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Abstract

This dissertation is composed of two parts. In the �rst part, performance evalua-
tion and veri�cation of safety properties are provided for real-time actors. Recently,
the actor-based language, Timed Rebeca, was introduced to model distributed and
asynchronous systems with timing constraints and message passing communication.
A toolset was developed for automated translation of Timed Rebeca models to Er-
lang [1]. The translated code can be executed using a timed extension of McErlang
for model checking and simulation. In the �rst part of this dissertation, we induce a
new toolset that provides statistical model checking of Timed Rebeca models. Using
statistical model checking, we are now able to verify larger models against safety prop-
erties comparing to McErlang model checking. We examine the typical case studies
of elevators and ticket service to show the e�ciency of statistical model checking and
applicability of our toolset.

In the second part of this dissertation, we enhance our modeling ability and cover
more properties by performance evaluation and model checking of probabilistic real-
time actors. Distributed systems exhibit probabilistic and nondeterministic behaviors
and may have time constraints. Probabilistic Timed Rebeca (PTRebeca) is introduced
as a timed and probabilistic actor-based language for modeling distributed real-time
systems with asynchronous message passing. The semantics of PTRebeca is a Timed
Markov Decision Process (TMDP). We provide SOS rules for PTRebeca, and develop
two toolsets for analyzing PTRebeca models. The �rst toolset automatically gener-
ates a TMDP model from a PTRebeca model in the form of the input language of the
PRISM model checker. We use PRISM for performance analysis of PTRebeca models
against expected reachability and probabilistic reachability properties. Additionally,
we develop another toolset to automatically generate a Markov Automaton from a
PTRebeca model in the form of the input language of the Interactive Markov Chain
Analyzer (IMCA). The IMCA can be used as the back-end model checker for perfor-
mance analysis of PTRebeca models against expected reachability and probabilistic
reachability properties. We present the needed time for the analysis of di�erent case
studies using PRISM-based and IMCA-based approaches. The IMCA-based approach
needs considerably less time, and so has the ability of analyzing signi�cantly larger
models. We show the applicability of both approaches and the e�ciency of our tools
by analyzing a few case studies and experimental results.



Mat á frammistöðu og athugun á líkönum í líkindafræðilegum

rauntíma leikurum
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Útdráttur

Þessi ritgerð er tvískipt. Í fyrri hlutanum er farið í mat og sannprófun á eiginleikum
öryggis í rauntímalíkönum. Fyrir stuttu síðan var leikendabyggða málið, Timed Re-
beca, notað við líkana drei�ngu og ósamstillt ker� með tímastillingu og samskipti í
skilaboðum. Búið var til verkfærasett fyrir sjálfvirka þýðingu á Timed Rebeca líkön
y�r í Erlang. Hægt er að nota þýdda kóðann með því að nota tímastillta framlengingu
af McErlang fyrir líkanaprófun og hermun. Í fyrri hluta þessarar ritgerðar, ætlum við
að kynna verkfærasettið sem veitir tölfræðilega prófun á líkön á Timed Rebeca líkön.
Með því að nota tölfræðileg próf á líkön er núna hægt að sannreyna stærri líkön eins
og í öryggiskröfum McErlang. Við rannsökum dæmigerðar ferilsathuganir af lyftum og
miðasölu til að sýna fram á skilvirkni tölfræðilegra líkana og beitingu verkfærasettsins
okkar.

Í seinni hluta þessarar ritgerðar aukum við við getu líkanagerðarinnar og við náum
y�r �eiri eiginleika með mati á framkvæmd og prófunum á líkönum á líkinda rauntíma
leikara. Dreifð ker� sýna líkindi og brigðgenga hegðun sem kunna að hafa tímamörk.
Probabilistic Timed Rebeca (PTRebeca) er kynnt sem tímastillt og líkinda leikara-
byggt mál líkindadreifðra rauntímakerfa með ósamstillta sendingu skilaboða. Merk-
ingarfræði PTRebeca er Timed Markov Decision Process (TMDP). Við verðum með
SOS reglur fyrir PTRebeca, og þróum tvö verkfærasett til að greina PTRebeca líkön.
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Chapter 1

Introduction

As the number of distributed systems is growing rapidly, there is an increasing need to
develop modeling and veri�cation methods for such systems. Distributed systems are
made of cooperating components in which the components are interacting via asyn-
chronous message passing. Modeling and veri�cation of concurrent and distributed
systems takes much e�ort due to the behavioral and structural complexities of these
systems. There is thus a need for modeling languages that match well with computa-
tional models of such systems, and are supported by tools for analyzing performance
and dependability aspects of these systems. A well-established paradigm for modeling
the functional behavior of distributed and asynchronous systems is the actor model.

The actor language was originally introduced by Hewitt [2] as an agent-based lan-
guage for programming distributed systems, and was later developed by Agha [3]�[5]
into a concurrent object-based model. Valuable work has been done on formalizing the
actor model by Talcott et al. [4], [6]�[8]. In the actor model, actors are distributed,
autonomous objects that interact via asynchronous messaging. Building on an event-
driven and message-based foundation, actors provide scalability and are easy-to-grasp
concurrency models.

The actor model and its extensions have been used in several domains, for example,
designing embedded systems [9] and wireless sensor networks [10]. With the growth of
cloud computing, web services, and multi-core architectures, programming using the
actor model has become increasingly relevant [11]�[13]. Compared to mathematical
modeling languages, like process algebras, actors are more natural for designers, soft-
ware engineers, modelers and programmers. Compared to process-oriented models,
like Petri nets, the actor model has the advantages of an object-based language, like
encapsulation of data and process, and more decoupled modules. Moreover, the formal
semantics of actor-based languages builds a �rm foundation for formal analysis and
veri�cation [14].

1.1 Actor-based Modeling Languages

It is common to observe real-time behaviors in distributed systems. Di�erent modeling
formalisms have been proposed for design and analysis of real-time systems. Timed
automata [15] and TCCS [16] are examples of such formalisms. To analyze real-
time systems, model checking of these systems against properties of timed temporal
logics, which can refer to the time elapsed along system behaviors, has been studied
extensively in, for example, the context of timed automata [17].
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UPPAAL [18] and real-time Maude [19] are two well-known modeling languages
for the analysis of real-time systems. UPPAAL is an integrated tool for modeling and
analysis of systems modeled as networks of timed automata. UPPAAL is the most
well-known model checker for real-time systems. Real-time Maude is a language which
is based on rewriting logic. The supporting tool provides a wide range of analysis
techniques.

Apart from the well-known modeling formalisms, high level modeling languages
have been adapted for real-time requirements. Actor-based modeling languages as an
example of such languages are extended with timing features to address the functional
behaviors of actors and the timing constraints on patterns of actor invocations. In the
following paragraphs, we �rst describe some actor-based languages and their timed
extensions. Then the Rebeca language and its timed extension, namely Timed Rebeca,
are compared with these languages. The Timed Rebeca language and its probabilistic
extension are our focus in this thesis.

The Creol language is an object-oriented language in which asynchronous method
calls are taken as the communication primitives for concurrent objects. In the se-
mantics of Creol, asynchronous method calls are encoded using asynchronous message
passing. The operational semantics is written in an actor-based style using rewriting
logic. Maude has been used as an underlying simulation platform for Creol models [20].
Timed Creol is proposed as a timed extension of Creol in [21] for which the Creol's
operational semantics is extended with a notion of discrete time. Time is modeled by
a global clock or equivalently, local clocks which evolve with the same rate. In [22],
timed Creol has been also extended with a notion of deployment component which is
parametric in its concurrent resources per time interval and the operational semantics
of object execution on deployment components is formalized. Based on this formal-
ization, Maude is used to validate resource requirements that are needed to maintain
the timed behavior of concurrent objects deployed with restricted resources.

The Abstract Behavioral Speci�cation language (ABS) is an object-oriented, con-
current modeling language [23]. The concurrency model of ABS generalizes the concur-
rency model of Creol from single concurrent objects to concurrent object groups. ABS
code is fully executable which is supported by a simulator as well as several code gener-
ation back-ends for Java, Haskell, and Erlang. The Real-time ABS language is a timed
extension of ABS with a formal semantics and a Java-like syntax [24]. The authors
in [25] present a simple and �exible approach to integrating deployment architectures
and resource consumption into executable object-oriented models.

RT-synchronizer is proposed as an actor-based and high-level programming lan-
guage for specifying real-time constraints between objects in a concurrent distributed
system [26]. In this language, the speci�cation of an object's functional behavior and
the timing constraints imposed on it are separated. This separation can simplify the
design, implementation, and reasoning of real-time distributed systems.

Reactive Objects Language, Rebeca [27]�[29], is an operational interpretation of
the actor model with formal semantics and model checking tools. To the best of
our knowledge, Rebeca is the �rst attempt to provide compositional veri�cation and
model checking support for an imperative actor-based language. Sirjani and her re-
search group de�ned the language Rebeca and its formal semantics, developed its model
checking tools, and provided a compositional veri�cation theory and abstraction tech-
niques. They have been actively and successfully investigating specialized reduction
techniques for formal veri�cation of Rebeca models, namely, symmetry, partial order,
and slicing, that are all based on the formal semantics of the language [30]�[37].
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Timed Rebeca [38] was proposed as an extension of Rebeca for modeling actor-
based distributed and real-time systems. Timed Rebeca models can be simulated
using McErlang as a �rst implementation of Timed Rebeca. In Timed Rebeca, timing
primitives were added to Rebeca to specify both computational and network delay, and
assign a deadline for serving a request. Recently, Floating Time Transition Systems
(FTTS) were introduced to signi�cantly reduce the state space induced when model
checking Timed Rebeca models [39]. Checks for absence of deadlock freedom and
schedulability analysis of Timed Rebeca models can be performed using FTTS.

Comparing Rebeca with Actor-based Modeling Languages While in Creol
and its descendant, ABS, the focus has been on di�erent modeling features, for Rebeca
the core of the language is kept simple and adding any complexity is avoided. The
focus has been on the analysis and formal veri�cation of Rebeca and its extensions.
While RT-synchronizer is an abstraction mechanism for the declarative speci�cation
of timing constraints over groups of actors, Timed Rebeca allows us to work at a lower
level of abstraction. Using Timed Rebeca, a modeler can easily capture the functional
features of a system, together with the timing constraints for both computation and
network latencies, and analyze the model from various points of view [40]. In Section
3.6, we compare the Timed Rebeca language and its analysis techniques with more
modeling languages and their toolsets.

Since its introduction, Timed Rebeca has been used in di�erent areas. Examples
include the analysis of di�erent routing algorithms and scheduling policies in NoC
(Network on Chip) designs [41], [42], as well as schedulability analysis of distributed
real-time sensor network applications [43], more speci�cally a real-time continuous
sensing application for structural health monitoring in [44]. An ongoing project eval-
uates di�erent dispatching policies in compute clouds, facing priorities and deadlines
in Mapreduce clusters, inspired by [45]. In analyzing all the above mentioned applica-
tions, we observed the need for modeling probabilistic behaviors. In an earlier work,
pRebeca has been proposed as an extension of Rebeca to model probabilistic systems
[46]. However, pRebeca does not support the time features. In this work, we intro-
duce a probabilistic version of Timed Rebeca, for which the model checking approach is
used for performance evaluation and functional correctness. The bene�ts of combining
model checking and performance evaluation are elaborated upon in Section 1.2.

1.2 Di�erent Aspects of System Functionality

There are two types of questions about computer systems to be answered by engineers
and scientists. The �rst category of questions is related to perceived performance of
systems. Consider a major news website; the e�ect of choosing the number of servers
on the waiting time of incoming requests are answered by performance evaluation
techniques. One of the prominent techniques to obtain the measures of interest is
mathematical analysis in which a mathematical model of the system behavior (at the
desired level of detail) is typically constructed in the form of closed-form expressions.
The other performance evaluation techniques involve numerical evaluation that heavily
relies on methods from linear algebra, and (discrete-event) simulation techniques which
are based on statistical methods. The above mentioned techniques are based on the
theory of stochastic processes, most notably Markov chains [47].
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In the last century, di�erent models have been developed for performance evalu-
ation of systems. In the late 1960s, queuing networks were developed for modeling
of computer networks and time-sharing computer systems. In early 1980s, stochastic
Petri nets (SPNs) were developed as a modeling formalism for parallel computers. The
above models are mapped to underlying Markovian models, and are analyzed using
calculus or numerical analysis.

The second category of questions is whether a system is conforming to the require-
ments and does not contain any �aws. Formal veri�cation is an important research
area in computer science which explores the absence of errors, or �nds errors through
counter examples (i.e. error traces). The key techniques in this �eld includes run-time
veri�cation, theorem proving, and model checking. The latter is a highly automated
model-based technique assessing whether a system model, i.e., the possible system
behavior, satis�es a property describing the desirable behavior. In model checking,
models are nondeterministic �nite-state automata which are usually generated from a
high level modeling language such as Petri nets, process algebras, Promela, or Stat-
echarts. Properties are speci�ed in temporal logic such as CTL and LTL. Various
extensions of model checking have been developed to treat time and probabilities such
as model checking of a timed extension of CTL [17] and probabilistic variants of CTL
[48, Ch. 10].

Combining performance evaluation with model checking. Developments in
performance evaluation are focusing on more complex system behaviors, and the eval-
uation of more complex measures are needed. On the other hand, timing and proba-
bilistic features are becoming more important in model checking. Performance eval-
uation and model checking have thus grown in each other's direction. A number of
joint e�orts has been made, resulting in a quantitative system evaluation known as
stochastic model checking. Combining performance evaluation and model checking
has important advantages, which are brie�y explained in the next paragraphs.

The idea is to provide an integrated model for checking functional correctness and
performance evaluation. Using a single model enables the user, i.e. the system archi-
tecture, to specify measures of interest in temporal logic. In this way, the properties
can be speci�ed at the same abstraction level as the modeling of the system. Mostly,
systems are modeled by high-level modeling formalisms such as queuing networks,
SPNs, or stochastic process algebra. Temporal logic gives the possibility to specify
properties in terms of the high-level models. Additionally, the use of logics provides
a high degree of expressiveness and �exibility [47]. To specify complex measures in a
concise manner, nested formula can be used. Given the formal semantics of logics, the
meaning of complex and nested formulas are precise.

Model checking is used as an algorithmic approach for measure evaluation. The
main advantage is the use of a single computational model for evaluation of any pos-
sible measure that can be written in temporal logic. This is di�erent from common
performance and dependability evaluation where a new algorithm is developed for a
new measure. The largest advantage of using model checking for performance evalu-
ation is that all algorithmic details are hidden to the user. In common performance
analysis approach, expert knowledge on numerical analysis techniques for the stochas-
tic process is needed. It is worth mentioning that stochastic model checking provides
the functional correctness of the model and validation of the measures of interest at
the same time.
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When using performance evaluation techniques such as simulation or numerical
evaluation, modeling formalisms like SPNs and queuing networks are full stochastic
models. In the above methods, nondeterministic choices in the model are resolved
probabilistically, e.g. by assigning probabilities to the choices, which yields inaccurate
results. Nondeterminism is inherent in many applications which implies that the un-
derlying model is not a stochastic process. Stochastic models with nondeterminism
are called stochastic decision processes, for which temporal logic and model checking
algorithms have been developed with relative ease for CTL [49] and LTL [50], [51].
In these models, nondeterminism is resolved by choosing one probability distribution
from a set of them.

1.3 Motivation and Contributions

Although actors are attracting more and more attention both in academia and industry,
little work has been done on timed actors and even less on analyzing actor-based
models. To address the speci�cation and veri�cation of real-time systems, a few timed
actor-based modeling languages such as RT-synchronizer [26], Timed Creol [21], Real-
time ABS [24] and Timed Rebeca [38] were proposed.

In this work, the �rst implementation of Timed Rebeca is extended to improve its
usability, and also to be able to use the timed version of McErlang which has been
recently developed [52]. This version of Timed Rebeca supports performance evalu-
ation and veri�cation of safety properties. For example, we are are able to evaluate
the following measures: �the max/min/average waiting time in the queue�, and �the
max/min/average response time to requests�. To obtain the aforementioned measures
of interest, McErlang [53] is used as a simulation tool. To verify safety properties of a
Timed Rebeca model, McErlang is used as a back-end model checker. As state space
explosion is an inevitable problem in model checking, for large Timed Rebeca models
we face the state space explosion using this approach. To deal with this problem, we
also provide statistical model checking of Timed Rebeca models, as an alternative ap-
proach to avoid an exhaustive exploration of the state space of the model. Therefore,
we are able to verify safety properties for larger Timed Rebeca models.

In simulation and statistical model checking, we use the theories and mathematical
formulas which are valid for random variables. To make this applicable to Timed
Rebeca, we resolve nondeterminism caused by concurrency with uniform distributions
to get random executions (traces). Although there is no guarantee that this assumption
of uniform distribution is a realistic assumption in the real world, it will provide some
insight about the model that can be useful from a practical point of view. Specially
if we warn the modeler about our assumption and the possibility that the results may
not be realistic.

We are also interested in answering questions about timing and probabilistic aspects
of distributed systems. For example, �with probability 0.3, the expected response time
is less than 5 time unit�. To derive this kind of probabilistic performance measures,
we need to model real-time systems with probabilistic behaviors. Besides performance
properties we have correctness properties like �what is the probability to fail within d
time units�. Probabilistic model checking can provide answers to the above questions.

In this work, we enhance our modeling ability and cover more properties by per-
formance evaluation and model checking of probabilistic real-time actors. For mod-
eling a wider range of systems we need to add probability to Timed Rebeca and use
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model checking for analyzing the correctness and performance measures of Probabilis-
tic Timed Rebeca (PTRebeca) models. To the best of our knowledge, PTRbeca is
the �rst actor-based modeling language which supports time, probability, and nonde-
terminism in modeling distributed systems with asynchronous message passing. We
propose PTRebeca on the basis of a study of di�erent distributed and asynchronous
applications, studied to identify what is needed for modeling and analysis of those ap-
plications, relative to di�erent probabilistic and timed probabilistic models (discrete,
continuous, stochastic) proposed in the literature. In PTRebeca, time is discrete, and
discrete probability distributions are used.

In Timed Rebeca, the modeler may use nondeterministic choices instead of prob-
abilistic ones since there is no way to specify probabilistic choices. In PTRebeca, the
modeler can di�erentiate between a probabilistic choice and a nondeterministic choice,
and model checking is used for the performance evaluation of models. Since the whole
state space is explored in model checking, the evaluation results are not a�ected by
nondeterminism. In PTRebeca, if the modeler has the lack of knowledge about a choice
(nondeterminism exists) and the model is too large to be handled with model checking
approaches, simulation will be the only feasible analysis technique and we face the
same problems about nondeterminism as we had in the simulation of Timed Rebeca
models. In PTRebeca models, nondeterminism always exists because of concurrent
execution of actors. At the moment, only model checking is possible for PTRebeca
models.

The semantics of PTRebeca is a timed Markov decision process (TMDP). For the
analysis of PTRebeca models, we develop two toolsets, each of which uses a di�erent
back-end model checker. In the �rst tool, the TMDP of a PTRebeca model is gener-
ated, and is converted to the input language of the PRISM [54] model checker. In the
second tool, IMCA (Interactive Markov Chain Analyzer) [55] is used for performance
evaluation and model checking of PTRebeca models.

The contributions of this thesis are as follows:

� Analysis of Timed Rebeca models: we present di�erent analysis techniques for
Timed Rebeca models including simulation, model checking , and statistical
model checking. A corresponding toolset is developed to analyze Timed Rebeca
models. We also examine a few case studies to show the applicability of the
proposed approach for Timed Rebeca models.

� Probabilistic Timed Rebeca (PTRebeca): the syntax and semantics of the lan-
guage are de�ned. We provide Structural Operational Semantics (SOS rules) for
the PTRebeca language in the style of Plotkin [56].

� Analyzing PTRebeca: we build two toolsets for analyzing PTRebeca, each of
them using an appropriate back-end model checker. Also, the necessary map-
pings to the input languages of these model checkers are provided. We use
PRISM and IMCA model checkers for the analysis of PTRebeca models. The
underlying stochastic model of a PTRebeca model can be in the form of a TMDP
or a probabilistic timed automaton (PTA) with digital clocks. This causes two
di�erent approaches of applying PRISM to PTRebeca models. Moreover, the
TMDP of a PTRebeca model can be converted to a Markov Automaton (MA)
[57]. The resulting MA can be analyzed using stochastic model checking algo-
rithms implemented in IMCA.
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� Modeling and analyzing case studies: a few case studies are selected, and we use
PTRebeca for modeling and the supporting tools for performance evaluation and
model checking of the case studies. The experimental results show the applica-
bility of the PTRebeca language and the e�ciency of the designated toolsets.

The rest of this dissertation is organized as follows. We describe the Rebeca and
Timed Rebeca languages and their syntax in Chapter 2. Modeling improvements of
Timed Rebeca language and developed analysis techniques for Timed Rebeca models
are explained in Chapter 3. The subjects of this chapter were published in [58] and
in the Journal of Computer Languages, Systems and Structures [59]. The PTRebeca
language, the syntax and the semantics, is introduced in Chapter 4. The analysis of
PTRebeca models is explained in Chapter 5. The subjects of the last two chapters
were published in [60] and in the Journal of Science of Computer Programming [61].

