the scalability efforts is the adaptation of the NV-tree to solid state
disks (SSDs). This work, which is of high importance for being able to scale the database
to even larger collection sizes while still maintaining high query and insertion through-
put, is already in progress. In order to fully utilize the power of SSDs, the algorithm was
rewritten, in particular the “leaf-group database” which is no longer required because in-
dividual descriptors can be easily ready from the collection file due to the superb small
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random read capabilities of modern SSDs. One particular feature of SSD storage is that
the maximum IO throughput, which is on the order of hundreds of thousands of IO opera-
tions per second through the PCI-express interface, can only be achieved through massive
parallelization of the IO requests. Equipped with such hardware, our next scalability step
is to measure collection sizes of 50–100 billion descriptors. First measurements have
shown to be very promising; the index creation, in particular, was significantly faster—an
important feature in scalability, as indexing time is a major bottleneck for reaching yet
larger collection sizes.

Another focus is to experiment with alternative description schemes. On one hand, cus-
tomers demand better robustness against affine transformations, in particular aspect-ratio
changes which are only handled to some degree with traditional SIFT based features. On
the other hand, as mentioned in the introduction, several recent description schemes ex-
ist that aggregate the information from a whole image or video frame into a single very
compact, high-dimensional descriptor. These descriptors have many desirable properties:
a) they generally provide good recognition power; b) while they are of a significantly
higher dimensionality, they are only as many as the images or frames to be indexed, al-
lowing more multimedia items to be represented inside main memory; and c) each query
is only represented by a single query descriptor, helping to reduce query processing costs.
In order to implement truly web-scale industry applications, it is necessary to implement
content-based retrieval using these recent and sophisticated aggregated descriptors, but
with a disk-based and ACID compliant indexing method, such as the NV-tree. This rep-
resents the most important future work in this area.
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