1.4 Related Work

Many systems, such as multimedia equipment, communication protocols, networks
and fault-tolerant systems, exhibit probabilistic behavior. To analyze such systems,
model checking approaches based on Markov chains or Markov decision processes are
used [49]�[51], [62]�[64]. Some systems exhibit both probabilistic and timed behavior,
leading to the development of model checking algorithms for such systems [62], [63],
[65]�[71].

Probabilistic Timed Automata were proposed as an extension of Timed Automata
for modeling and veri�cation of probabilistic real-time systems [66]. There are some
works on model checking algorithms for probabilistic timed automata which are ap-
plicable to probabilistic temporal logics [66], [72]. These algorithms do not work for
checking performance properties such as expected-time or expected-cost. To increase
the applicability of PTA for analyzing expected reachability performance measures,
digital clocks (integer-valued clocks) were proposed in [73]. PTA with digital clocks
are used to verify probabilistic reachability properties which check the probability of
reaching a state or a group of states in a speci�ed time bound. In [74], model checking
algorithms are considered for subclasses of probabilistic timed automata with one or
two clocks, and the time complexity of model checking problems is investigated.

In [73], the digital clocks approach is applied to three probabilistic real-time pro-
tocols: the IEEE 1394 root contention protocol, the backo� procedure in the IEEE
802.11 Wireless LANs, and the IPv4 link local address resolution protocol. The IEEE
802.11 Wireless LAN can be modeled in PTA using two clocks [73], and an abstract
model of the IEEE 1394 root contention protocol can be modeled with one clock [75].

There are speci�cation languages with formal semantics for describing probabilistic
systems. Modest is a high-level compositional modeling language that includes features
such as exception handling, dynamic parallelism and recursion [76]. Stochastic real-
time systems can be speci�ed by the Modest language. A tool namely mcpta, was
developed to support model checking of PTA speci�ed in Modest. The tool supports
probabilistic and expected reachability properties by using PRISM as its back-end
model checker [77].

There are several model checkers, such as PRISM [78] and CADP [79], that support
model checking of probabilistic systems. PRISM provides model checking for several
types of probabilistic models such as MDP, PTA, DTMC, and CTMC, as well as a
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state-based modeling language to express them. In model checking, a wide range of
quantitative properties can be expressed in a language that subsumes the temporal log-
ics PCTL, CSL, LTL and PCTL∗, as well as extensions for quantitative speci�cations
and costs/rewards.

CADP is a toolbox for verifying asynchronous concurrent systems. CADP o�ers a
comprehensive set of functionalities covering the entire design cycle of asynchronous
systems: speci�cation, interactive simulation, rapid prototyping, veri�cation, testing,
and performance evaluation. To deal with complex systems, CADP implements a wide
range of veri�cation techniques (reachability analysis, on-the-�y veri�cation, composi-
tional veri�cation, distributed veri�cation, static analysis) and provides scripting lan-
guages for describing elaborated veri�cation scenarios. CADP has been extended with
performance evaluation capabilities, based on the Interactive Markov Chain (IMC)
theory [80], [81], and Interactive Probabilistic Chain (IPC) theory [82].

In Section 5.4, we compare the PTRebeca modeling language, its supporting toolset
and the developed analysis techniques with various toolsets.
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Chapter 2

Background

In this chapter, we �rst present Rebeca [27], [28], and then we show its extension with
timing features to build Timed Rebeca [38].

Rebeca Rebeca is an actor-based modelling language with formal semantics that
is supported by model checking tools. A Rebeca model consists of the de�nition of
reactive classes and the instantiation part which is called main. The main part de�nes
instances of reactive classes, called rebecs. The reactive class comprises three parts:
known rebecs, state variables, and message server de�nitions.

The known rebecs of a reactive class are the destination rebecs of the messages
which may be sent by the instances of the reactive class. Because of the encapsulation
of actors, the state variables of an actor cannot be directly accessed by other actors.
The behavior of the instances of a reactive class is determined by its message servers.
The internal state of a reactive class is represented by the valuation of its state vari-
ables. Each message server has a name, a (possibly empty) list of parameters, and the
message server body which includes a number of statements. The statements may be
assignments, sending of messages, and selections. The syntax of Rebeca is represented
in Figure 2.1.

In Rebeca, computation is event-driven, where messages can be seen as events.
Each rebec takes a message from its message queue and executes the corresponding
message server. Execution of a message server body takes place atomically (non-
preemptively). Communication takes place by asynchronous message passing, which
is non-blocking for both sender and receiver. The sender rebec sends a message to
the receiver rebec and continues its work. The message is put in the message queue
of the receiver. The message stays in the queue until the receiver takes and serves it.
Although in theory we de�ne no boundary for the queue length, in the supporting tools
we always have a queue length that is de�ned by the user. The operational semantics
of Rebeca is introduced in [28], to which we refer for more details.

To show the computational model of Rebeca, we represent an example of a ticket
service system. Listing 2.1 shows the Rebeca model. The model consists of three
reactive classes: TicketService, Agent, and Customer. The customer c sends the
requestTicket message to the agent a and the agent forwards the message to the
ticket service ts. The ticket service replies to the agent by sending a ticketIssued

message and the agent responds to the customer by sending the issued ticket identi�er.
The behaviour of a Rebeca model is de�ned as the parallel execution of the released

messages of the rebecs. At the initialization state, a number of rebecs� de�ned in the
main part� are created statically, and an initial message� speci�ed by the same name
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Model ::= Class∗ Main

Main ::= main { InstanceDcl∗ }
InstanceDcl ::= className rebecName(〈rebecName〉∗) : (〈literal〉∗);

Class ::= reactiveclass className { KnownRebecs Vars MsgSrv∗ }
KnownRebecs ::= knownrebecs { VarDcl∗ }

Vars ::= statevars { VarDcl∗ }
VarDcl ::= type 〈v〉+;
MsgSrv ::= msgsrv methodName(〈type v〉∗) { Stmt∗ }

Stmt ::= v = e; | v =?(e〈, e〉+); | Call; | if (e) { Stmt∗ } [else { Stmt∗ }]
Call ::= rebecName.methodName(〈e〉∗)

(a) Abstract Syntax of Rebeca

Stmt ::= v = e; | v =?(e〈, e〉+); | Call; | if (e) { Stmt∗ } [else { Stmt∗ }] | delay(v);
Call ::= rebecName.MethodName(〈e〉∗) [after(v)] [deadline(v)]

(b) Changes in the syntax of Rebeca to build Timed Rebeca

Figure 2.1: (a) Abstract syntax of Rebeca. Angle brackets 〈...〉 are used as meta
parentheses, superscript + for repetition at least once, superscript ∗ for repetition
zero or more times, whereas using 〈...〉 with repetition denotes a comma separated
list. Brackets [...] indicate that the text within the brackets is optional. The symbol
? shows nondet choice. Identi�ers className, rebecName, methodName, v, literal,
and type denote class name, rebec name, method name, variable, literal, and type,
respectively; and e denotes an (arithmetic, boolean or nondet choice) expression.
(b) Changes for Timed Rebeca. The timing primitives are added to Stmt and Call
statements. The value of variable v in timing primitives is a natural number.
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of its reactive class in the model� is implicitly put in their bags. The release time of
the initial messages is zero. The execution of the model continues as rebecs change
the values of their state variables and send messages to each other.

1 reactiveclass TicketService{
2 knownrebecs{
3 Agent a;
4 }
5 statevars{
6 int issueDelay;
7 }
8 TicketService( ){
9 }
10 msgsrv requestTicket(){
11 a.ticketIssued(1);
12 }
13 }
14 reactiveclass Agent{
15 knownrebecs{
16 TicketService ts;
17 Customer c;
18 }
19 Agent( ){
20 }
21 msgsrv requestTicket(){
22 ts.requestTicket();
23 }
24 msgsrv ticketIssued(byte id ){
25 c.ticketIssued( id );

26 }
27 }
28 reactiveclass Customer{
29 knownrebecs{
30 Agent a;
31 }
32 Customer(){
33 self.try();
34 }
35 msgsrv try(){
36 a.requestTicket();
37 }
38 msgsrv ticketIssued(byte id ){
39 self.try();
40 }
41 }
42 main{
43 Agent a( ts , c):();
44 TicketService ts (a):(3);
45 Customer c(a):();
46 }

Listing 2.1: Rebeca model of ticket
service example.

Timed Rebeca The timing primitives are added to the Rebeca syntax to cover
timing features that a modeler might need to address in a message-based, asynchronous
and distributed setting. These features (like the computation time, or periodic events)
can be common in any setting, and are explained as follows.

� Computation time: the time needed for a computation to take place.

� Message delivery time: the time needed for a message to travel between two
objects, which depends on the network delay (and possibly other parameters).

� Message expiration: the time within which a message is still valid. The
message can be a request or a reply to a request (a request being served).

� Periods of occurrences of events: the time periods for periodic events.

In Timed Rebeca, each actor (also called a rebec) has its own local clock, but
there is also a notion of global time based on synchronized distributed clocks of all the
rebecs. Instead of a message queue for each rebec, there exists a bag containing all the
messages sent for each rebec. Messages that are sent to a rebec are put in its message
bag together with their arrival time (called their time tag), and their deadline. Methods
are executed atomically, but the passing of time during the execution of methods can
be modeled. In addition, communication delay and deadline for execution of messages
can be de�ned in the model. The timing primitives that are added to the Rebeca
syntax to support these features are delay, deadline, and after. The descriptions of
these constructs are as follows, and their syntax is shown in Figure 2.1.

� Delay: delay(t), where t is a positive natural number, increases the value of the
local clock of the respective rebec by the amount t.
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� Deadline: r.m() deadline(t), means that the message m is sent to the rebec r
and it is put in the message bag. After t units of time the message is not valid
any more and is purged from the bag. Deadlines are used to model message
expirations (timeouts).

� After: r.m() after(t), the message cannot be taken from the bag before t time
units have passed. The after primitive is used to model network delays in de-
livering a message to its destination. Note that after primitive can also be used
to model periodic events. If we send a message in a loop with after(t), this will
cause having the message in the message queue every t units of time. In Timed
Rebeca, loops are modeled by sending a message to itself.

The messages that are sent are put in the message bag together with their time tag
and deadline tag. The scheduler decides which message is to be executed next, based on
the time tags of the messages. The time tag of a message is the value of the local clock
of the sender rebec when the message was sent, added to the value of the argument of
the after if the message is sent with an after. The scheduler takes a message from the
message bag, executes the corresponding message server atomically, and then takes
another message. Every time the scheduler takes a message for execution, it chooses
a message with the least time tag. Before the execution of the corresponding method
starts, the local time of the receiver rebec is set to the maximum value between its
current time and the time tag of the message [38].

1 env int requestDeadline, checkIssuedPeriod,
retryRequestPeriod;

2 env int newRequestPeriod, serviceTime1,
serviceTime2;

3 env int maxIssued; // maximum number of
requests

4 reactiveclass Agent(3) {
5 knownrebecs { TicketService ts1;

TicketService ts2; }
6 statevars { int attemptCount; boolean

ticketIssued; int token; }
7 msgsrv initial() { self.findTicket(ts1); }
8
9 msgsrv findTicket(TicketService ts) {
10 attemptCount = attemptCount + 1;
11 token = token + 1;
12 if(token <= maxIssued) {
13 ts.requestTicket(token)

deadline(requestDeadline);
14 self.checkTicket()

after(checkIssuedPeriod);}
15 }
16
17 msgsrv ticketIssued(int tok) { if (token

== tok) ticketIssued = true; }
18
19 msgsrv checkTicket() {
20 if (!ticketIssued && attemptCount == 1

&& token < maxIssued+1) {
21 self.findTicket(ts2);
22 } else if (!ticketIssued &&

attemptCount == 2 && token <
maxIssued+1) {

23 self.retry()
after(retryRequestPeriod);

24 } else if (ticketIssued && token <
maxIssued+1) {

25 ticketIssued = false;
26 self.retry() after(newRequestPeriod);
27 }
28 }
29
30 msgsrv retry() {
31 attemptCount = 0;
32 self.findTicket(ts1);
33 }
34 }
35
36 reactiveclass TicketService(3) {
37 knownrebecs { Agent agent; }
38 statevars { }
39 msgsrv initial() { }
40
41 msgsrv requestTicket(int token) {
42 int wait = ?(serviceTime1,serviceTime2);
43 delay(wait);
44 agent.ticketIssued(token);
45 }
46 }
47
48 main {
49 Agent agent(ts1, ts2):();
50 TicketService ts1(agent):();
51 TicketService ts2(agent):();
52 }

Listing 2.2: Timed Rebeca model - Ticket
service system.

An example of a Timed Rebeca model is shown in Listing 2.2. This is a model of a
ticket service system. In the main part, the rebecs are instantiated from the reactive
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classes. For each rebec, its known rebecs are speci�ed as arguments, e.g. rebecs ts1
and ts2 are the known rebecs of rebec agent (Line 49). The initial values of the state
variables can be speci�ed as arguments in the rebec instantiation (empty parentheses
in Line 49 can be used for this purpose, otherwise the default values are used). For
example, �Agent agent(ts1, ts2):(10, false, 2)� creates an agent and the values of its
state variables attemptCount, ticketIssued and token are initialized to 10, false
and 2, respectively. A reactive class has an argument of type integer denoting a user-
speci�ed upper bound for its queue size (Agent(3) in Line 4). This is necessary to
prevent state space explosion in model checking.

The model in Listing 2.2 consists of two reactive classes: Agent and TicketService.
The agent a starts by sending a message to the �rst ticket service ts1 and requesting
a ticket (Line 13). The message has a deadline of requestDeadline time units. When
the message is received by the ticket service ts1, it issues the ticket after serviceTime1
or serviceTime2 units of time (Line 42-44). The issuing process is performed by send-
ing a message back to agent a. After requesting a ticket to ts1, agent a sends a message
to itself after checkIssuedPeriod time units (Line 14). This message checks whether
the ticket has been issued or not. If the ticket is issued, the model continues to the
next customer and requests a new ticket after newRequestPeriod time units (Line 26).
If the ticket was not issued by ts1, agent a immediately sends a message to the second
ticket service ts2 (Line 21). This scenario is repeated recurrently.
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Chapter 3

Performance Evaluation of Timed

Rebeca

In analyzing real-time systems, performance evaluation is a complementary issue to
functional veri�cation. Therefore, analysis techniques should consider both correctness
and performance measures to guarantee dependability and e�ciency of systems. Di�er-
ent formal timed models have been proposed for modeling and veri�cation of real-time
systems. On the other hand, di�erent approaches have been suggested for performance
evaluation of real-time systems. Numerical analysis and simulation techniques that are
based on statistical methods are two widely used approaches for performance evalua-
tion. In this chapter, we provide analysis techniques and toolset for both veri�cation
of correctness and performance evaluation of real-time distributed systems with asyn-
chronous message passing. To address the analysis of real-time distributed systems,
we use Timed Rebeca which is a timed actor-based modeling language. The formal
semantics of Timed Rebeca was o�ered using Structural Operational Semantics (SOS)
rules [56].

In the �rst implementation of Timed Rebeca, a toolset was developed to translate
Timed Rebeca models to Erlang programs [83] automatically, and McErlang [53] was
used to simulate the translated Erlang program [38]. At that time, McErlang, a model
checking and simulation tool for Erlang, did not support model checking of Erlang
program with timing features. In the untimed version of McErlang, simulation takes
place by simply executing the Erlang program, and the reason for using McErlang is
the monitors provided by this tool. By using monitors one can stop the execution
by observing an erroneous state or unexpected behavior in the program. It is also
possible to collect the necessary data during the execution. This tool can be used to
run multiple simulations for di�erent settings of parameters in a Timed Rebeca model,
and then the results of the executions can be employed to select the most appropriate
values for the parameters. This version of McErlang is not e�cient for larger models
since the progress of time is modeled by the system time; a model with an average size
takes a long time to be executed.

We extend the previous version of Timed Rebeca to improve its usability, and also
to be able to use the timed version of McErlang which has been recently developed [52].
To improve the usability of Timed Rebeca, the language is extended to support a list
data structure and the capability of calling custom functions from Erlang. This way
the e�ort for modeling more complicated systems using Timed Rebeca is decreased.
Moreover a function named checkpoint is added to the language to be able to provide
more data to McErlang and hence get more valuable data in the analysis.
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Based on the timed version of McErlang, we change the mapping of timing primi-
tives of Timed Rebeca models to Erlang presented in [38], and we adjust the implemen-
tation of the tool accordingly. As stated in [52], during the development of McErlang
with timed semantics there has been a close collaboration between the two teams. So,
the timed semantics of McErlang supports the timing features of Timed Rebeca very
well. Now, using the checkpoint functions we are able to model check and simulate
Timed Rebeca models by McErlang.

The approach employed in the timed version of McErlang is inspired by Lamport's
approach to real-time model checking [84]. The McErlang team used the idea of
maximum-time-elapse for progress of time. The timer is increased based on the time
of the occurrence of the next event, so, we have a jump to the next value for the timer
instead of having a tick function to increase the timer by one. Finding the next event
is not di�cult in Erlang, as all the real-time computations are encountered within
receive statements where timeouts are de�ned (in an optional after clause). Hence,
simulation of Timed Rebeca models is much more e�cient compared to the previous
work where McErlang basically executed the Erlang programs.

We use checkpoint (user-de�ned) monitors and prede�ned monitors of McErlang
for veri�cation of safety properties. As state space explosion is an inevitable problem
in (especially timed) model checking, for large Timed Rebeca models we face state
space explosion using this approach. Therefore, we provide statistical model checking
of Timed Rebeca models, as an alternative approach to avoid an exhaustive exploration
of the state space of the model. We are thus able to verify larger Timed Rebeca models.
To this end, our toolset is extended to support statistical model checking besides the
veri�cation and simulation of Timed Rebeca models. In this approach, we run multiple
simulations by McErlang, and then an approximation of correctness of the model is
calculated for a given safety property.

We use the simulation capability of McErlang for performance evaluation of Timed
Rebeca models. The statistical methods are applied to the obtained data from di�erent
simulation runs in order to compute performance measures of the model, such as the
mean response time for a request to be served. We also calculate the con�dence interval
to indicate the accuracy of simulation results.

To show the e�ciency of our approaches, we examine the elevator case study by ap-
plying the proposed analysis techniques. In statistical model checking, we increase the
number of �oors to get a very large model, for which the model checking of McErlang
is not applicable because of the state space explosion problem. As another case study,
we consider a ticket service system. The e�ciency and applicability of the statistical
model checking approach depends only on the size of our models. One of the param-
eters showing the size of a model is the number of rebecs (actors) and the message
passing among them. So, if we increase the number of rebecs greatly, a simple case
study like the ticket service can imitate a complicated system.

Contributions. The subjects of this chapter were published in [58] and in the Journal
of Computer Languages, Systems and Structures [59]. The work in this chapter, except
the statistical model checking part, was performed in the context of a master thesis
[1] and I was fully involved in that project.

� Modeling: a list data structure, the ability of calling custom functions from
Erlang, and checkpoint functions are added to Timed Rebeca language to make
the modeling of more complex systems feasible.
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� Analysis: McErlang is used as a simulation and model checking tool for the
performance evaluation and safety veri�cation of Timed Rebeca models, respec-
tively. To this end, a Timed Rebeca model is mapped to its corresponding Erlang
program. Additionally, statistical model checking is provided for Timed Rebeca
models to avoid the state space explosion of large Timed Rebeca models.

� Implementation: we develop a toolset to provide performance evaluation, safety
veri�cation, and statistical model checking of Timed Rebeca models. In this
toolset, McErlang is used as a back-end tool for simulation and model checking
of the Erlang program resulting from a Timed Rebeca model.

� Case studies: we examine two typical case studies to show the applicability of
our approaches and the e�ciency of the developed toolset.

The rest of the chapter is organized as follows. Considering the Timed Rebeca
language presented in [38], Section 3.1 de�nes a new mapping for timing primitives
of Timed Rebeca to Erlang while adapting to timed extensions of McErlang. It also
includes new features added to the Timed Rebeca language to increase its usability.
Section 3.2 explains how safety monitors in McErlang can be used to verify safety
properties of Timed Rebeca models. Section 3.3 explains statistical model checking
of larger Timed Rebeca models against safety properties. Section 3.4 describes the
simulation of Timed Rebeca models using McErlang. The result is a dataset including
useful information about system behavior to which di�erent analysis methods can
be applied. To show the results precision, we calculate the con�dence interval for
performance measures under study. In Section 3.5, we apply all methods proposed
in the previous sections to the typical examples of the elevator system and the ticket
service. Section 3.6 discusses related works.

3.1 Mapping Timed Rebeca Models to Erlang

Programs

In this section, we explain a new mapping algorithm for Timed Rebeca models to
Erlang programs while conforming to the new timed features of McErlang. Since
McErlang is used as the back-end model checker and the simulation tool, this mapping
is necessary. We also explain new features added to the Timed Rebeca language to
make it more convenient to use. New features include checkpoint, calling custom
functions, and a list data structure which are explained in more detail in Section 3.1.4.

3.1.1 Handling Time in Erlang

Here, we brie�y explain the timed Erlang semantics introduced in [52], which will be
used in the new mapping of Timed Rebeca models to Erlang. Erlang handles time with
the use of after as a timeout clause in a receive statement, as Listing 3.1 shows. If
a message matches any of the patterns, e.g. Patternj, and the corresponding guard,
Guardj, evaluates to true, the message is removed from the mailbox and evaluation
continues with expression Exprj.

The oldest message in the process mailbox is evaluated to be matched against
the patterns according to the above procedure. If no pattern and guard match this
message, the same procedure continues with the second oldest message, and so on. If
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no pattern is matched, the process waits for at least TimeoutValue milliseconds to
receive a matching message. This is the minimum amount of time that a timer elapses
until the timeout happens. If the timeout occurs, the expression TimeoutExpression

is evaluated. A zero deadline means, if no matching message is in the mailbox, the
timeout can happen immediately. The atom infinity may be used as a time deadline
to show that the timeout never happens.

1 receive
2 Pattern1 when Guard1 -> Expr1;
3 ...
4 PatternN when GuardN -> ExprN;
5 after
6 TimeoutValue -> TimeoutExpression
7 end

Listing 3.1: Erlang syntax of a receive with timeout.

3.1.2 Timed Semantics of Erlang in McErlang

The main changes made to McErlang to implement a timed semantics of Erlang are
to record the current time in the state representation of a running program, and to
modify the behaviour of the receive statement in the model checker so that the current
time is considered when timeouts are handled [52].

In Listing 3.1, there is no guarantee exactly when the timeout happens after a timer
has elapsed TimeoutValuemilliseconds. In the timed semantics of Erlang, it is possible
to specify the urgency of a state with the function mce_erl:urgent(MaximumWait).
The parameter MaximumWait speci�es the maximum number of milliseconds the pro-
cess can remain in the current state, if it has transitions enabled. As an example
consider the code in Listing 3.2: a process is spawned and waits between 1000 and
1500 milliseconds for a message to arrive before timing out. In this example, we force
the timeout to happen before 1500 milliseconds if the process does not receive a mes-
sage.

1 spawn (fun () ->
2 mce_erl : urgent (1500),
3 receive Msg -> ok
4 after 1000 -> bad
5 end
6 end)

Listing 3.2: Erlang code with the urgency construct implemented in McErlang.

In McErlang with the timed Erlang semantics, a new API mce_erl_time is intro-
duced to provide the de�nition and manipulation of timestamps. This new API has
the following functions.

� now(): returns the current time.

� nowRef(): stores the current time in a clock reference.

� was(Ref): returns the time stored in a clock reference.

� forget(Ref): stops a stored clock reference.

Some points should be considered in using this API. The absolute values returned
from calls to now() can not be used by the program. They can only be compared with
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the previously recorded clocks, i.e., relative comparisons are permitted that show how
much time has elapsed since an event happened.

3.1.3 Adapting Timed Rebeca with Timed Semantics of

McErlang

The timed version of McErlang proposed in [52] makes the formal veri�cation of timed
programs written in Erlang programming language possible. In the timed semantics,
timed actions, i.e. actions with a timeout clause, are ordered based on the timeout
value, while untimed actions, i.e. actions without a timeout clause, are executed
in�nitely fast.

In the Timed Rebeca language, timed behaviors are de�ned by using the timing
primitives after, delay, and deadline. The execution order of messages is speci�ed
based on the values of these primitives. In this section, we explain the new mapping
of a Timed Rebeca model to an Erlang program according to the timed semantics
of Erlang in McErlang. There are two main points to consider regarding the new
mapping. Firstly, the mapping algorithm of timing features in Timed Rebeca to Erlang
must be changed according to the new timed features of McErlang like timestamps
and the urgency construct. Secondly, the new mapping algorithm for Timed Rebeca
models should make the correct order of execution of actions possible. In the following
paragraphs we explain these two points in more details.

Mapping timing primitives of Timed Rebeca to Erlang In the previous Timed
Rebeca mapping to Erlang, function now() was used to obtain the current time by
using the system clock [38]. Timed behaviors like sending messages with deadline,
after, and delay statements, were implemented in terms of the system clock. In
our new mapping, we use the same concepts as described in [38], but with a few
important di�erences in the implementation. We use clock references accessible from
API mce_erl_time to map timed actions from Timed Rebeca to Erlang. The main
di�erence is that in the new version we use the simulation/model time and not the
real system time (like when a real execution of the program is in order).

An ordinary message send in Timed Rebeca, i.e. a message send without the after
primitive, is translated to a regular message send in Erlang, as shown in Listing 3.3.
Instead of tagging the message with the local time of the sender, as we did in our
previous mapping, we utilize a clock reference which is sent as a parameter to the
receiver. The clock reference is obtained from calling nowRef() and stored in the
variable TT. The clock can be remembered later for relative comparisons by calling
was(Ref). A message send also consists of some other information for the receiver
such as deadline, message name, and parameters. The default value for deadline is
inf (standing for in�nity), which denotes no deadline.

1 messagesend(Sender, Rebec, Msg, Params, Deadline) ->
2 % Start a clock reference and save it to TT
3 TT = nowRef(),
4 spawn(fun () ->
5 % sending a message to the Rebec
6 Rebec ! {{Sender, TT, Deadline}, Msg, Params}
7 end).

Listing 3.3: Pseudo Erlang code for a message send in Timed Rebeca.
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After receiving a message, its deadline should be checked by the receiver before pro-
cessing it. The timestamp of the message is the local time of the sender when sending
the message and can be remembered using the function was(Ref). The local time of
the receiver when receiving the message can be obtained by the function nowRef(). So,
if the message has not expired, this condition deadline+was(ref)<nowRef() is satis�ed.

In the Timed Rebeca semantics, a message with the after(Timeunits) statement
is put in the message bag of the receiver, and it can not be taken from the bag before the
speci�ed time, i.e. Timeunits milliseconds, has elapsed. In the mapping to Erlang, a
function is spawned and waits for Timeunits milliseconds before sending the message.
The function is an empty receive statement with a timeout clause, and sending the
message is placed in the timeout clause, as demonstrated in Listing 3.4.

1 messagesend(Sender, After, Rebec, Msg, Params, Deadline) ->
2 TT = nowRef(),
3 spawn(fun () ->
4 % sending the message after Timeunits
5 recieve
6 after(Timeunits) ->
7 Rebec ! {{Sender, TT, Deadline}, Msg, Params}
8 end).

Listing 3.4: Pseudo Erlang code for a message send with the after primitive in
Timed Rebeca.

In Timed Rebeca, the delay(Timeunits) statement makes the local time of a re-
bec advance for the speci�ed amount of time (Timeunits milliseconds). In Erlang,
the delay is translated to the receive statement including just a timeout value, as
shown in Listing 3.5. Since there is no pattern in the receive statement, the timeout
clause (after clause) will be executed after the speci�ed time (Timeunits millisec-
onds), imitating the delay statement in Timed Rebeca. As stated in [52], the function
mce_erl:urgent(MaximumWait) can be used to determine the urgency of a state, i.e.,
how long the process can stay in this state. So, we use the urgent function in the
McErlang code to make the delayed process run immediately after the timeout ex-
pires.

1 timedelay(Timeunits) ->
2 % McErlang Urgent Delay
3 urgent(Timeunits),
4 % Delay by Timeunits
5 receive
6 after (Timeunits) -> ok
7 end.

Listing 3.5: Pseudo Erlang code for a delay statement in Timed Rebeca.

Performing Timed and Untimed Actions in the Correct Sequence In Timed
Rebeca, the execution order of messages is speci�ed with respect to the values of timing
primitives delay and after. In the previous paragraph, we explained how timing
primitives in Timed Rebeca are translated to Erlang code. We also explained how
a message deadline in Timed Rebeca can be handled using timestamps in McErlang.
To execute messages in the correct order in Erlang according to the Timed Rebeca
semantics, we should take into account more considerations in Erlang:
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� actions without a timeout clause (equivalent to messages without after in Timed
Rebeca) should be executed in�nitely fast (immediately).

� actions with a timeout clause (equivalent to delays or messages with after in
Timed Rebeca) should be executed immediately after the timeout expires. The
messages are ordered based on their timeout.

Using the timed extension in McErlang, we can change the way in which timed
(with timeout) and untimed (without timeout) actions are treated using the function
mce_erl:urgent (MaximumWait). To execute the untimed actions in�nitely fast, the
MaximumWait parameter is set to zero. To execute the timed actions immediately after
their timeout expires, the MaximumWait parameter is set to the value of timeout.

3.1.4 New Extensions of Timed Rebeca Language

We added some capabilities to Timed Rebeca in order to increase the modeling power
of the language. These additions include a list data structure, the capability of calling
custom functions from the Erlang language, and checkpoints. Table 3.1 shows the
syntax of the extensions and their abstract mapping to Erlang.

Checkpoint functions can be used in both simulation and model checking. They
are considered as markers in the code that indicate important events. Checkpoints are
also used to expose the value of variables in a Timed Rebeca model to McErlang. For
simulation, a checkpoint is translated to an Erlang function, and for model checking a
checkpoint is translated to a probe in Erlang.

A checkpoint has two mandatory arguments: a label and at least one term. The
label is an arbitrary name which is de�ned by the modeler and is used to refer to the
checkpoint. Note that every piece of data of any type is called a term in Erlang. So, all
variables in a Timed Rebeca model are translated to terms. The terms in a checkpoint
are variables that are added to the checkpoint function as its arguments. The value of
terms can be retrieved during simulation or model checking in McErlang.

Timed Rebeca Syntax Erlang / McErlang

list <int> N ; → Erlang list data type as a

variable with name N .

erlang. func (V1, ..., Vn); → Call to the function func
with parameters V1,...,Vn.

checkpoint (L, T1(, T2, ..., Tn)); → Erlang output function

is used for simulation.

L and Ti are the arguments.

checkpoint (L, T1(, T2, ..., Tn)); → Erlang probe is used

when model checking.

L and Ti are its
label and term respectively.

Table 3.1: Mapping of Timed Rebeca extensions to Erlang: func is the name of a
function implemented in Erlang, L is a label for a checkpoint, and Ti is a term of a
checkpoint (a state variable or a local variable). When doing model checking, Ti is
used to de�ne a term of the generated probe.

Another extension in Timed Rebeca language is the ability of calling custom func-
tions in Erlang. A modeler can de�ne a function in Erlang and then call it from the
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Timed Rebeca model. For example, in Timed Rebeca there is no function for searching
a list. So, this function can be de�ned in Erlang and be called in a Timed Rebeca
model. Using this extension, the Timed Rebeca language has the same programming
power as the Erlang language.

This way, the applications in which implementing bu�ers or queues is essential,
like schedulers, can be modeled using the list data structure in the Timed Rebeca
language. The elements of a list are of type integer. They can be de�ned inside
message servers as a local variable or as a state variable. In order to facilitate working
with the list data structure, the following functions are de�ned: remove(intValue),
size(), first(), last(), insert(intValue). Function remove(intValue) removes
the integer value of intValue from the list and function insert(intValue) inserts
the value of intValue at the end of the list. Functions first() and last() return
the �rst and the last element of the list, respectively.

3.2 Model Checking of Timed Rebeca Models Using

McErlang Monitors

McErlang provides two types of model checking facilities for veri�cation of safety prop-
erties and Linear Temporal Logic (LTL) formulas, using safety monitors and Büchi
monitors respectively. In this work safety monitors are used for the corresponding
Erlang program of a Timed Rebeca model in order to verify safety properties of the
Timed Rebeca model. For a given Erlang program, a safety monitor is de�ned as a
function which is called after creation of each state of the model. If the content of the
state is invalid, the safety monitor reports the state as an erroneous state.

3.2.1 Checking Safety Properties

McErlang allows safety monitors to access both states of the program and the sequence
of actions, as labels of transitions among states, but the values of program variables are
not allowed to be accessed. However, the safety properties of a Timed Rebeca model
are de�ned based on the values of its variables. This is why we added the checkpoint
construct to the Timed Rebeca language. A checkpoint in a Timed Rebeca model can
include the values of speci�c variables. As we discussed in Section 3.1.4, the values
of intended variables are passed as arguments to checkpoints. Also, the occurrence
of interesting events can be speci�ed using checkpoints. While doing model checking,
in the corresponding Erlang program, checkpoints are translated to probes, which are
accessible by safety monitors in McErlang.

3.2.1.1 De�ning Safety Monitors

We explain two prede�ned safety monitors which can be used for Timed Rebeca models,
and present a framework for de�ning safety monitors in McErlang using checkpoints
in a Timed Rebeca model.

Deadlock Monitor. Detecting deadlock in non-terminating systems is essential.
The prede�ned monitor in Listing 3.6 can be used to investigate the deadlock of Timed
Rebeca models. As lines 13 to 20 of Listing 3.6 show, deadlock is detected by checking
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the status of processes. If the status of all the processes is marked as blocked, deadlock
is reported.

Maximum Queue Length Monitor. Although in theory message queues are un-
bounded in Timed Rebeca, in model checking and simulation we need a maximum
length for each queue to keep the state space bounded. Trying to put messages beyond
the queue size of a rebec results in a queue over�ow error. The prede�ned maximum
queue-size monitor in McErlang can be used to monitor the size of a rebec's queue.
As lines 7 to 10 of Listing 3.7 show, if a queue of any process exceeds its maximum
size, a violation is reported by the monitor. The maximum queue size is speci�ed by
the parameter MaxQueueSize.

Checkpoint Monitor (User-de�ned Monitor). The purpose of de�ning check-
points in a Timed Rebeca model is the veri�cation of safety properties using McErlang.
Generally, a safety monitor is a function which is called after the creation of each state
of the model. The monitor returns satisfied if the state satis�es the speci�ed con-
ditions, otherwise it returns violation. If a safety monitor is de�ned based on the
information provided by checkpoints (which is available for McErlang from the trans-
lated Erlang program), the monitor is called checkpoint monitor. This type of monitor
should be implemented by a modeler, while the previously mentioned monitors are
available in McErlang.

1 monitorType() -> safety.
2

3 init(State) -> {ok,State}.
4

5 stateChange(State,MonState,_) ->
6 case is_deadlocked(State) of
7 true -> deadlock;
8 false -> {ok, MonState}
9 end.
10

11 is_deadlocked(State) ->
12 State#state.ether =:= [] andalso
13 case mce_erl:allProcesses(State) of
14 [] -> false;
15 Processes ->
16 case mce_utils:find(fun (P) ->
17 P#process.status =/= blocked end,
18 Processes) of
19 {ok, _} -> false;
20 no -> true
21 end
22 end.

Listing 3.6: McErlang - Deadlock monitor

1 monitorType() -> safety.
2

3 init(MaxQueueSize) -> {ok,MaxQueueSize}.
4

5 stateChange(State, MaxQueueSize, _) ->
6 case mce_utils:find
7 (fun (P) -> length(P#process.queue) > MaxQueueSize end,
8 mce_erl:allProcesses(State)) of
9 {ok, P} -> {exceeds, P};
10 _ -> {ok, MaxQueueSize}
11 end.

Listing 3.7: McErlang - MaxQueue monitor
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Listing 3.8 shows a template for checkpoint monitors. Any user-de�ned function can
be used in the template. For example, we de�ne the function checkLabelCheckPoint

and use it in the monitor (Line 14), in which actions (obtained from the function
actions) and a checkpoint label are used as arguments. If a checkpoint with the
label CheckpointLabel occurs in a state, the monitor halts with a violation. If
the veri�cation terminates without any violation, it is guaranteed that the checkpoint
never happens in any paths of the state space.

This template includes two variables CheckpointLabel and CheckpointTerm that
may be used by the user depending on the safety property under study. We also
implemented a set of functions to be used in the template. This makes it easier for
a modeler to write the safety speci�cation in a monitor. Each of these functions can
be replaced by the function checkLabelCheckPoint in the template. The signature of
each function and a brief explanation are listed below. The implementation of these
functions are accessible from [85].

� Checking if a message server is dropped because the deadline is missed. In the
following function, the term is equal to the message server name.

� checkDropMsgsrv(Actions, CheckpointTerm)

� Checking if a checkpoint with the speci�ed label occurs.

� checkLabelCheckPoint(Actions, CheckPointLabel)

� Compare the checkpoint term with an integer or boolean. In the following func-
tions, MaxValue/MinValue is the maximum/minimum value for the speci�ed
term. In the function checkTermValue, the value of the speci�ed term is checked
to be equal to value.

� checkTermMaxValue(Actions, CheckPointLabel, CheckpointTerm, MaxValue)

� checkTermMinValue(Actions, CheckPointLabel, CheckpointTerm, MinValue)

� checkTermValue(Actions, CheckPointLabel, CheckpointTerm, value)

1 monitorType() -> safety.
2

3 init(_) -> {ok, satisfied}.
4

5 stateChange(_,satisfied,Stack) ->
6 % Monitor Setup
7 % Usage: checkpoint(Label,Term);
8 CheckpointLabel = checkpoint_label, % Not needed when using function checkDropMsgsrv.
9 CheckpointTerm = checkoint_term, % Not applicable when using function

checkLabelCheckPoint.
10

11 Actions = actions(Stack),
12 % user_defined_function
13 checkLabelCheckPoint(Actions, CheckpointLabel).

Listing 3.8: A template (pseudo code) for checkpoint monitors which is used by
McErlang
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3.3 Statistical Model Checking of Timed Rebeca

Models

In the previous section we showed how safety monitors can be de�ned for the cor-
responding Erlang program of a Timed Rebeca model, using the checkpoints of the
Timed Rebeca model. So, the McErlang can be used as a back-end model checker
for the veri�cation of safety properties of the Timed Rebeca model. The major lim-
iting factor in applying model checking for veri�cation of real-world systems is the
huge amount of space and time required to store and explore the state space. Alter-
natively, statistical model checking can be used, which does not have the problem of
state explosion.

For statistical model checking, a number of simulation traces are generated. To
get a simulation trace, nondeterminism must be resolved in an appropriate way to
represent realistic behaviors. According to [86], there are three typical uses for nonde-
terminism: First, in case of complete absence of knowledge about a certain choice�not
even some probabilities are known�that choice can be modeled as a nondeterministic
one. Second, in a re�nement process where abstract models are progressively re�ned
to more and more concrete implementations, a nondeterministic choice may leave open
certain choices. Finally, nondeterminism can allow an unspeci�ed environment to make
certain choices in an open model. In the latter two cases, obtaining results for some
environment or some implementation is not particularly useful; in fact, if the result
happens to be very optimistic (e.g. by not considering some adverse environments or
unfortunate implementations), it may lead to unfounded conclusions that may jeopar-
dise the safety of the actual system whose study the model was built for. Although in
the �rst case a uniformly random resolution of the choice seems to make some sense,
this is not true. Clearly, three nondeterministic choices like A, B, B should be the
same as A, A, B, but the uniform interpretation breaks this.

In Timed Rebeca, nondeterminism appears in two cases: a) concurrently executing
actors, and b) nondeterministic assignments in the model which are speci�ed by the
modeler. In simulation of Timed Rebeca models using McErlang, both cases are
resolved by the scheduler of McErlang, which selects the process that must be executed
in the next step based on the uniform distribution. Case (a) is mapped to the third
use of nondeterminism in the above paragraph, and case (b) is mapped to the �rst
one. In both cases (a) and (b), the modeler has to be informed that nondeterminism
is resolved based on the uniform distribution. The risk is an unrealistic evaluation. In
this work, we follow the community that uses simulation-based and statistical model
checking approaches for performance evaluation of concurrent systems, and we face
the same problems.

In this section, we propose a model checking approach to compute an approximation
of the correctness of the system. The main idea is to check a limited number of traces
instead of exploring the whole state space. For a given error ε and con�dence value
δ, we have to provide an upper bound N on the number of simulation traces which
are required to compute an (ε, δ)-approximation of the correctness of the system. We
explain our approach in the following subsections in more detail.
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3.3.1 Optimal Monte Carlo Estimation

In many applications, it is necessary to compute the mean value µZ for the random
variable Z distributed in [0, 1]. When an exact computation of µZ is intractable,
being for example NP-hard, Monte Carlo methods can be used to compute an (ε, δ)-
approximation of µZ . The main idea behind this approach is to useN di�erent indepen-
dent random variables (samples) Z1, Z2, · · · , ZN . If the Zi variables are identically dis-
tributed with mean µZ , the value of µZ is approximated by µ̃Z = (Z1+Z2+· · ·+ZN)/N .
In the next section, we de�ne the random variable Z in a way that the mean value
of Z shows the likelihood that a given property is satis�ed by a system. Each ran-
dom variable Zi is a random simulation trace (random execution) of a given Timed
Rebeca model (system). So, the correctness of the system according to the property
is approximated based on random traces.

Based on the zero-one estimator theorem [87], if N is proportional to Υ = 4 ln(2/δ)/
µZε

2 then the value of µZ is approximated by µ̃Z with absolute error ε and with
probability 1−δ. In other words, we say µ̃Z is an (ε, δ)-approximation of µZ if Pr[|µZ−
µ̃Z | < ε] ≥ 1− δ. But, applying the zero-one estimator theorem encounters a di�culty
which is the fact that N depends on 1/µZ , the inverse of the value that one intends
to approximate. In addition, the factor of 1/µZε

2 makes the value of N unnecessarily
large.

A way of computing N without relying on µZ is provided by the Stopping Rule
Algorithm (SRA) in [88]. As Figure 3.1 shows, µ̃Z = (1 + (1 + ε)Υ )/N , where N is the
number of traces which are needed to be analyzed until at least b1 + (1 + ε)Υ c of them
satisfy the given property. Note that each Zi is a Bernoulli trial which takes the value
of 1 or 0.

SRA algorithm
input: (ε, δ) with 0 < ε < 1 and δ > 0.
input: Random variables Zi with i > 0, independent and identically distributed.

output: µ̃Z approximation of µZ .

(1) Υ = 4(e− 2)ln(2/δ)/ε2; Υ1 = 1 + (1 + ε)Υ ;
(2) for (N = 0, S = 0; S ≤ Υ1; N++) S = S +ZN ;
(3) µ̃Z = S/N ; return µ̃Z ;

Figure 3.1: Stopping rule algorithm.

3.3.2 Model Checking Algorithm

We present the model checking approach based on the Monte Carlo SRA and the
capabilities of McErlang to verify a property using monitors. The samples we are
looking for are the cycles reachable from the initial state of the time transition system
of a Timed Rebeca model. Our approach is similar to the approach presented in [89],
but we use SRA and make it appropriate for our case. The model checking algorithm
in [89] is a Monte Carlo algorithm to decide on whether or not a property speci�ed in
temporal logic holds for a system speci�cation. Using our proposed approach, we are
able to verify properties that can be de�ned by checkpoint monitors.
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De�nition 1 (Timed Rebeca time transition system.) A Timed Rebeca time tran-
sition system is a labeled transition system TM = (S, s0, Act, ↪→), where:

� S is a set of states in Timed Rebeca,

� s0 ∈ S is the initial state,

� Act is a set of actions, containing all possible messages in Timed Rebeca,

� ↪→⊆ S × Act× S is the transition relation.

�

De�nition 2 (Trace sample space.) Given the time transition system TM of a given
Timed Rebeca model M, a �nite trace of s0x0 . . . snxnsn+1 is included in the sample
space if s0 . . . sn are pairwise distinct and sn+1 = si for some 0 ≤ i ≤ n. Note that
si ∈ S, xi ∈ Act and (si, xi, si+1) ∈↪→. The sample space U is the set of all these
traces.

�

A trace of TM is sampled via a random walk through the transition graph of TM,
starting from the unique initial state. The trace is generated by exploring the outgoing
transitions uniformly.

De�nition 3 (Trace probability.) The probability Pr[σ] of a �nite trace σ = s0x0 . . .
snxnsn+1 of a time transition system TM is de�ned inductively as follows: Pr[s0] =
1 and Pr[s0x0 . . . snxnsn+1] = Pr[s0x0 . . . sn].π[snxnsn+1] where π[s x t] = 1/m if
(s, x, t) ∈↪→ and m is the number of outgoing transitions from state s.

�

Proposition 1 (Probability space.) Given the time transition system TM, the pair
(P(U), P r) de�nes a discrete probability space. �

The proof �rst considers the in�nite tree T corresponding to the in�nite unfolding of
Act. T ′ is the (�nite) tree obtained by making a cut in T at the �rst repetition of a
state along any path in T . It can be shown by induction on the height of T ′ that the
sum of the probabilities of the traces associated with the leaves of T ′ is 1.

De�nition 4 (Random variable.) The Bernoulli random variable Z associated with
the probability space (P(U), P r) of a time transition system TM is de�ned as follows:
pz = Pr[Z = 1] =

∑
λa∈U Pr[λa] and qz = Pr[Z = 0] =

∑
λn∈U Pr[λn] where λa is a

�nite accepting trace and λn is a �nite non-accepting trace. �

Accepting traces satisfy the de�ned property and non-accepting traces do not sat-
isfy the property. The expectation of random variable Z equals pZ , because µZ =
0 × qZ + 1 × pZ . So, 1 − pZ shows the number of counterexamples in TM, weighted
by their probability. Since an exact computation of pZ is not tractable, we get an
(ε, δ)-approximation p̃Z of pZ using SRA, as shown in Figure 3.1.

The statistical model checking algorithm is shown in Figure 3.2. The Random Vari-
able Generator (RVG) routine uses our developed toolset to generate a simulation trace
from TM. The routine returns 1 if the trace satis�es the property, otherwise throws
the trace as a counterexample. The algorithm works as follows: (1) Our developed
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toolset provides independent random samples (simulation traces) Zi, each identically
distributed according to Z as required by SRA. (2) If a trace that does not satisfy
the property is found, the model checking procedure stops and reports the trace as a
counterexample. (2) If all traces satisfy the property, we conclude pZ is 1 with error
margin ε and con�dence value δ such that Pr[|pZ − 1| < ε] ≥ 1− δ.

Theorem 1 (Algorithm correctness.) Given a time transition system TM, error
margin ε, and con�dence ratio δ, p̃Z is computed by our model checking algorithm as
the (ε, δ)-approximation of pZ such that if p̃Z < 1 then TM 6|= ϕ, and if p̃Z = 1 then
the weighted expectation pZ that TM |= ϕ satis�es Pr[|pZ − 1| < ε] ≥ 1− δ.

�

Proof. Independence: Each call to RVG generates an independent Bernoulli trial.
Distribution: The probability that a random trace is accepting is the same for all
samples and is given by pZ . Correctness: If a counterexample (non-accepting trace)
is found, then TM 6|= ϕ by de�nition, otherwise p̃Z = 1 and the result follows from
Pr[|pZ − p̃Z | < ε] ≥ 1− δ.

There is an estimator mode for our model checking algorithm. In this mode, model
checking does not stop upon �nding a counterexample (non-accepting trace), but rather
continues until the computation of p̃Z is completed. This mode has some advantages,
such as we may �nd more counterexamples which is useful to modify the model, and
the algorithm provides an estimation of how false is the judgment TM |= ϕ. As our
algorithm uses SRA for the computation of p̃Z , the number of accepting traces should
be greater than Υ1, otherwise model checking may not terminate. To prevent this
situation, if Υ1 non-accepting traces are found, model checking in the estimator mode
is terminated.

Model checking algorithm
input: Time transition system TM = (S, s0, Act, ↪→).
input: (ε, δ) with 0 < ε < 1 and δ > 0.
output: Either counterexample or estimate p̃Z with Pr[|pZ − p̃Z | < ε] ≥ 1− δ

(1) Υ = 4(e− 2)ln(2/δ)/ε2; Υ1 = 1 + (1 + ε)Υ ;
(2) for (N = 0, S = 0; S ≤ Υ1; N++){

try {ZN = RV G(TM); } catch (e){return e;}
S = S +ZN ;

}
(3) p̃Z = S/N ; return p̃Z ;

Figure 3.2: Model Checking Algorithm.

Now, we have to specify the subset of formulas which can be model checked by
means of statistical model checking. As shown in [90], formulas with unbounded
until operators (and nested until operators) can be model checked using statistical
model checking. As a result, our proposed approach can work for formulas with until
operators which are both safety and LTL properties. Model checking of LTL properties
is beyond the scope of this dissertation, and so Timed Rebeca models can only be
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veri�ed against safety properties, using prede�ned monitors like Deadlock Monitor and
Maximum Queue Length Monitor, and checkpoint monitors.

As a �nal step in developing a statistical model checker, we have to implement
the above algorithm to calculate an approximation of correctness of a Timed Rebeca
model. As Figure 3.3 shows, the statistical model checking (SMC) component works
with the present tool, which was developed in [58]. The simulation wrapper component
is employed to generate needed simulation traces for the SMC component. Figure
3.3 demonstrates the analysis toolset which includes the SMC component and the
performance evaluation tool. In the following section, we describe the architecture of
the performance evaluation tool.

3.4 Performance Evaluation of Timed Rebeca

Models

Most discrete-event simulators rely on hidden schedulers to resolve nondeterministic
choices, which may in�uence results in unexpected ways. McErlang is one of the
simulators which call an explicit scheduler to resolve nondeterministic choices in a
uniformly distributed random manner. McErlang provides facilities for simulation of
Erlang programs. In the simulation mode, the next state of an Erlang program is
determined randomly, by choosing one of the available transitions from the current
state. Therefore, a randomly chosen path of execution is explored in each simulation
run. To have an accurate understanding of the model's behavior, data is gathered from
di�erent simulation runs, each of them including a di�erent trace. For performance
evaluation, statistical methods are applied to the collected data and the results are
used to reason about the behavior of the model. Since the resulting information of a
performance measurement may be very large, we use the average moving method to
reduce the dataset for visualization. This well-known method smooths out short-term
�uctuations and highlights long-term trends of the data [91].

3.4.1 Performance Evaluation Toolset

We implement a toolset to provide performance evaluation of Timed Rebeca models
using McErlang. As shown in Figure 3.3, the toolset contains three components as
follows.

� translator : for translating Timed Rebeca models to Erlang programs.

� trace analyzer : to apply statistical analysis methods to stored information. Dif-
ferent analysis techniques are implemented in this component.

� simulation wrapper : it sends required data to other components and stores data
of simulation runs. The modeler can de�ne the number of simulations as well as
the duration of each simulation run.

Figure 3.3 shows that simulation wrapper component sends Timed Rebeca models
to the translator component to be translated to an Erlang program. The translated
Erlang program is sent to McErlang for simulation. The generated data from the
simulation is sent to the simulation wrapper component at run-time. The simulation
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wrapper component categorizes the simulation data of di�erent simulation runs in a
way to be used by trace analyzer.

Two di�erent analysis techniques have been implemented in the component trace
analyzer, called checkpoint analysis and paired-checkpoint analysis, to provide perfor-
mance evaluation of Timed Rebeca models. In the next section, we explain how infor-
mation provided by checkpoints can be used in trace analyzer to achieve performance
measures of interest.

simulation wrapper

1: translator Translation of the model
3: trace analyzer

Checkpoint Analysis Results
Paired-checkpoint Analysis Results

Phase 1: Inputs the Time Rebeca model and outputs the translated Erlang model

Phase 3: generated tracesfrom simulation

2: McErlangExecution of 
translated model

Phase 2: Executes the translated Erlang model with McErlang and streams it to the simulation wrapper.

statistical model checking (SMC)

Timed Rebeca ModelPhase 3: requests as many traces as needed and output an approximation of correctness

Figure 3.3: Architecture of the analysis toolset.

3.4.2 Checkpoints analysis in Simulation

As we discussed in Section 3.1.4, checkpoints were added to Timed Rebeca language
to provide needed information for model checking and simulation. Each checkpoint
is translated to a function such that McErlang can access the value of variables and
be noti�ed of the occurrence of events. We analyze models based on the information
provided by checkpoints.

During the simulation, every time a checkpoint is executed the value of terms
(variables or any value of available data types), the label, the time of observing the
checkpoint and the name of the rebec including the checkpoint are stored for perfor-
mance evaluation purposes.

1 env int requestDeadline, checkIssuedPeriod,
retryRequestPeriod;

2 env int newRequestPeriod, serviceTime1,
serviceTime2;

3 reactiveclass Agent(3) {
4 ...
5 msgsrv findTicket(TicketService ts) {
6 attemptCount = attemptCount + 1;
7 token = token + 1;
8 checkpoint(requestStart,token);
9 ts.requestTicket(token)

deadline(requestDeadline);
10 self.checkTicket()

after(checkIssuedPeriod);
11 }
12
13 msgsrv ticketIssued(int tok) {
14 if (token == tok) { ticketIssued = true;

15 checkpoint(ticketIssued,tok);}
16 else { checkpoint(ticketNotIssued,tok); }
17 }
18
19 msgsrv checkTicket() { ... }
20 msgsrv retry() { ... }
21 }
22
23 reactiveclass TicketService(3) {
24 ...
25 msgsrv requestTicket(int token) { ... }
26 }
27 main { ... }

Listing 3.9: Timed Rebeca model - Ticket
service system
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To understand the role of checkpoints in simulation, we consider a running example
and explain the analysis techniques based on it. In the ticket service system shown in
Listing 2.2, the average response time to incoming requests shows the e�ciency of the
system. It can be important to get the distribution of issued tickets between ticket
services. The model is examined for di�erent time settings, each of which represents
a di�erent behavior of the model. Di�erent time settings are speci�ed by assigning
values to timing variables in the model. As an example, there may exist a time setting
in which a ticket service issues most of the tickets and the other one issues a few tickets.
If this behavior is not expected, we should �nd the reason. This undesirable behavior
can reveal a problem in the system design or we should �gure out how timing variables
a�ect each other and cause an overload on a ticket service.

In order to collect the required data for performance evaluation of the model, we
add three checkpoints to the ticket service model in Listing 2.2, as shown in Listing
3.9. For the sake of simplicity, we keep the message servers to which checkpoints are
added and delete other message servers. These checkpoints store data about when the
request is sent to the ticket service (line 8), when the ticket is received by the agent
a, i.e. the ticket is issued (line 15), and whether the ticket is not issued (line 16). We
are able to de�ne as many checkpoints as needed depending on the safety properties
and the performance measures we are interested in. In these checkpoints we should
provide the values of variables that are needed for the intended analysis.

For each time setting, the model is simulated, and the analysis techniques explained
in the following subsections are applied to the obtained data to compute the average
response time, and to �nd the distribution of issued tickets between ticket services.

3.4.2.1 Paired-checkpoint Analysis

The paired-checkpoint method is implemented in the trace analyzer tool. In this
analysis technique, two checkpoints are grouped together. The modeler speci�es paired
checkpoints with the use of labels when running the tool. The elapsed time between
observing two paired checkpoints is important and can show di�erent performance
measures. There is a command in our tool that enables the modeler to specify paired
checkpoints. For example, the starting checkpoint in line 8 (labelled by requestStart)
shows that the request is sent to the ticket service and the ending checkpoint in line
15 (labelled by ticketIssued) represents that the ticket was issued. Consequently, the
passed time between the occurrence of these two checkpoints is considered as the
response time of the issued ticket.

3.4.2.2 Checkpoint Analysis

In checkpoint analysis, instead of pairing checkpoints, a certain checkpoint is provided
to expose the changes of a particular variable over time. For example, in the ticket
service system, we are interested in knowing how many tickets are issued by ticket
service ts1 and how many of them are issued by ticket service ts2. This information is
available in the simulation results by de�ning the checkpoint with label ticketIssued in
the model. When a ticket is issued at run-time, the time of occurrence and the name
of rebec including the checkpoint are stored in the simulation results.
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3.4.3 Con�dence Interval

While using statistical methods, there is an important question of how precise the
results are. Here, we calculate the con�dence interval for simulation results to indicate
their accuracy. We presume that our measurements follow a normal distribution.
Using this method, an estimated range of values for the mean value of the sample is
computed. The con�dence interval shows how close our measurement is to the original
value if the experiment is repeated. The margin of the error is calculated from the
following formula.

Zα/2 ×
σ√
n

where σ is the standard deviation of the intended phenomenon (like response time), n
is the sample size, α is the con�dence level and Zα/2 is the con�dence coe�cient. The
most commonly used con�dence levels are 90%, 95% and 99%. Suppose the con�dence
level is 95% (α = 0.95), to �nd the value of Zα/2 the z table is checked for the value
0.95/2 = 0.475 [92]. In the z table, the intersection of row 1.9 and the column of 0.06
shows a cell with the value 0.475 (or the closest value to 0.475), so Z0.475 equals 1.96.

The con�dence interval is obtained from the following formula, where x̄ is the mean
value of the intended phenomenon (like response time).

x̄± Zα/2 ×
σ√
n

3.5 Case Studies and Experimental Results

In this section, we present two case studies to illustrate the applicability of the ap-
proaches of this work. For each case study, after an intuitive description of the model
using an event graph [93], the detailed description of the Timed Rebeca model is pre-
sented. We use an event graph to give a highly abstracted view of events and their
causality relations. Event graphs are widely used for the explanation of event-based
models. In this graph, the vertices represent events in a system and the edges represent
the causality relation between events (vertices). Additionally, we add a label below
each vertex that shows in which reactive class the event occurs. Edges can be condi-
tional (thick edge), mandatory (thin edge) or marking an initial event (jagged edge).
Model checking, statistical model checking and performance evaluation are applied for
the case studies. In model checking using McErlang, we have limitations on the size of
the models to avoid state space explosion. In statistical model checking, we are able
to check larger models, and increment the size of the models greatly.

We should remind that nondeterminism is resolved by uniform distribution. The
assumption of uniform distribution may a�ect the validity of results in statistical model
checking and simulation. On the other hand, this assumption can provide useful
insights about the model which is important practically. For example, we check a
property for di�erent time settings in a model. Like in the ticket service case study we
may �nd a time setting in which no ticket is issued (a property is violated unlike our
expectation). So, we �nd that either the model or the time setting should be changed.

As another example, in elevator case study, if we have 10 �oors, it wouldn't be
correct to have a value of 11 for elevator location. If we �nd a trace by chance with
a value greater than 10 for elevator location, we can report it as a counter example
for the model. It means that the model is not a correct model of the elevator system.
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Otherwise we report that we picked �n� consecutive number of traces and couldn't
�nd any trace to violate the property (elevator location =< 10). So, we can say that
the property is satis�ed with speci�ed error and con�dence interval. Our disclaimer
hold again: the property is satis�ed with certain con�dence when nondeterminism is
resolved by uniform distribution.

There are performance properties that give us insight and may have practical merit,
again with the same disclaimer. Like in the elevator case study, by simulation, we
examine di�erent scheduling policies and report max, min, and mean response time to
requests for each �oor. This way we report on e�ciency of di�erent scheduling policies.
The validity of mean values is a�ected by our assumption.

3.5.1 Ticket Service System

Our �rst case study is the ticket service system, which is shown in Listing 2.2. As we
already described the details of this model in Chapter 2, here, we only demonstrate
the event graph of the Ticket Service model in Figure 3.4. As shown in Figure 3.4,
initially the message server initial in the rebec agent sends a message to itself that
triggers the event (the message server) findTicket. Execution of this event causes
sending a message to the rebec TicketService which raises the event requestTicket.
After a number of trials (which is modeled by causality relation among findTicket,
checkTicket, and retry), the event ticketIssued is raised to inform that a ticket is
issued.

find
ticketinitial

request
ticket

ticket
issued

check
ticket

retry

Agent Agent

Agent

Agent

Agent

TicketService

Figure 3.4: Event graph of the ticket service model.

3.5.1.1 Model Checking Using McErlang Monitors

The model in Listing 2.2 is revised to be usable in monitor-based model checking.
A variable is added to the model to restrict the number of ticket requests that are
sent to ts1 and ts2. The maximum number of ticket requests is set to seven. This
modi�cation is necessary to avoid state space explosion. In the ticket service system,
the goal is to issue tickets. We aim at checking the property of �at least one ticket
is issued� for a set of time settings. If a time setting fails to satisfy this property, it
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shows that in this time setting no ticket is issued. To be able to check the property,
we add a checkpoint with label ticketIssued to the model where a ticket is issued
(refer to Listing 3.9). The checkpoint monitor shown in Listing 3.10 is used for safety
veri�cation. The property is satis�ed if a ticket is issued. This property veri�cation
is performed by using the prede�ned function checkLabelCheckPoint, explained in
Section 3.2.1.1.

1 monitorType() -> safety.
2

3 init(_) -> {ok, satisfied}.
4

5 stateChange(_,satisfied,Stack) ->
6 CheckpointLabel = ticketissued,
7 Actions = actions(Stack),
8

9 checkLabelCheckPoint(Actions, CheckpointLabel).

Listing 3.10: The checkpoint monitor for checking whether a ticket is issued.

The results of model checking of the Ticket Service system using McErlang are
shown in Table 3.2. We considered di�erent settings for the model each of which has
di�erent values for variables. As shown in the table, there is no tickets issued in the
�rst three settings.

Setting
Request
deadline

Check issued
period

Retry request
period

New request
period

Service
time 1

Service
time 2

Max Ticket
Requests

Result

1 2 1 1 1 3 7 7
violation

(170737 states)

2 2 1 1 1 4 7 7
violation

(199709 states)

3 2 2 1 1 4 7 7
violation

(153377 states)

4 2 2 1 1 3 7 7
satis�ed

(6248 states)

5 2 2 1 1 2 7 7
satis�ed

(4398 states)

6 2 3 1 1 2 7 7
satis�ed

(4311 states)

7 2 4 1 1 2 7 7
satis�ed

(4311 states)

Table 3.2: Veri�cation results for ticket service. Property is satis�ed if at least one
ticket is issued.

3.5.1.2 Statistical Model Checking

We verify the ticket service model shown in Listing 3.9, with a huge number of ticket
requests in the model. We check the property of �at least one ticket is issued� for a set
of time settings. For each setting in Table 3.2, we run the statistical model checking
(SMC) component with di�erent error values and con�dence values. Table 3.3 shows
the results for setting 4. The results for settings 5, 6, and 7 are the same for setting 4.
Table 3.4 shows the veri�cation results for setting 1. Settings 2 and 3 have the same
results as setting 1, because no ticket is issued in these settings.

For a given property, we generate as many simulation traces as needed to get
Nct = b1 + (1 + ε)Υc number of traces that satisfy the property (refer to Section 3.3
for the Υ formula). The approximation of correctness of the property is de�ned as
µ̃Z = Nct/N

′, where N ′ is the total number of explored traces.
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Considering the error value and the con�dence value of the �rst experiment of
Table 3.3, Nct = 289. We generate as many simulation traces as needed to get 289
traces that satisfy the de�ned property. The total number of simulation traces for
this experiment is 289 (N ′ = 289), meaning all traces satisfy the property. So, in
this experiment the approximation of correctness is one, µ̃Z = 1. More accurately,
we obtain an (ε, δ)-approximation of correctness where Pr[|µZ − µ̃Z | < ε] ≥ 1 − δ,
µZ is the real approximation of correctness. For the �rst experiment of Table 3.3,
Pr[|µZ − 1| < 0.05] ≥ 0.95.

Experiment#
Number of Total number Error Con�dence Approximation
traces to of traces value value of correctness
be satis�ed (N ′) (ε) (δ) (µ̃Z)

1 289 289 0.05 0.05 1
2 203 203 0.1 0.01 1

Table 3.3: Statistical model checking results for the ticket service model with param-
eters equal to setting 4. The approximation of correctness is calculated for the safety
property �at least one ticket is issued".

As described before, we generate as many simulation traces as needed until Nct

traces satisfy the property. When a trace violating the property is found, the trace
is reported as a counterexample and we can stop searching the state space, i.e. stop
generating simulation traces. We selected another way; we continue generating traces
until we get Nct traces satisfying the property. The advantages of this approach are
that we may �nd more counterexamples, and we can compute which percentage of
traces satisfy the property. Both give more insight about the model, and may be used
for modi�cation of the model.

If the model never satis�es the property, the trace generation should continue
forever to �nd Nct satis�ed traces. To avoid this situation, in the implementation
of the SMC component we stop generating traces if the �rst Nct traces do not satisfy
the property. This case happens for setting 1, so the approximation of correctness
equals zero as presented in Table 3.4.

Experiment#
Number of Total number Error Con�dence Approximation
traces to of traces value value of correctness
be satis�ed (N ′) (ε) (δ) (µ̃Z)

1 289 289 0.05 0.05 0
2 203 203 0.1 0.01 0

Table 3.4: Statistical model checking results for ticket service model with parame-
ters equal to setting 1. The approximation of correctness is calculated for the safety
property �at least one ticket is issued�.

We are also able to verify the model with more actors (rebecs) for which the model
checking approach based on McErlang monitors explodes. For example, the number
of agents and ticket services is increased to four and nine, respectively. We check the
safety property of �at least one ticket is issued� for this model. The approximation
of correctness equals one for the following parameters: ε = 0.05, δ = 0.05. We use a
di�erent setting which is not listed in Table 3.2. In this setting, the values of variables
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(from left to right in Table 3.2) equal 3, 3, 2, 2, 4, 7. So, large ticket service models
can be veri�ed against safety properties using statistical model checking.

3.5.1.3 Performance Evaluation

In the simulation, the limitation of the number of ticket requests is removed from the
model. Considering the veri�cation results, we know that some tickets are issued in
settings 4, 5, 6, and 7. We use the methods introduced in Section 3.4 to evaluate the
performance evaluation of di�erent settings of the model. For each setting, the mean
response time to ticket requests is calculated using the paired-checkpoint analysis. The
simulation results are shown in Table 3.5. Each setting is simulated 5 times, each for
200 seconds. The error margin is calculated for di�erent con�dence levels of 99%, 95%
and 90%.

Setting
Mean Mean Mean SD Median WCT BCT Starting Checkpoint
(0.99) (0.95) (0.9) checkpoints pairs

4 3.0 3.0 3.0 0 3.0 3.0 3.0 519350 614
5 2.1± 0.00114 2.1± 0.000864 2.1± 0.00073 0.1 2 3.0 2.0 511709 51476
6 4.0 4.0 4.0 0 4.0 4.0 4.0 363891 81585
7 3.0 3.0 3.0 0 3.0 3.0 3.0 573551 286948

Table 3.5: Paired-checkpoint evaluation for Ticket Service. The speci�cation of set-
tings is available in Table 3.2 where all settings guarantee that some tickets are issued.
SD, WCT, BCT denote standard deviation, worst-case time and best-case time, re-
spectively.

Figures 3.5 and 3.6 show the distribution of issued tickets between ticket services
for settings 4, 5, 6, and 7. The results are obtained by using the checkpoint analysis
method. According to these results, in settings 6 and 7, a large number of tickets
is issued by ticket services in comparison to settings 4 and 5. This shows that in
these settings the system is more responsive. This results may not be used directly for
improving the model, but if we are sure that we modeled the real system correctly, we
can �nd a better time setting for the system.

The results in Figure 3.3 show that most requests are responded by the ticket service
2 (ts2) in setting 4 and the total number of issued tickets is very low. By comparing
the distribution of issued tickets between ts1 and ts2 in di�erent time settings, the
modeler may reason about the relation between this behavior and the values of timing
variables. This can be used to improve the design.

Figure 3.5: The distribution of issued tickets between ticket services for settings 4 and
5.
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Figure 3.6: The distribution of issued tickets between ticket services for settings 6 and
7.

3.5.2 The Elevator System

Our second case study is an elevator system, where a centralized coordinator dispatches
the coming requests among the elevators, and also decides on the direction of elevators
movement. In this system, the approach of dispatching requests is called the scheduling
policy, and the decision on the movement of elevators between the �oors is called
the movement policy. Figure 3.7 shows the event graph of the elevator model. As
shown in the �gure, a person requests to enter one of the elevators by raising the
event callElevator or he is already in an elevator and presses one button to ask
it to stop on one of the �oors by raising the event requestFloor. Both of these
events result in raising the handleRequest event which is the event of the centralized
coordinator. Based on the current locations of the elevators and received requests, the
centralized coordinator schedules movement for elevators by raising moveUp, moveDown,
and stopOpen events.

3.5.2.1 Timed Rebeca Model

The Timed Rebeca code of the elevator system is shown in Listing 3.11. The number
of rebecs in the main part can be changed in order to make di�erent variants of the
elevator system with di�erent sizes (e.g. we increase the number of �oors from three
to ten in Section 3.5.2.3). There are four reactive classes Person, Floor, Elevator,
and Coordinator in this model. Rebecs el1 and el2 are instantiated from Elevator

as the two elevators of the system. Also, rebecs floor1 to floor3, rebec pers, and
rebec coord are instantiated from reactive classes Floor, Person, and Coordinator

repectively, to show that there are three �oors, one person and one coordinator in the
model (Lines 113-119).

The rebec pers starts the model. In the initialization phase, the message go is sent
to the pers by itself (Line 90). The message server go models all behaviors of the pers.
In this message server, we model two possibilities for the person. The person can be
either inside an elevator or outside elevators. Being in �oors 1 and 2 are considered
as the person is outside elevators. Being in the �oor 3 is considered as the person is
inside one of the two elevators. At the start point, the person is put in one of the
�oors nondeterministically (Line 93).

If the person is in the �rst �oor or in the second one, the callElevator message
is sent to one of the �oors nondeterministically (Lines 94 and 96-99). Sending this
message shows that the person standing in the speci�ed �oor presses the button and
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Figure 3.7: Event graph of the centralized elevator system.

asks for an elevator to come. This request has to be forwarded to the appropriate
elevator later to be served (in the message server handleRequest).

Being in �oor 3 (fc = 3 in Line 100) implies that the person is inside one of the
two elevators and requests to go to one of the �oors speci�ed by flr (Lines 95 and
101-102). As in this case the person is inside the elevator, it sends its request directly
to the elevator by sending the requestFloor message. All the requests are modeled
through sending the messages requestFloor (Lines 101-102) and callElevator (Lines
97-99) by the person, and are forwarded (Lines 12 and 34) to the message server
handleRequest in the coordinator.

Algorithms which are related to the scheduling and movement policies are imple-
mented in the message servers handleRequest and handleElevatorMovement of the
Coordinator. Di�erent types of request are served in the handleRequest message
server. For example, the conditional statement in line 60 contains the handling mech-
anism of requests which are sent from �oors. Based on the implemented policy, if
a �oor requests an elevator and one of the elevators is on the requested �oor, that
elevator is assigned to the �oor (Lines 62-65). Otherwise, one of the elevators is se-
lected nondeterministically (Line 61) and the request is assigned to that elevator (Lines
66-70). There are more cases which are eliminated here and can be found in A.

We implemented three di�erent scheduling policies, namely shortest distance, short-
est distance with movement priority, and shortest distance with load balancing, and two
di�erent movement policies, namely up priority, and maintain movement. We de�ne
four di�erent con�gurations for the elevator system, each of them including one of the
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aforementioned scheduling and movement policies (not all combinations are consid-
ered).

1 env int simDelay, simItter, elevMoveDelay;

2 env int doorDelay1, ..., doorDelay4;

3

4 reactiveclass Floor(4) {

5 knownrebecs { Coordinator coord; }

6 statevars {

7 int floorIdent;

8 boolean isRestricted;

9 }

10 msgsrv initial(int floorID) { ... }

11 msgsrv callElevator() {

12 coord.handleRequest(floorIdent,true);

13 }

14 }

15

16 reactiveclass Elevator(4) {

17 knownrebecs { Coordinator coord; }

18 statevars {

19 int movementDelay;

20 boolean isRestricted;

21 }

22 msgsrv initial(int mDelay) { ... }

23 msgsrv moveUp(int floor) {

24 delay(movementDelay);

25 coord.handleElevatorMovement(1,1);

26 }

27 msgsrv moveDown(int floor) { ... }

28 msgsrv stopOpen(int floor, int movementwas) {

29 delay(?(doorDelay1, ..., doorDelay4));

30 coord.handleElevatorMovement(0, movementwas);

31 }

32 msgsrv requestFloor(int floor){

33 // Send request to handler

34 coord.handleRequest(floor,false);}

35 msgsrv stopRequest(int floor) { ... }

36 }

37

38 reactiveclass Coordinator(4) {

39 knownrebecs {

40 Floor flr1, flr2, flr3;

41 Elevator el1, el2;

42 }

43 statevars {

44 int el1loc, el1move, el2loc, el2move,

scheDelay;

45 list<int> el1Q, el2Q;

46 }

47 msgsrv initial() { ... }

48 msgsrv handleElevatorMovement(int movement,int

movementbefore) {

49 if(sender == el1 && movement != 0) {

50 el1move = movement;

51 if(movement == -1) { el1loc -= 1; }

52 else if(movement == 1) { el1loc += 1; }

53 ...

54 } else if(sender == el1) { ... }

55 if(sender == el2 && movement != 0) { ... }

56 else if(sender == el2) { ... }

57 }

58 msgsrv handleRequest(int floor, boolean

isFloor){

59 //Requests from floors.

60 if(isFloor == true) {

61 int choice = ?(1,2);

62 if(erlang.contains(el1Q,floor) != 1 &&

erlang.contains(el2Q,floor) != 1) {

63 if(el1loc == floor || el2loc == floor) {

64 if(el1loc==floor) el1Q.insert(floor);

65 else if(el2loc==floor)

el2Q.insert(floor);

66 } else if(el1loc == el2loc) {

67 if(choice == 1) el1Q.insert(floor);

68 else if(choice == 2) el2Q.insert(floor);

69 }

70 ...

71 } else { ... }

72 if(el1move == 0 && el1Q.size() > 0) { ... }

73 if(el2move == 0 && el2Q.size() > 0) { ... }

74 }

75 // Requests from elevator.

76 else { ... }

77 }

78

79 reactiveclass Person(4) {

80 knownrebecs {

81 Floor flr1, flr2, flr3;

82 Elevator el1, el2;

83 }

84 statevars {

85 int delayinsec, itterations;

86 }

87 msgsrv initial(int d, int i) {

88 delayinsec = d;

89 itterations = i;

90 self.go(delayinsec,0);

91 }

92 msgsrv go(int delays, int incritt) {

93 int fc = ?(1, 2, 3);

94 int flr = ?(1, 2, 3);

95 int elv = ?(1,2);

96 if(fc == 1 || fc == 2) {

97 if(flr == 1) { flr1.callElevator(); }

98 if(flr == 2) { flr2.callElevator();

99 if(flr == 3) { flr3.callElevator(); }

100 } else {

101 if(elv == 1) { el1.requestFloor(flr); }

102 else if(elv == 2) { el2.requestFloor(flr);

}

103 }

104 delay(delays);

105 if(incritt < itterations) {

106 self.go(delayinsec,incritt+1);

107 }

108

109 }

110 }

111

112 main {

113 Elevator el1(coord):(elevMoveDelay);

114 Elevator el2(coord):(elevMoveDelay);

115 Floor flr1(coord):(1);

116 Floor flr2(coord):(2);

117 Floor flr3(coord):(3);

118 Coordinator coord(flr1, flr2, flr3, el1,

el2):();

119 Person pers(flr1, flr2, flr3, el1, el2):( ...

);

120 }

Listing 3.11: The Timed Rebeca model
of the elevator system.
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3.5.2.2 Model Checking Using McErlang Monitors

The complete Timed Rebeca model for the elevator system can be found at [85] and [1].
To avoid state space explosion, we use the model with three �oors for model checking
(as shown in Listing 3.11). We use checkpoint monitors as discussed in Section 3.2, to
verify the safety properties of the model.

The �rst safety property which is veri�ed to ensure the correctness of the model
is the value of the elevator location. This value must be within the valid range which
is one to three. In the Timed Rebeca model, the checkpoint elevatorLocation is
de�ned to make the value of elevator locations available for model checking. To check
the maximum and minimum value of checkpoint elevatorLocation, we use the pre-
de�ned functions checkTermMaxValue and checkTermMinValue respectively, as shown
in Listing 3.12.

1 monitorType() -> safety.
2 init(_) -> {ok, satisfied}.
3 stateChange(_,satisfied,Stack) ->
4 Actions = actions(Stack),
5 checkTermMinValue(Actions,elevatorLocation,0),
6 checkTermMaxValue(Actions,elevatorLocation,3),
7 checkTermValue(Actions,elevator1StopReqInList,-1),
8 checkTermValue(Actions,elevator2StopReqInList,-1),

Listing 3.12: Checkpoint monitor for the elevator system with three �oors.

We are also interested in checking whether the elevators stop on the �oors which
are not requested. The prede�ned function CheckTermValue is used to check whether
the values of checkpoints elevator1StopReqInList and elevator2StopReqInList

both equal -1, which means the elevator stops at incorrect �oors. The results of model
checking the Elevator model, using the mentioned properties, are shown in Table 3.6.

Parameter Condition Result

Elevator location Location > 0
Satis�ed

(40929 states) 112.4 seconds

Elevator location Location < 3
Satis�ed

(40929 states) 111.6 seconds

Stop Queue 1 6= −1 Satis�ed

(40929 states) 110.5 seconds

Stop Queue 2 6= −1 Satis�ed

(40929 states) 109.5 seconds

Table 3.6: Safety veri�cation results for the elevator system.

3.5.2.3 Statistical Model Checking

In the previous section we checked the elevator system moving between three �oors.
Here, we model check a larger elevator model by increasing the number of �oors to ten,
for which the monitor-based model checking is not applicable because the state space is
very large. To have the elevator system with ten �oors, some parts of the code in Listing
3.11 (e.g. the main part) must change. The checkpoints elevatorLocation1 and
elevatorLocation2 are de�ned in the model to make the value of elevator locations
(the �oor numbers from which the elevator passes) available for model veri�cation. We
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injected a bug in the model to provide a few situations in which the elevators can go to
�oors which do not exist. We check whether elevators stop at the correct �oors ranging
from one to ten. We de�ne two safety properties: the elevator location is greater than
zero, and the elevator location is less than or equal to ten.

Here, we use McErlang to simulate the Erlang program obtained from a Timed
Rebeca model. Each simulation run generates a trace from the possible set of traces,
through selecting the next state of the trace randomly. In this way, all nondeterminisms
are resolved using uniform distributions. The chosen trace is investigated for the
de�ned property. To get the needed set of traces for statistical model checking, we
use the simulation wrapper component to run di�erent simulations, each with 15000
random �oor requests with a delay of 2 time units. The delay of the elevator movement
is 2 time units and the delay of an elevator door opening and closing is set to a
nondeterministic choice of 1, 2, 4 or 6 time units. The nondeterministic assignment is
a syntactic sugar for a probabilistic assignment with a uniform distribution among its
choices. All these parameters are set by using environment variables in Listing 3.11
(Lines 1-2).

Table 3.7 shows the model checking results for the safety property of �the location of
elevator1 is less than or equal to 10�. The approximation of correctness of the property
is calculated for di�erent error values (ε) and con�dence values (δ). To understand the
way of computing the approximation of correctness and its meaning, we explain the
�rst experiment of Table 3.7 in more detail.

Considering error value (0.01) and con�dence value (0.1), Nct = 1189 traces have to
satisfy the de�ned property (refer to Section 3.5.1.2 for formulas). The total simulation
traces to get this number of satis�ed traces is N ′ = 1248. This means that some traces
do not satisfy the property as we expected. So, in this experiment the approximation
of correctness is µ̃Z = 0.953. More accurately, we obtain an (ε, δ)-approximation
of the approximation of correctness where Pr[|µZ − µ̃Z | < ε] ≥ 1 − δ, µZ is the
real approximation of correctness. Therefore, for the �rst experiment of Table 3.7,
Pr[|µZ − 0.953| < 0.01] ≥ 0.9.

Tables 3.8, 3.9, and 3.10 show the model checking results for other safety properties.
In this section, for each simulation trace of each experiment, 150 �oor requests are
sent randomly to the elevators, where requests are sent every 2 units of time. Also,
movement between �oors takes 2 units of time. The needed time for opening and
closing of an elevator door is set nondeterministically to 1, 2, 4 or 6 time units. The
scheduling policy is shortest distance and the movement policy is up priority. The
detailed explanations on di�erent policies can be found in Section 3.5.2.4.

Experiment#
Approximation

Number of Total number Error value Con�dence value of correctness for
satis�ed traces of traces (ε) (δ) Elevator1location ≤ 10

1 1189 1248 0.01 0.1 0.953
2 523 556 0.03 0.03 0.941
3 289 296 0.05 0.05 0.976
4 203 210 0.1 0.01 0.967

Table 3.7: Statistical model checking results for the elevator system. The approxima-
tion of correctness is calculated for the safety property �the elevator1 location is less
than or equal to 10�.

To show the applicability of our approach for larger models, we increase the number
of �oors to 15 and 20. For these two extended models, we check the safety property
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Experiment#
Approximation

Number of Total number Error value Con�dence value of correctness for
satis�ed traces of traces (ε) (δ) Elevator2location ≤ 10

1 1189 1256 0.01 0.1 0.947
2 523 548 0.03 0.03 0.954
3 289 306 0.05 0.05 0.945
4 203 214 0.1 0.01 0.949

Table 3.8: Statistical model checking results for the elevator system. The approxima-
tion of correctness is calculated for the safety property �the elevator2 location is less
than or equal to 10�.

Experiment#
Approximation

Number of Total number Error value Con�dence value of correctness for
satis�ed traces of traces (ε) (δ) Elevator1location > 0

1 1189 1189 0.01 0.1 1
2 523 523 0.03 0.03 1
3 289 289 0.05 0.05 1
4 203 203 0.1 0.01 1

Table 3.9: Statistical model checking results for the elevator system. The approxi-
mation of correctness is calculated for the safety property �the elevator1 location is
greater than zero�.

Experiment#
Approximation

Number of Total number Error value Con�dence value of correctness for
satis�ed traces of traces (ε) (δ) Elevator2location > 0

1 1189 1189 0.01 0.1 1
2 523 523 0.03 0.03 1
3 289 289 0.05 0.05 1
4 203 203 0.1 0.01 1

Table 3.10: Statistical model checking results for the elevator system. The approx-
imation of correctness is calculated for the safety property �the elevator2 location is
greater than zero�.

that the elevator1 location shouldn't exceed the number of �oors. The obtained results
are shown in Tables 3.11 and 3.12.

Experiment#
Approximation

Number of Total number Error value Con�dence value of correctness for
satis�ed traces of traces (ε) (δ) Elevator1location ≤ 15

1 289 292 0.05 0.05 0.99
2 203 208 0.1 0.01 0.976

Table 3.11: Statistical model checking results for the elevator system with 15 �oors.
The approximation of correctness is calculated for the safety property �the elevator1
location is less than or equal 15�.

3.5.2.4 Performance Evaluation

In this section, we explain di�erent scheduling and movement policies which are imple-
mented in the message servers handleRequest and handleElevatorMovement, respec-
tively. We consider four di�erent scenarios, each of them with di�erent scheduling and
movement policies. The e�ciency of the proposed scenarios is revealed by comparing
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Experiment#
Approximation

Number of Total number Error value Con�dence value of correctness for
satis�ed traces of traces (ε) (δ) Elevator1location ≤ 20

1 289 295 0.05 0.05 0.98
2 203 209 0.1 0.01 0.971

Table 3.12: Statistical model checking results for the elevator system with 20 �oors.
The approximation of correctness is calculated for the safety property �the elevator1
location is less than or equal 20.�.

the mean response time of the scenarios. The simulation of the scenarios take place
with the same settings to be able to compare the simulation results.

Scheduling Policy Shortest distance, shortest distance with movement priority, and
shortest distance with load balancing are three di�erent scheduling policies which are
studied in the experiments. Listing A.1 in Appendix A shows the message server
handleRequest in which two di�erent requests are handled. First, the requests sent
to a �oor are enqueued in the nearest elevator to the �oor based on the shortest distance
scheduling policy. Second, the requests sent to an elevator are enqueued in it.

In the second algorithm which is shown in Listing A.2 in A, both the moving
direction of the elevator and shortest distance are taken into account to enqueue the
requests in the elevators. In this approach, for assigning a request to an elevator, the
moving direction of the elevators has precedence over the distance of the elevators to
the �oor from which the request is sent. For example, in the case that el1 is not
moving towards the requested �oor and el2 is moving towards it, although the new
request is closer to el1, it is enqueued in the queue of el2.

The third scheduling policy is implemented as shown in Listing A.3 in A. Here the
main goal is to balance the number of the requests assigned to the elevators, called
load balancing policy. We also consider the shortest distance approach. The queue
size of elevators has preference over the distance of a request from the elevators. For
example, if the requested �oor is closer to el2, and the queue size of el1 is less than
the queue size of el2, then the requested �oor is enqueued in the queue of el1.

Movement Policy We implemented two movement policies which are up priority
and maintain movement. Listing A.4 in A shows the message server handleElevator
Movement, in which the up priority movement policy is implemented. The policy
implies that the elevator attempts to go up �rst and serve the requests at the higher
�oors. This message server updates the elevator location and simulates its movement
between di�erent �oors.

Listing A.5 in A represents the pseudo code of maintain movement policy. In this
policy, if the elevator is moving upward (downward) and there are requests from higher
(lower) �oors, the elevator will continue the moving direction and serve the requests;
otherwise it changes its moving direction. In other words, the elevator responds to all
requests on its way.

Simulation Results We consider four di�erent con�gurations in which scheduling
and movement policies are di�erent:

� con�guration 1: scheduling policy: shortest distance, movement policy: up pri-
ority
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� con�guration 2: scheduling policy: shortest distance, movement policy: maintain
movement

� con�guration 3: scheduling policy: shortest distance with movement priority,
movement policy: maintain movement.

� con�guration 4: scheduling policy: shortest distance with load balancing, move-
ment policy: maintain movement.

For each con�guration, we used the simulation wrapper component to execute 10
simulations, each with 15000 random �oor requests with a delay of 2 time units. The
delay of the elevator movement is 2 time units and the delay of an elevator door opening
and closing is set to a nondeterministic choice of 1, 2, 4 or 6 time units.

The results of the analysis of four con�gurations are shown in Tables 3.13, 3.14,
3.15 and 3.16. Each row of the tables represents the mean response time to requests
of a speci�c �oor. The margin error is calculated for three di�erent con�dence levels
of 99%, 95%, and 90%.

Floor
Mean Mean Mean SD Median WCT BCT Checkpoint
(0.99) (0.95) (0.9) Pairs

1 58.5± 2.83 58.5± 2.16 58.5± 1.81 76.2 29.0 683 1 4772
2 44.4± 2.1 44.4± 1.6 44.4± 1.34 61.0 18.0 564 1 5591
3 33.1± 1.46 33.1± 1.12 33.1± 0.93 46.1 14.0 467 1 6568
4 24.5± 0.92 24.5± 0.7 24.5± 0.58 30.6 12.0 317 1 7361
5 20.6± 0.63 20.6± 0.48 20.6± 0.4 21.6 13.0 196 1 7880
6 17.5± 0.4 17.5± 0.31 17.5± 0.26 14.6 13.0 131 1 8182
7 14.6± 0.3 14.6± 0.23 14.6± 0.19 10.9 12.0 85 1 8615
8 13.4± 0.29 13.4± 0.22 13.4± 0.18 10.6 11.0 82 1 8966
9 14.7± 0.34 14.7± 0.26 14.7± 0.22 12.3 11.0 89 1 8777
10 18.0± 0.37 18.0± 0.28 18.0± 0.24 13.3 15.0 99 1 8442

Table 3.13: Paired-checkpoint Analysis - Scheduling policy: Shortest distance.
Movement Policy: Up priority. SD, WCT, BCT stands for standard deviation,
worst-case time and best-case time, respectively.

Floor
Mean Mean Mean SD Median WCT BCT Checkpoint
(0.99) (0.95) (0.9) Pairs

1 21.6± 0.42 21.6± 0.32 21.6± 0.27 15.5 18.0 95 1 9004
2 17.3± 0.37 17.3± 0.28 17.3± 0.24 14.1 12.0 87 1 9508
3 14.8± 0.30 14.8± 0.23 14.8± 0.19 11.7 11.0 68 1 9926
4 14.6± 0.27 14.6± 0.21 14.6± 0.17 10.5 12.0 72 1 9915
5 14.7± 0.247 14.7± 0.188 14.7± 0.158 9.5 12.0 65 1 9762
6 14.6± 0.25 14.6± 0.191 14.6± 0.16 9.7 12.0 62 1 9915
7 14.3± 0.27 14.3± 0.205 14.3± 0.17 10.4 11.0 77 1 9919
8 14.8± 0.3 14.8± 0.23 14.8± 0.19 11.8 11.0 80 1 9930
9 17.1± 0.36 17.1± 0.28 17.1± 0.23 13.9 12.0 81 1 9555
10 21.7± 0.42 21.7± 0.32 21.7± 0.27 15.5 17.0 86 1 9021

Table 3.14: Paired-checkpoint Analysis - Scheduling policy: Shortest distance.
Movement policy: Maintain movement. SD, WCT, BCT stands for standard devi-
ation, worst-case time and best-case time, respectively.
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Floor
Mean Mean Mean SD Median WCT BCT Checkpoint
(0.99) (0.95) (0.9) Pairs

1 28.3± 0.622 28.3± 0.474 28.3± 0.397 19.9 24.0 99 1 6767
2 22.4± 0.534 22.4± 0.407 22.4± 0.341 17.9 17.0 92 1 7420
3 18.7± 0.426 18.7± 0.325 18.7± 0.272 15.0 14.0 90 1 8168
4 16.7± 0.349 16.7± 0.267 16.7± 0.223 12.5 14.0 78 1 8444
5 16.3± 0.307 16.3± 0.234 16.3± 0.196 11.0 14.0 67 1 8457
6 16.2± 0.3 16.2± 0.229 16.2± 0.192 10.9 14.0 63 1 8688
7 16.8± 0.344 16.8± 0.262 16.8± 0.219 12.3 14.0 73 1 8449
8 18.6± 0.427 18.6± 0.326 18.6± 0.273 15.0 14.0 79 1 8142
9 21.6± 0.516 21.6± 0.393 21.6± 0.329 17.6 17.0 92 1 7691
10 28.1± 0.618 28.1± 0.471 28.1± 0.394 19.9 24.0 103 1 6843

Table 3.15: Paired-checkpoint Analysis - Scheduling policy: Shortest distance with
movement priority. Movement policy: Maintain movement. SD, WCT, BCT
stands for standard deviation, worst-case time and best-case time, respectively.

Floor
Mean Mean Mean SD Median WCT BCT Checkpoint
(0.99) (0.95) (0.9) Pairs

1 28.1± 0.5 28.1± 0.381 28.1± 0.319 16.4 28.0 79 1 7096
2 22.9± 0.452 22.9± 0.345 22.9± 0.289 15.3 21.0 76 1 7554
3 18.9± 0.36 18.9± 0.282 18.9± 0.236 13.0 16.0 67 1 8161
4 16.8± 0.306 16.8± 0.234 16.8± 0.195 10.9 14.0 64 1 8354
5 15.5± 0.255 15.5± 0.194 15.5± 0.163 9.2 14.0 53 1 8600
6 15.6± 0.262 15.6± 0.2 15.6± 0.167 9.5 14.0 52 1 8695
7 16.5± 0.305 16.5± 0.232 16.5± 0.194 10.9 14.0 63 1 8457
8 19.2± 0.378 19.2± 0.288 19.2± 0.241 13.2 16.0 66 1 8071
9 22.7± 0.447 22.7± 0.341 22.7± 0.285 15.2 21.0 68 1 7627
10 28.4± 0.508 28.4± 0.387 28.4± 0.324 16.7 28.0 85 1 7140

Table 3.16: Paired-checkpoint Analysis - Scheduling policy: Shortest distance with
load balancing. Movement policy: Maintain movement. SD, WCT, BCT stands
for standard deviation, worst-case time and best-case time, respectively.

Table 3.17 shows the mean response time to all �oor requests of each con�guration.
It shows that the con�guration of shortest distance policy as scheduling policy and
maintain movement policy as movement policy results in the optimum solution among
the suggested con�gurations. Although shortest distance with the movement priority
policy may seem to have better performance, experimental results show otherwise.

Con�guration
Mean response
time (Average)

Median response
time (Average)

Max response
time (Average)

Total �nished
requests

1 25.93 14.8 271.3 75154
2 16.55 12.8 77.3 96455
3 20.37 16.6 83.6 79069
4 20.46 18.6 67.3 79755

Table 3.17: Simulation results for di�erent con�gurations of the elevators system. Each
row contains the results related to all �oor requests of each con�guration.
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3.6 Related Work

Comparing to Erlang which is a functional actor-based programming language, Timed
Rebeca is an imperative actor-based modeling language. So, by using Timed Rebeca
while respecting the actor programming style we can write our code in an imperative
style which is more familiar to most of the programmers nowadays. Moreover, by
using Timed Rebeca we are using a model-driven development approach. We can start
with small models and use model checking and simulation to �nd possible correctness
problems in our core algorithms, and also �nd how to improve the performance by
changing some parameters while the code is still small, understandable, and easily
manageable.

The authors in [94] present an approach to verify safety properties of Erlang-
like, higher-order concurrent programs automatically. Following the Core Erlang [95],
λActor is introduced as a prototypical functional language which is augmented with
asynchronous message-passing concurrency and dynamic process creation. The au-
thors formalize an abstract model of λActor programs, called Actor Communicating
System (ACS). A tool is developed to generate an ACS from an annotated Erlang
module, for which safety properties like unreachability of error program locations and
mutual exclusion can be de�ned. This approach starts from an implemented code,
while using Timed Rebeca we start from a model. The same discussion holds here as
the one comparing Erlang and Timed Rebeca.

Two of the mostly used timed modeling languages are UPPAAL [18] and real-time
Maude [19]. UPPAAL is an integrated tool environment for modeling, validation and
veri�cation of real-time systems modeled as networks of timed automata [15], extended
with data types (bounded integers, arrays etc.). The tool is currently the most well-
known model checker for real-time systems. The modeling languages used by Timed
Rebeca and UPPAAL di�er greatly, while Timed Rebeca has a programming-like syn-
tax, UPPAAL uses automata. UPPAAL is more convenient for modeling systems
with synchronous agents while Timed Rebeca focuses on distributed and asynchronous
agents. Modeling the message queue can cause state space explosion in UPPAAL very
quickly. The veri�cation tools are di�erent in Timed Rebeca and UPPAAL. Timed
properties can be checked in UPPAAL while in this work we focus on checking Timed
Rebeca safety properties, which is explained in Section 3.3.

Real-time Maude is a language accompanied with a tool for the formal speci�cation
and analysis of real-time and hybrid systems. The speci�cation formalism is based on
rewriting logic, and emphasizes generality and ease of speci�cation, and is suitable
to specify object-oriented real-time systems. The tool o�ers a wide range of analy-
sis techniques, including timed rewriting for simulation purposes, and time-bounded
linear temporal logic model checking. Timed Rebeca and Real-Time Maude are dif-
ferent in the computational paradigms that they naturally support. Timed Rebeca is
based on actor model of computation while you are free in your modeling style using
real-time Maude. Timed Rebeca bene�ts from its similarity with other commonly
used programming languages and is more susceptible to get used by modelers without
intimate knowledge of formal methods.

In [96], authors introduce UPPAAL SMC in which systems are represented via net-
works of automata. In UPPAAL SMC, each component of the system is modeled with
an automaton whose clocks can evolve with various rates. To provide e�cient analysis
of probabilistic properties, statistical model checking is used as a technique for fully
stochastic models. The work supports modeling and performance analysis of systems
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with continuous time behaviors and dynamical features. The modeling languages used
in Timed Rebeca and UPPAAL SMC are di�erent. In UPPAAL SMC time is con-
tinuous, but in Timed Rebeca time is discrete. In this work, timed performance and
functional properties are supported, but in UPPAAL SMC probabilistic performance
properties are validated.

There are some works on safety critical real-time Java programs [97], [98] and
WCET analysis of Java Bytecode-based programs [99], [100]. A new approach is
presented in [97] for schedulability analysis of Safety Critical Hard Real-time Java
programs. The approach is based on a translation of programs, written in the Safety
Critical Java (SCJ) [101], to timed automata models which are veri�ed by the UPPAAL
model checker. In this approach, worst case execution time (WCET) calculation and
schedulability analysis are performed to verify that deadline misses never occur. The
authors in [99] present a tool for statically determining the WCET of Java Bytecode-
based programs. In this approach, the Java program, the JVM, and the hardware are
modeled as Networks of Timed Automata (NTA) and given to the UPPAAL model
checking tool. While the above works only support schedulability analysis of Java
programs, veri�cation of any safety property will be possible in Timed Rebeca if the
property can be de�ned by a checkpoint function. Additionally, performance evalua-
tion of Timed Rebeca models is also provided in this work. Moreover, the modeling
paradigm is di�erent in Timed Rebeca and Real-time Java.

Regarding other analysis techniques and tools for Timed Rebeca, a new approach
was proposed for schedulability and deadlock freedom analysis of Timed Rebeca models
in [102]. The authors proposed the notion of Floating Time Transition System (FTTS)
for which the formal de�nition is presented. The authors proved a bisimulation relation
between FTTS and the transition system derived from the SOS rules of Timed Rebeca
in [38]. They developed a veri�cation tool based on FTTS and integrated it in the
Afra toolset [85]. In this work, the veri�cation of Timed Rebeca models is restricted
to deadlock freedom and schedulability analysis, and the performance evaluation of
Timed Rebeca models is not supported. The direct model checking approach of TCTL
properties for Timed Rebeca models in [103] has the same limitation; however, it
veri�es majority of TCTL formulas in O(n2 · |Φ|) for a given formula Φ. This order is
the most e�cient algorithm for veri�cation of TCTL formulas in discrete time systems
which is the same as the order of the veri�cation of CTL formulas.

Another work on veri�cation of Timed Rebeca models is presented in [104]. In this
paper, authors de�ned an executable formal semantics for Timed Rebeca in Real-Time
Maude. This enables a wide range of formal analysis methods for Timed Rebeca mod-
els, including simulation, reachability analysis, and both timed and untimed temporal
logic model checking. The presented semantics executes all deterministic instantaneous
statements in a message server in a single �atomic� step. This approach signi�cantly
reduces the number of interleavings and drastically improves the performance of model
checking analyses. In addition, in this work, dynamic topology and dynamic creation
in Timed Rebeca models is supported. Although the proposed approach covers anal-
ysis of an extended version of Timed Rebeca, there is no way for using high-level
user de�ned functions in the models. These functions must be de�ned in the Maude
language which requires expertise in rewriting logic.
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Chapter 4

Probabilistic Timed Rebeca: An

Actor-based Modeling Language

In this chapter, we propose Probabilistic Timed Rebeca (PTRebeca) which bene�ts
from modeling features of Timed Rebeca and pRebeca, combining the syntax of pRe-
beca and Timed Rebeca languages. This aims at enhancing our modeling ability in
order to cover more properties, by performance evaluation of probabilistic real-time
actors. Although the syntax of PTRebeca is a combination of Timed Rebeca and pRe-
beca, their semantics and supporting tools are not applicable for PTRebeca. Conse-
quently, we propose a semantics to support timing, probabilistic, and nondeterministic
features.

To the best of our knowledge, PTRebeca is the �rst actor-based language which
supports time, probability, and nondeterminism in modeling distributed systems with
asynchronous message passing. We propose PTRebeca on the basis of a study of dif-
ferent distributed and asynchronous applications, studied to identify what is needed
for modeling and analysis of those applications, relative to di�erent probabilistic and
timed probabilistic models (discrete, continuous, stochastic) proposed in the literature.
In PTRebeca, time is discrete, and discrete probability distributions are used. Using
probabilistic and nondeterministic assignments, the computation outcomes and net-
work delays can become probabilistic or nondeterministic. The syntax of PTRebeca is
presented in Section 4.1. We continue to use the ticket service example to explain the
modeling features of PTRebeca. In Section 4.2, the semantics of a PTRebeca model
is de�ned in timed Markov decision process (TMDP) (presented in [60]). Finally, we
present the structural operational semantics of PTRebeca in Section 4.3. The sub-
jects of this chapter were published in [60] and in the Journal of Science of Computer
Programming [61].

4.1 Probabilistic Timed Rebeca

PTRebeca language supports modeling and veri�cation of real-time systems with prob-
abilistic behaviors. In Figure 4.1, we show the extension made to the syntax of Timed
Rebeca to build PTRebeca [60]. In a probabilistic assignment, a value is assigned
to the variable with the speci�ed probability. In the probabilistic assignment, all ep
are real values between 0 and 1, and sum up to 1. Notably, by using probabilistic
assignments, the values of the timing constructs (delay, after, and deadline) can also
become probabilistic.
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Model ::= Class∗ Main

Main ::= main { InstanceDcl∗ }
InstanceDcl ::= className rebecName(〈rebecName〉∗) : (〈literal〉∗);

Class ::= reactiveclass className { KnownRebecs Vars MsgSrv∗ }
KnownRebecs ::= knownrebecs { VarDcl∗ }

Vars ::= statevars { VarDcl∗ }
VarDcl ::= type 〈v〉+;
MsgSrv ::= msgsrv methodName(〈type v〉∗) { Stmt∗ }

Stmt ::= v = e; | v =?(e〈, e〉+); | Call; | if (e) { Stmt∗ } [else { Stmt∗ }]
Call ::= rebecName.methodName(〈e〉∗)

(a) Abstract Syntax of Rebeca

Stmt ::= v = e; | v =?(e〈, e〉+); | Call; | if (e) { Stmt∗ } [else { Stmt∗ }] | delay(v);
Call ::= rebecName.MethodName(〈e〉∗) [after(v)] [deadline(v)]

(b) Changes in the syntax of Rebeca to build Timed Rebeca

Stmt ::= v = e; | v =?(e〈, e〉+); | Call; | if (e) { Stmt∗ } [else { Stmt∗ }] |
delay(v); | v =?(ep : e〈, ep : e〉+);

(c) Changes in the syntax of Timed Rebeca to build PTRebeca

Figure 4.1: (a) Abstract syntax of Rebeca. Angle brackets 〈...〉 are used as meta
parentheses, superscript + for repetition at least once, superscript ∗ for repetition
zero or more times, whereas using 〈...〉 with repetition denotes a comma separated
list. Brackets [...] indicate that the text within the brackets is optional. The symbol ?
shows nondeterministic choice. Identi�ers className, rebecName, methodName, v,
literal, and type denote class name, rebec name, method name, variable, literal, and
type, respectively; and e denotes an (arithmetic, boolean or nondetermistic choice)
expression.
(b) Changes for Timed Rebeca. The timing primitives are added to Stmt and Call
statements. The value of variable v in timing primitives is a natural number.
(c) Changes for Probabilistic Timed Rebeca. The probabilistic assignment is added
to Stmt. The expression ep denotes an expression which returns a probability. The
symbol ? shows either nondeterministic assignment or probabilistic assignment.

Di�erent probabilistic behaviors can be modeled using the PTRebeca language,
depending on the system under study. We present a simple ticket service system in
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Figure 4.1 to illustrate how PTRebeca can be applied. Each entity in the system
is mapped to an actor in the PTRebeca model. The ticket service model includes a
customer, a ticket service, and an agent. The customer c sends a ticket request by
sending the message requestTicket() to the agent a (line 39). The agent forwards
the request to the ticket service ts by sending the message requestTicket() (line
24). The message requestTicket() has a deadline which is set nondeterministically
(line 23). The ticket service issues a ticket and replies to the agent request by sending
the message ticketIssued() (line 13). The agent sends the message ticketIssued

to the customer to complete the issuing process (line 27). The customer sends a new
request after 10 or 30 units of time with probabilities 0.25 or 0.75, respectively (lines
42 and 43).

1 reactiveclass TicketService {
2 knownrebecs {
3 Agent a;
4 }
5 statevars {
6 int issueDelay;
7 }
8 msgsrv initial(int myDelay) {
9 issueDelay = myDelay;
10 }
11 msgsrv requestTicket() {
12 delay(issueDelay);
13 a.ticketIssued(1);
14 }
15 }
16
17 reactiveclass Agent {
18 knownrebecs {
19 TicketService ts;
20 Customer c;
21 }
22 msgsrv requestTicket() {
23 a = ?(4,5);
24 ts.requestTicket() deadline(a);
25 }
26 msgsrv ticketIssued(byte id) {
27 c.ticketIssued(id);
28 }

29 }
30
31 reactiveclass Customer {
32 knownrebecs {
33 Agent a;
34 }
35 msgsrv initial() {
36 self.try();
37 }
38 msgsrv try() {
39 a.requestTicket();
40 }
41 msgsrv ticketIssued(byte id) {
42 b = ?(0.75:30,0.25:10);
43 self.try() after(b);
44 }
45 }
46
47 main {
48 Agent a(ts, c):();
49 TicketService ts(a):(3);
50 Customer c(a):();
51 }

Listing 4.1: The PTRebeca model of the
ticket service system.

4.2 Semantics of Probabilistic Timed Rebeca

In this section, we de�ne the Timed Markov Decision Process (TMDP) semantics of a
PTRebeca model. Formally, a TMDP is de�ned as follows [74].

De�nition 5 (Timed Markov Decision Process) A timed Markov decision pro-
cess is a tuple (TMDP )T = (S, s0, Act,→, L) that consists of the following compo-
nents:

� A set of states S with an initial state s0 ∈ S,

� A set of actions Act,

� A timed probabilistic, nondeterministic transition relation →⊆ S × Act × N ×
Dist(S) such that, for each state s ∈ S, there exists at least one tuple (s,−,−,−)
∈→,

� A labeling function L : S → 2AP , where AP is the set of atomic propositions. �
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The transitions in a TMDP are performed in two steps: given that the current state is
s, the �rst step is a nondeterministic selection of (s, act, d, ν) ∈→, where act denotes
a possible action and d speci�es the duration of the transition; in the second step,
a probabilistic transition to state s′ is made with probability ν(s′). Function ν ∈
Distr(S), where Distr(S) denotes the set of discrete probability distribution functions
over the countable set S.

In the following, we de�ne some concepts for PTRebeca models before turning to
the TMDP semantics of PTRebeca.

De�nition 6 (Probabilistic Timed Rebeca Model) A Probabilistic Timed Rebeca
modelM is the set of rebecs which are concurrently executing. �

A computation of a PTRebeca model M takes place by execution of all rebecs
de�ned in the model according to the SOS-semantics in [38]. For a Probabilistic
Timed Rebeca modelM, the function O(M) returns all rebecs in the modelM.

De�nition 7 (State of a PTRebeca model in TMDP) A state of a PTRebeca

model M is a tuple s =
(∏

ri∈O(M) (state(ri)× pc× rt)
)
× T, where state(ri) is the

state of rebec ri, T ∈ N is the current time of state, pc ∈ N is the program counter of
rebec ri, and rt ∈ N is the resuming time of rebec ri. �

Each rebec of M has a state which consists of the values of its state variables, its
local time, and its message bag. Functions sv(s, ri), bag(s, ri), and now(s, ri) return
the state variable valuation function, the content of message bag, and the local time
of rebec ri in state s, respectively. In the TMDP semantics of a PTRebeca model, the
local times of rebecs have the same value. We de�ne the function now(s) to access the
time in state s.

The rebec program counter, pc of rebec ri speci�es the statement to be executed,
and function pc(s, ri) returns the value of the program counter of rebec ri in state s.
The rebec resuming time, rt of rebec ri determines the time when the statement of
the message server of rebec ri, pointed to by pc, is executed. Function rt(s, ri) returns
the value of the resuming time of rebec ri in state s.

In the initial state, the local times of all rebecs are set to zero, and the constructor
of all rebecs are executed to initialize state variables and queues content. Initially, for
all rebecs the value of the program counter and the value of the resuming time are
supposed to be null.

De�nition 8 (The Content of a Message Bag) A tuple tmsg = (msgsig, arrival,
deadline) is a message where msgsig is the message content, arrival is the arrival time
of the message, and deadline is the deadline of the message. The arrival time of the
message is computed based on the local time of the sender and the value of �after� of
the send message statement. The deadline of the message is also computed based on
the local time of the sender. �

For tmsg ∈ bag(s, ri), the functions sig(tmsg), ar(tmsg), and dl(tmsg) return the
msgsig, arrival, and deadline of the message tmsg, respectively. The message content
msgsig consists of the message name, the sender, the receiver, and its actual parameters
and is shown as �sender→ receiver.msgname(parameters)�.
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De�nition 9 (Possible Messages) The set of messages Tmsg = {tmsg | ∃ri, rj ∈
O(M),
∃ar, dl ∈ N, tmsg = (ri → rj.msgname(), ar, dl)} is the set of all possible messages
which can be sent by rebec ri to rebec rj at arrival time ar and deadline dl.

�

De�nition 10 (Rebec Enabled Messages) Enabled messages of a rebec are mes-
sages whose arrival time is less than the time of state s: em(s, ri) = {tmsg ∈ bag(s, ri)|
ar(tmsg) ≤ now(s)}. �

De�nition 11 (TMDP semantics of a PTRebeca model) A TMDP of PTRe-
beca modelM is a tuple (S, s0, Act,→, L), where:

� S is the set of states according to De�nition 7,

� s0 ∈ S is the initial state,

� Act is a set of Tmsg ∪ {τ} ∪ T, where Tmsg is the set of all possible messages
which can be sent by any rebec to its known rebecs, τ is an internal action and
T ∈ N is the progress of time.

� →⊆ S × Act× N×Dist(S) is the transition relation, where (s, act, d, ν) ∈→ if
and only if one of the following conditions holds for s.

1. (Taking a message for execution) If in state s, there exists ri ∈ O(M)
such that pc(s, ri) = null and em(s, ri) 6= ∅: The execution of tmsg ∈
em(s, ri) results in s′ with probability ν(s′) = 1 and d=0. In this case act
is equal to tmsg, tmsg is extracted from the message bag of the rebec ri,
pc(s, ri) is set to the �rst statement of message server tmsg, and rt(s, ri) is
set to now(s).

2. (Internal action τ) If in state s, there exists ri ∈ O(M) such that
pc(s, ri) 6= null and rt(s, ri) = now(s): The statement of the message server
of ri speci�ed by pc(s, ri) is executed and one of the following cases may oc-
cur based on the statement execution:

a) The statement is an ordinary statement: the execution of statement may
change the value of some state variables of the rebec ri or may induce
sending a message to a rebec. Then, pc(s, ri) is increased by one, the act
is τ , d=0, and the execution of τ results in s′ with probability ν(s′) = 1.

b) The statement is a nondeterministic assignment: the execution of non-
deterministic assignment a =?(v1, ..., vn) results in n di�erent tran-
sitions from s to states s′1, s

′
2, ..., s

′
n, where a = vi in state s′i. For

each transition, the act is τ , d=0, and the execution of τ results in s′i
(1 ≤ i ≤ n) with probability ν(s′i) = 1.

c) The statement is a probabilistic assignment: the execution of probabilis-
tic assignment a =?(p1 : v1, ..., pn : vn) results in a transition from s to
states s′1, s

′
2, ..., s

′
n, where a = vi in state s′i. The act is τ , d=0, and the

execution of τ results in s′i (1 ≤ i ≤ n) with probability ν(s′i) = pi.
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d) The statement is a delay statement with parameter t ∈ N: the execution
of the delay statement does not change pc(s, ri) (because the execution of
the delay statement is not yet complete), and rt(s, ri) is set to now(s)+
t. (note: the value of pc(s, ri) will change to the next statement after
completing the execution of the delay, which can be seen in item 3.)
The act is τ , d=0, and the execution of τ results in s′ with probability
ν(s′) = 1.

When the last statement of the message server of ri is executed, pc(s, ri) is
set to null.

3. (Progress of time) If in state s, none of the aforementioned conditions in
items 1 and 2 hold: this means @ri ∈ O(M), ((pc(s, ri) = null∧ em(s, ri) 6=
∅)∨(pc(s, ri) 6= null ∧ rt(s, ri) = now(s))). In this case, now(s) is increased
by the minimum amount of t1 ∈ N such that one of the aforementioned
conditions becomes true. If pc(s, ri) 6= null and rt(s, ri) = now(s) (the
current value of pc(s, ri) points at a delay statement), pc(s, ri) is increased
by one. The act is set to t, d = t1, and the execution of action time results
in s′ with probability ν(s′) = 1.

� A labelling function L : S → 2AP .

When more than one transition is enabled in state s, a nondeterministic selection is
made.

�

4.3 Structural Operational Semantics of PTRebeca

We present the TMDP of a PTRebeca model as a tuple (S, s0, Act,→,⇒) where S is a
set of states, s0 is the initial state, Act is a set of actions which consists of τ , signatures
of all the messages, and N. The union of scheduler and msg-fetcher transitions is →
(probabilistic transitions) and the set of time-progress transitions (delay transitions)
is ⇒. Scheduler transitions, msg-fetcher transitions, and time-progress transitions are
de�ned in the following paragraphs.

In this section we provide an SOS semantics for PTRebeca in the style of Plotkin [56].
The behaviour of PTRebeca programs is described by means of transition relations that
govern the step-by-step evolution of the system.

The states of the system are tuples (Env,B, T ), where Env is a �nite set of envi-
ronments, B is a bag of messages and T is a natural number that represents the current
time of the system. For each rebec A of the system, Env contains an environment
σA that is a function that maps variables to their values. Basically, σA is the private
store of the rebec A. Environments contain four special-purpose variables: self, which
contains the name of the rebec, pc, which stands for program counter and contains
the code that is currently being executed, rt, which stores the resume time of the
rebec, and sender, which stores the name of the rebec that invoked the method that
is currently being executed. Whenever a rebec A of a reactive class O is created, an
environment σA is assumed to be initialized. In particular, the code of each message
server m of O is loaded in σA(m) as a null-terminated list of statements.

The bag contains an unordered collection of messages of the form

(Ai,m(v), Aj, TT,DL).
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Intuitively, such a tuple says that at time TT the sender Aj sent the message to the
rebec Ai asking it to execute its method m with actual parameters v. Moreover this
message expires at time DL.

We denote by Tmsg the set of all the possible messages. Given a messagemsg ∈ Tmsg,
ar(msg) denotes the arrival time of the message msg , that is, TT in the tuple above.
At each step, the system progresses thanks to one of three transition relations: τ→ ,
msg→ with msg ∈ Tmsg, and n→ with n ∈ N. Any of these transitions evolves a state
(Env,B, T ) into a probability distribution pv that assigns probability values to states.
For readability, we represent pv as a set of mappings, for instance the probability dis-
tribution {(Env,B, T ) 7→ 1} maps the state (Env,B, T ) to probability 1. Whenever
more cases need to be speci�ed for pv, they will be embraced in a large bracket and
the mappings involved in the distribution will be graphically clear. States that are not
mentioned in pv are assumed to be mapped to probability 0.

As a convention, whenever we single out an element from a set, as in the sets
σA ∪ Env and msg ∪ B, we will assume that σA 6∈ Env and msg 6∈ B. Moreover, we
will use the notation σ[x = e] to denote the mapping σ where x is rede�ned in order
to map x to e.

The transitions τ→ ,
msg→ , n→ , are formally de�ned by the following rules.

(scheduler)

σA(pc) = s s 6= null σA(rt) = T

(s, σA[pc = null], Env,B, T )
s−→ pv

({σA} ∪ Env,B, T )
τ→ pv

(msg�fetcher)

σAi(pc) = null TT ≤ T ≤ DL
σ′
Ai

= σAi [pc = σAi(m), σAi(rt) = T, arg = v, sender = Aj ]
msg = {(Ai,m(v), Aj , TT,DL)}

({σAi} ∪ Env,msg ∪B, T )msg→ {({σ′
Ai
} ∪ Env,B, T ) 7→ 1}

(time�progress)

(Env,B, T )
τ9 (Env,B, T )

msg9
n1 = minσ∈Env

{
σ(rt)

}
n2 = minmsg∈B

{
ar(msg)

}
T ′ = min{n1, n2} n = T ′ − T

(Env,B, T )
n→{(Env,B, T ′) 7→ 1}

The (scheduler) rule is responsible for picking a rebec and executing its pending
statements. This rule chooses a rebec nondeterministically among those for which
the program counter still contains statements to execute (conditions σA(pc) = s and
s 6= null). Moreover, a rebec is eligible for being chosen only as long as its resume time
coincides with the current time (condition σA(rt) = T ). Rebecs that have previously
executed a delay statement might have a resume time ahead of the current time and
in that case they would not be chosen. The execution of the statement is performed
with the auxiliary transition relation s→ , described in detail later. Such a transition
is responsible for the execution of one statement from the list of statements s, the �rst
one. It is to notice that the program counter is consumed immediately before the call
to statement execution (indeed, the environment σA[pc = null] is passed). However, s
might contain more than one statement and, moreover, statements such as if-then-else
might imply the execution of further statements (one of the branches). As we will see
later, these scenarios are taken care of by the transition s−→ . This transition will be
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responsible to feed the program counter back with the possible leftover statements to
be executed.

In our semantics, the transition s→ returns the probability distribution pv for the
next state of the system. The (scheduler) rule simply uses pv for the transition. In
order to let the system progress after a step, we implicitly assume picking a state of
pv according to its probability.

The (msg�fetcher) rule allows the system to progress by picking up a message
from the bag and initializing the rebec receiver of the message for the execution of
such message. This rule is applicable for a rebec only as long as the latter is not
in the phase of executing any other message (condition σAi(pc) = null). Moreover,
the message can be picked only while it is not too soon for fetching it nor too late
(condition TT ≤ T ≤ DL). The rule prepares the rebec Ai for the execution of the
message m in the following way.

� The method body of m is looked up from the environment of Ai and loaded in
the program counter.

� The resume time for Ai is set to the current time of the system, stating that is
to be executed immediately.

� The variable sender is set to the sender of the message.

� In executing the method m, the formal parameters arg are set to the values
of the actual parameters v. Methods of arity k are indeed supposed to have
arg1, arg2, . . . , argk as formal parameters. This is without loss of generality since
such a change of variable names can be performed in a pre-processing step for
any program.

The (time�progress) rule is responsible for letting time pass for some units of time.
This happens when the system has no eligible statements of rebecs to execute and no
eligible messages that can be picked from the bag (eligible w.r.t. the conditions of rules
(scheduler) and (msg�fetcher), respectively). In such a scenario, the system lets the
time pass for the minimum amount of time necessary to enable the rebec whose resume
time is the closest to the current time (minσ∈Env {σ(rt)}) or to enable the fetch of a
message whose picking time is the closest to the current time (minmsg∈B {ar(msg)}).

Figure 4.2 shows the SOS rules for the execution of statements in PTRebeca. The
transition relation s−→ de�nes the execution of statements. The general form of this
type of transition is (s, σ, Env,B, T )

s−→ pv, where s is a list of statements or a single
statement1, σ is the local environment where to evaluate statements, and Env, B,
and T are the components of the system state. The step evolves into a probability
distribution pv. Carrying the global bag B is important because new messages may
be added to it with the execution of a statement. The global set of environments
Env is also required because new statements create new rebecs and may therefore add
new environments to it. In the semantics, σ is separated from Env and passed as a
parameter for the sake of clarity and also because nearly every rule needs to readily
a�ect it. A few statements make use of the current time T which is therefore promoted
as parameter as well.

1We overload
s−→ for lists of statements in rule (stmts∗). We prefer this presentation rather than

splitting
s−→ into two relations or splitting the scheduler into two parts.
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(msg)
pv = (σ ∪ Env, {(σ(varname),m(eval(v, σ)), σ(self), T + d, T +DL)} ∪B, T ) 7→ 1

(varname.m(v) after(d) deadline(DL), σ, Env,B, T )
s−→ pv

(delay)
pv = (σ[rt = T + d] ∪ Env,B, T ) 7→ 1

(delay(d), σ, Env,B, T )
s−→ pv

(assign)
pv = (σ[x = eval(e, σ)] ∪ Env,B, T ) 7→ 1

(x = e, σ,Env,B, T )
s−→ pv

(non�det)
pv = (σ[x = eval(ei, σ)] ∪ Env,B, T ) 7→ 1 (with 1 ≤ i ≤ n)

(x =? e1 ⊕ e2 . . .⊕ en, σ, Env,B, T )
s−→ pv

(prob)

pv =


(σ[x = eval(e1, σ)] ∪ Env,B, T ) 7→ p1
(σ[x = eval(e2, σ)] ∪ Env,B, T ) 7→ p2

. . .
(σ[x = eval(en, σ)] ∪ Env,B, T ) 7→ pn

(x =? p1 : e1 ⊕ p2 : e2 . . .⊕ pn : en, σ, Env,B, T )
s−→ pv

(create)

σA = initialEnviroment(O) with A fresh in σ ∪ Env
pv =

(
σ[varname = A] ∪ {σA[self = A, pc = null]} ∪ Env,

{(A, initial(eval(v, σ)), σ(self)), T,+∞)} ∪B, T
)
7→ 1

(varname = new O(v), σ, Env,B, T )
s−→ pv

(cond1)
eval(e, σ) = true pv = (σ[pc = s1]

⋃
Env,B, T ) 7→ 1

(if (e) then s1 else s2, σ, Env,B, T )
s−→ pv

(cond2)
eval(e, σ) = false pv = (σ[pc = s2]

⋃
Env,B, T ) 7→ 1

(if (e) then s1 else s2, σ, Env,B, T )
s−→ pv

(stmts∗)
(s1, σ, Env,B, T )

τ,n→ pv inject(rest,σ(self ),pv) = pv′

(s1 :: rest, σ, Env,B, T )
s−→ pv′

where the function inject(rest,ref,pv) is de�ned below:

if pv =


(σ ∪ Env1, B1, T ) 7→ p1
(σ ∪ Env2, B2, T ) 7→ p2

. . .
(σ ∪ Envn, Bn, T ) 7→ pn

where σ(self ) = ref

then inject(rest,ref,pv) =


(σ[pc = σ(pc) :: rest ] ∪ Env1, B1, T ) 7→ p1
(σ[pc = σ(pc) :: rest ] ∪ Env2, B2, T ) 7→ p2

. . .
(σ[pc = σ(pc) :: rest ] ∪ Envn, Bn, T ) 7→ pn

We assume that the append operation :: is such that null :: rest = rest .

Figure 4.2: SOS rules for the execution of statements of PTRebeca.
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CHAPTER 4. PROBABILISTIC TIMED REBECA: AN ACTOR-BASED

MODELING LANGUAGE

For all rules with the exception of (prob), the result of the step s−→ �rst creates
a new state that has a new environment, a new bag and the current time. Then this
state is injected into a probability distribution function where it has probability 1. The
simple and nondeterministic assignment statements are handled by rules (assign) and
(non�det), respectively, and it is easy to see that they follow the schema just depicted:
their semantics coincides indeed with the standard one, modulo our injection to a
probability distribution.

Rule (prob) handles the probabilistic assignment x =? p1 : e1⊕ p2 : e2 . . .⊕ pn : en.
In such a case, n states are created that di�er only in the assignment to the variable
x for the local environment being used. These states are injected into a probability
distribution pv that maps them to the probabilities p1, p2, . . . , pn. The rules for the
timing primitives deserve some explanation.

� Rule msg describes the e�ect of method invocation statements. For the sake of
brevity, we limit ourselves to presenting the rule for method invocation state-
ments that involve both the after and deadline keywords. The semantics of
instances of that statement without those keywords can be handled as special
cases of that rule by setting the argument of after to zero and that of deadline
to +∞, meaning that the message never expires. Method invocation statements
put a new message in the bag, taking care of properly setting its �elds. In par-
ticular the arrival time for the message is the current time T plus the number d
that is the parameter of the after keyword.

� Delay statements change the resume time of the rebec to T + d, where d is the
parameter of the delay keyword.

The creation of new rebecs is handled by the rule create. Whenever a rebec must
be created out of the reactive class O, we �rst pick a fresh name A that it is used
to identify the newly created rebec. The name A is assigned to the variable varname
of the sender. We assume a function initialEnvironment(O) that returns a new
environment σA that is initialized depending on the speci�cation of the rebec O, i.e.
inspecting the body of the speci�cation reactiveclass O . . .. In particular, the code of
each message server m of O is loaded in σA(m) as a null-terminated list of statements.
Ultimately, a message is put in the bag in order to execute the initial method of the
newly created rebec.

The reader should recall that the scheduler sets the program counter to null before
executing a statement (passing σA[pc = null] in rule (scheduler)). The statements that
we have described so far have no continuation and simply leave the pc variable set to
null.

A conditional statement if (e) then s1 else s2 is di�erent in this respect because
after evaluating the guard e the continuation is either s1 or s2. Rules (cond1) and
(cond2) handle the execution of conditional statements and they take care of setting
pc to s1 or s2 according to the evaluation of e.

Another rule that a�ects the pc variable is (stmts∗). This rule handles the execution
of the �rst statement of a list. After the �rst statement has been executed, it might
return some continuation statements. We therefore need to put these latter statements
in front, before evaluating the rest of the original list of statements (rest). However, the
execution step s−→ returns a probability distribution. We therefore use an auxiliary
function in order to inject these statements in all of the possible states of such a
distribution. Precisely, the function inject(rest,ref,pv) seeks for the private store of the
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rebec ref in each of the states of the distribution pv and queues the statements rest
in the program counter of those private stores.
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Chapter 5

Performance Analysis of PTRebeca

Models

In Chapter 4, we introduced Timed Markov Decision Processes (TMDP) as the se-
mantics of PTRebeca, to support timing, probabilistic, and nondeterministic features.
TMDP can be regarded as the discrete-time semantics of probabilistic timed automata
(PTA) [73], or as variation of interactive probabilistic chains [82]. In this chapter, we
present di�erent techniques and corresponding toolsets (available at Rebeca home-
page [85]) for the analysis of PTRebeca models. The proposed techniques use either
PRISM [54] or IMCA (Interactive Markov Chain Analyzer) [55] as the back-end model
checker. We employ probabilistic model checking for both functional veri�cation and
performance evaluation. The bene�ts of combining performance evaluation with func-
tional veri�cation are elaborated upon in [47].

There are three di�erent ways of using PRISM as the back-end model checker:
1) standard PRISM input language, 2) explicit engine of PRISM, and 3) parallel
composition. The �rst two approaches are based on TMDP semantics and the last one
is based on PTA. These techniques are developed to overcome shortages that we faced
in the analysis of case studies with di�erent sizes and needs.

In the �rst approach, the TMDP of a PTRebeca model is constructed in the form of
a single, �at Markov Decision Process (MDP) module with an integer-valued variable
for time. The MDP module is input to PRISM for the analysis of the PTRebeca model.
In the second approach, we used the explicit engine of PRISM which works with an
intermediate transition matrix representation. In the parallel composition approach,
each component (reactive object) in a PTRebeca model is mapped to a PTA. Then
the parallel composition of PTA (of all components) represents the behavior of the
PTRebeca model.

As another analysis technique, we use IMCA as the back-end model checker. IMCA
accepts Markov Automaton (MA) [57] and Interactive Markov Chain (IMC) [81] mod-
els. In order to use IMCA as the back-end model checker, we need to convert the
TMDP of an underlying PTRebeca model to its corresponding MA. To this end, we
can use our previously developed tools to generate the TMDP of our models automat-
ically. The obtained TMDP is converted to its MA which is then the input to IMCA.
Using this approach, we are able to evaluate the performance of our models against
probabilistic reachability, expected reward reachability, and expected time reachability
properties. In Section 5.2, we mathematically prove that the values of expected time
reachability in TMDP and its corresponding MA are identical.
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For the analysis of properties based on rewards, the basic idea is that probabilistic
models can be augmented with costs or rewards, meaning that real values are associated
with certain states or transitions of the model. PRISM supports rewards for MDP and
PTA models, and IMCA supports rewards for MA. To give some examples, PRISM or
IMCA can be used to compute properties such as �expected time�, �expected number of
lost messages� or �expected power consumption�. Since there is no practical distinction
between cost and reward, the modeler can interpret the values associated to transitions
or states as they want.

Contributions. The subjects of this chapter were published in [60] and the Journal
of Science of Computer Programming [61]. The following contributions are covered in
this chapter:

� Analysis: we leverage probabilistic model checking algorithms developed for PTA
and MDP for the analysis of probabilistic timed properties. For the analysis, we
use PRISM [54] as the back-end model checker, so as to also support expected
reachability and probabilistic reachability analysis for PTRebeca models.

In another method, we use IMCA as the back-end model checker for PTRebeca,
and we use probabilistic model checking algorithms developed for MA to analyze
PTRebeca models.

� Implementation: we present a tool developed to generate the TMDP of PTRe-
beca models automatically. The generated TMDP is in the form of an XML
�le. The XML �le is converted to the standard input language of PRISM. In
another toolset, the TMDP of a PTRebeca model is converted to an MA, the
input language of IMCA.

� Case studies: we present a ticket servicing and a toxic gas sensing system appli-
cation example to demonstrate the feasibility of the approach using PRISM. We
also present the analysis of a Network on Chip (NoC) architecture to show the
applicability of our approach, which is using IMCA, for a real-world case study.

The rest of this chapter is organized as follows. In Section 5.1, PRISM is used as
the back-end model checker for performance analysis of PTRebeca models. Section
5.1.1 includes three case studies, for which the TMDP is generated. The �rst two
case studies are input to PRISM using the standard input language, and the last one
uses the explicit engine of PRISM. An alternative approach for performance analysis
of PTRebeca models is introduced in Section 5.1.2, which is based on the parallel
composition of PTA rather than the TMDP semantics. In Section 5.1.3, the TMDP-
based and parallel composition approaches are compared. In Section 5.2, we use IMCA
for the analysis of PTRebeca models. This section explains the conversion of the
TMPD of a PTRebeca model to an MA. We also examine a few case studies to show
the applicability of the approach and the developed toolset. The PRISM-based and
IMCA-based approaches are compared in Section 5.3 in terms of the needed time and
memory for the analysis of di�erent case studies with di�erent sizes. Finally, the
related works are presented in Section 5.4.
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5.1 Performance Analysis of PTRebeca Models

Using PRISM

In this section, we discuss three approaches of modeling and veri�cation of PTRebeca
models in PRISM. The �rst two approaches are based on the TMDP semantics of the
PTRebeca language, and the last one is based on the parallel composition of PTA. We
need an approach in which two features are preserved: First, the de�nition of rewards is
possible to be able to verify expected reachability properties. Second, model checking
of a large PTRebeca model should take a reasonable amount of time.

To be able to implement PTA with digital clocks in PRISM, there are some re-
strictions in [73]. It does not allow atomic constraints of the form x > c or x < c
(closed) or x− y ∼ c (diagonal free), where c ∈ N, ∼∈ {≤,=,≥}, x and y are di�erent
clocks. In this way, the �digital clocks� engine of PRISM is used, and PTA modules
are de�ned. In another way, we can consider MDP modules with integer-valued vari-
ables representing clocks in order to de�ne PTA with digital clocks in PRISM. Using
this approach, there is no need to satisfy the above restrictions. In an MDP module,
variables can be compared together without any limitations.

In [73], the semantics of probabilistic timed automata is de�ned in terms of timed
probabilistic systems, which show timed, nondeterministic, and probabilistic behaviours.
They are a variant of Markov decision processes [105] and Segala's PTA [106], which
are de�ned as follows.

De�nition 12 (PTA) A probabilistic timed automaton is a tuple(L, l̄, χ,
∑
, I, prob)

where: L is a �nite set of locations including the initial location l̄; χ is a set of clocks;∑
is a �nite set of events; the function I : L→ Zones(χ) is the invariant condition;

and the �nite set prob ⊆ L × Zones(χ) ×
∑
×Dist(2χ × L) is the probabilistic edge

relation. �

Let T ∈ {R,N} be the time domain of either the non-negative reals or naturals. A
point v ∈ T|χ| is referred to as a clock valuation. Let 0 ∈ T|χ| be the clock valuation
which assigns 0 to all clocks in χ. For any v ∈ T|χ| and t ∈ T, the clock valuation v⊕ t
denotes the time increment of values in v by t. We use v[X := 0] to denote the clock
valuation obtained from v by resetting all of the clocks in X ⊆ χ to 0. A zone is the
solution set of a clock constraint, that is the maximal set of clock assignments satisfying
the constraint. Let Zones(χ) be the set of zones over χ, which are conjunctions of
atomic constraints of the form x ∼ c for x ∈ χ, ∼∈ {≤,=,≥}, and c ∈ N. The clock
valuation v satis�es the zone ζ, written v |= ζ, if and only if ζ resolves to true after
substituting each clock x ∈ χ with the corresponding clock value from v. A state of a
PTA is a pair (l, v) where l ∈ L and v ∈ T|χ| are such that v |= I(l).

Standard PRISM input language (based on the TMDP semantics). In this
approach, the TMDP semantics of a PTRebeca model is input in the form of the stan-
dard input language of PRISM. In Section 5.1.1, we examine di�erent case studies with
di�erent sizes. When the PTRebeca model is small, like the ticket service example,
the model checking is fast and takes a few seconds. When the model has a medium
size, like the toxic gas sensing system example, its corresponding MDP module (with
an integer-valued variable for time) includes many states and transitions and its anal-
ysis takes a few minutes. Obviously, model checking a large case study will take more
time. To support this claim, in Section 5.3 we report the time and memory needed
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to evaluate di�erent PTRebeca models with PRISM as the back-end model checker.
Although this approach supports the de�nition of rewards, model checking of large
PTRebeca models takes a signi�cant amount of time.

Explicit engine of PRISM (based on the TMDP semantics). To tackle the
problem mentioned above, instead of using the standard PRISM input language, we
decided to use the possibility of constructing models in PRISM through direct spec-
i�cation of transition and state matrices. In Section 5.1.1, we used this method for
the toxic gas sensing system case study. We provided the corresponding MDP (with
an integer-valued variable for time) in the form of its transition and state matrices,
and input the matrices into PRISM for model checking. This allows us to analyze
larger models, but PRISM does not provide full support for this format, speci�cally
rewards are not supported. Therefore, we were only able to use it for the analysis of
probabilistic reachability properties, but not for the expected reachability ones.

Parallel composition approach (based on PTA). To provide faster model check-
ing and support rewards for PTRebeca models, we introduce the parallel composition
approach for PTRebeca models which can be veri�ed using PRISM. In this approach,
rewards can be de�ned and so the evaluation of both expected reachability and prob-
abilistic reachability properties is possible. In Section 5.1.2, we �rst introduce the
approach and then we investigate the e�ciency of our approach for medium-size and
large PTRebeca models in terms of the state space size.

5.1.1 Analysis of Probabilistic Timed Rebeca based on

TMDP

We have developed a tool set [85] in order to generate the TMDP semantics from a
PTRebeca model. This TMDP semantics can be exported to PRISM as a single MDP
module with one integer-valued variable modeling the passage of time. In another
way, instead of de�ning a variable for time, we use dedicated actions starting with
the word time for time transitions. The passage of time is modeled by assigning an
integer value, equal to the intended amount of time, as reward to the time transition.
This way, we can analyze expected-time reachability and time-bounded probabilistic
reachability properties.

In PTRebeca models, the capacity of message bags is bounded. The number of
states in a PTRebeca model can be �nitely represented when the system shows re-
current behavior. We also use the time-shift equivalence approach proposed in [39]
to avoid state space explosion otherwise induced by time progress. In this approach,
two TMDP states s and t (in the sense of De�nition 7) are time-shift equivalent if the
values of all variables except timing variables, i.e. local time, arrival time, deadline,
in states s and t are identical. Therefore, the two states can be identi�ed by shifting
time.

The PRISM modeling language is a state-based language while the PTRebeca lan-
guage bene�ts from high-level data structures and constructs which arguably make
modeling easier. PRISM models are thus closer to the underlying probabilistic models
and therefore we bridge to PRISM at the semantics level. Listing 5.1 displays PRISM
code equivalent to the ticket service example presented in Listing 4.1. The timing fea-
tures of the PTRebeca model like after, delay, and message deadline are implemented
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by progressing of time, and according to the TMDP semantics. Time transitions with
appropriate labels are generated automatically by the toolset (lines 7, 9, 14, and 15).
In the �rewards� part, the appropriate rewards are de�ned for time transitions (lines
19-21). When a time transition is traversed, time progresses with the same value as the
transition reward. For example, when the transition labeled with time_3 is traversed,
time is increased by three. The reason is that we de�ned a reward of three for this
transition (Line 19).

1 mdp
2 module PTRebecaSS
3 s : [0..32767] init 1;
4 [c_TRY]s=1 -> (s'=2);
5 [a_SENDREQUEST]s=2 -> (s'=3);
6 [a_SENDREQUEST]s=2 -> (s'=4);
7 [time_3]s=5 -> (s'=6);
8 [ts_REQUESTTICKET]s=3 -> (s'=5);
9 [time_3]s=7 -> (s'=8);
10 [ts_REQUESTTICKET]s=4 -> (s'=7);
11 [ts_tau_REQUESTTICKET]s=6 -> (s'=9);
12 [ts_tau_REQUESTTICKET]s=8 -> (s'=9);
13 [a_SENDTICKET]s=9 -> (s'=10);
14 [time_30]s=11 -> (s'=1);

15 [time_10]s=12 -> (s'=1);
16 [c_GETTICKET]s=10 -> 0.75 : (s'=11) +

0.25 : (s'=12);
17 endmodule
18 rewards
19 [time_3] true: 3;
20 [time_10] true: 10;
21 [time_30] true: 30;
22 endrewards

Listing 5.1: PRISM code generated from
the ticket service example shown in
Listing 4.1.

In the following sections, we present three di�erent case studies demonstrating
the applicability of the proposed approaches for performance analysis of asynchronous
distributed systems. The �rst two case studies are di�erent versions of the ticket service
model shown in Listing 4.1, for which the standard PRISM input language is used. The
last case study is a toxic gas sensing system for which the explicit engine of PRISM is
used. Since the state space of a toxic gas sensing system is rather large, modeling its
MDP module with the use of transition and state matrices is more e�cient.

5.1.1.1 Performance Analysis of Ticket Service

We extend the simple ticket service model shown in Listing 4.1 to a more complicated
scenario detailed in Listing 5.2. We select this simple case study for two purposes:
1) we are able to model check expected reachability properties, which is provided by
PRISM for models presented in its standard input language, and 2) we can get an
insight about modeling in the PTRebeca language and the analysis in PRISM.

In this case study, there are two customers, two ticket services, and one agent. Each
customer sends a ticket issue request to the agent and the agent forwards the request
to the �rst ticket service with probability 0.6, and to the other one with probability
0.4. The ticket service issues a ticket and replies to the agent request. The agent sends
the message to the customer to complete the issuing process.

It is essential to ensure that customers get tickets after a number of requests to
the system. This shows that the system meets the primitive goal of issuing tickets.
There are also some performance measures that show the e�ciency of the system,
and can be used to understand the system behavior. As an example, if the expected
number of requests until a ticket is issued is unacceptably large, we should �gure out
why some requests are not responded by the ticket services. This may happen because
of timing variables. If customers send requests fast (the value of after in Line 16
becomes small), the deadline of requests becomes small (Lines 28 and 30), and issuing
tickets takes considerable time (the value of issueDelay becomes large in Line 44),
some requests will be expired before being responded by one of the ticket services. We
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should say that this scenario cannot happen in this model as a new request will be
sent only if the previous one has been responded.

We analyzed the following probabilistic reachability and expected reachability prop-
erties for the ticket service model:

� We check whether eventually tickets are issued for both customers. The prop-
erty is speci�ed as: P ≥ 1 [F (c1_issued = true)&(c2_issued = true)]. The
property is satis�ed which is to be expected according to the model.

� We check the maximum expected time until tickets are issued for both customers.
Since we de�ne rewards on transitions representing the passage of time, we are
able to check such an expected time property. The property is speci�ed by:
R{“time′′}max =?[F (c1_issued = true)&(c2_issued = true)]. The result is
3.76 units of time.

� We check the maximum expected number of requests until tickets are issued
for both customers. To model check this property, we de�ne rewards on tran-
sitions corresponding to a requesting ticket. The property is formulated by:
R{”request”}max =?[F (c1_issued = true)&(c2_issued = true)]. The re-
sult is two requests, meaning that tickets are issued for customers after at most
two requests. This shows that all requests are responded by the ticket services,
because each customer needs to send a request to get a ticket issued.

1 reactiveclass Customer(3) {
2 knownrebecs {Agent a;}
3 statevars {byte id;
4 boolean issued;
5 }
6 Customer(byte myId) {
7 id = myId;
8 self.try();
9 }
10 msgsrv try() {
11 issued = false;
12 a.sendRequest(id);
13 }
14 msgsrv getTicket() {
15 issued = true;
16 self.try() after(29);
17 }
18 }
19 reactiveclass Agent(10) {
20 knownrebecs {
21 TicketService ts1, ts2;
22 Customer c1, c2;
23 }
24 statevars { }
25 Agent() { }
26 msgsrv sendRequest(byte id) {
27 if (?(0.6 : true, 0.4 : false))
28 ts1.requestTicket(id) deadline(24);

29 else
30 ts2.requestTicket(id) deadline(24);
31 }
32 msgsrv sendTicket(byte id) {
33 if (id == 1) c1.getTicket();
34 else if (id == 2) c2.getTicket();
35 }
36 }
37 reactiveclass TicketService(10) {
38 knownrebecs {Agent a;}
39 statevars {int issueDelay;}
40 TicketService(int myIssueDelay) {
41 issueDelay = myIssueDelay;
42 }
43 msgsrv requestTicket(byte id) {
44 delay(issueDelay);
45 a.sendTicket(id);
46 }
47 }
48 main {
49 Agent a(ts1, ts2, c1, c2):();
50 TicketService ts1(a):(2), ts2(a):(3);
51 Customer c1(a):(1), c2(a):(2);
52 }

Listing 5.2: The PTRebeca model of
ticket service example.

5.1.1.2 Performance Analysis of Faulty Ticket Service

We also examine a variation of the ticket service model in which a system fault is
injected to the model. The ticket service model presented in Listing 5.3 is similar to
the model in Listing 4.1 except that the ticket service only responds to the requests
of customer c1 (line 53). We examine this case study to show that in the presence
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of a fault in the system, i.e. not issuing ticket for customer c2, it is detected through
model checking. We analyzed the following probabilistic properties:

� We check whether eventually the ticket is issued for customer c2. The PCTL
formula is: P ≥ 1 [F (c2_ticketIssued = true)]. The property is not satis�ed,
which is expected.

� We check the maximum expected time until the ticket is issued for customer c2.
This property is speci�ed by: R{“time′′}max =?[F (c2_ticketIssued = true)].
The result is in�nity since the ticket service never responds to the requests of
customer c2.

� We check the minimum expected time until the ticket is issued for customer c2.
This property is speci�ed by: R{“time′′}min =?[F (c2_ticketIssued = true)].
The result is in�nity because of the existence of a fault in the system.

� We check the maximum expected number of requests until the ticket is is-
sued for customer c2. The property is formulated by: R{”request”}max =
?[F (c2_ticketIssued
= true)]. The result is in�nity.

1 reactiveclass Customer(3) {
2 knownrebecs {
3 Agent a;
4 }
5 statevars {
6 byte id;
7 boolean ticketIssued;
8 }
9 Customer(byte myId) {
10 id = myId;
11 ticketIssued =false;
12 self.try();
13 }
14 msgsrv try() {
15 ticketIssued =false;
16 a.sendRequest(id);
17 }
18 msgsrv getTicket() {
19 ticketIssued = true;
20 int prob = ?(0.3:5,0.7:30);
21 self.try() after(prob);
22 }
23 }
24 reactiveclass Agent(10) {
25 knownrebecs {
26 TicketService ts;
27 Customer c1;
28 Customer c2;
29 }
30 statevars {
31 }
32 Agent() {
33 }
34 msgsrv sendRequest(byte id) {
35 ts.requestTicket(id) deadline(24);

36 }
37 msgsrv sendTicket(byte id) {
38 if (id == 1)
39 c1.getTicket();
40 else if (id == 2)
41 c2.getTicket();
42 }
43 }
44 reactiveclass TicketService(10) {
45 knownrebecs {
46 Agent a;
47 }
48 statevars {
49 }
50 TicketService() {
51 }
52 msgsrv requestTicket(byte id) {
53 if(id ==1){
54 int issueDelay = ?(0.2:40,0.8:10);
55 delay(issueDelay);
56 a.sendTicket(id);
57 }
58 }
59 }
60 main {
61 Agent a(ts, c1, c2):();
62 TicketService ts(a):();
63 Customer c1(a):(1);
64 Customer c2(a):(2);
65 }

Listing 5.3: The PTRebeca model of
ticket service example with an injected
fault.

5.1.1.3 Performance Analysis of a Toxic Gas Sensing System

This case study can be considered as a simple example of a wireless sensor and actuator
networks (WSANs) application. In WSAN, a number of sensors is spread out in an
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environment to sense and potentially also control the environment [107]. The sensors
communicate the information through wireless links enabling interaction between peo-
ple or computers and the surrounding environment. The data gathered by di�erent
sensors is sent to a sink which can be used to make an e�ect on the environment,
through for example actuators.

In this case study, we consider a sensor instead of a network of sensors. The system
consists of a lab environment in which the level of a toxic gas changes over time. There
is one scientist in this lab. If the toxic gas level raises above a certain threshold, the
scientist's life is in danger. A sensor in the lab periodically measures the amount of
toxicity in the air, and sends the measurements to a central controller. The central
controller periodically checks whether the scientist is in danger. If so, it noti�es the
scientist about the danger. The scientist should acknowledge the noti�cation; if the
scientist fails to do so in a timely manner, the central controller noti�es a rescue team.
When the team reaches the lab, it noti�es the controller that the scientist has been
rescued. If the controller does not receive this noti�cation, it means that the scientist
has lost his life.

PTRebeca Model. The PTRebeca model of this system is shown in Listing 5.4,
containing four di�erent reactive classes: Environment, Controller, Sensor, and
Scientist. The toxic level of the environment changes periodically by a probabilistic
assignment of line 23. The sensor periodically measures the level of toxic gas by sending
a giveGas message to the environment (which is modeled in line 44). After sensing,
the sensor reports the measured data to the controller. The sensor may fail to report
the measured data as shown by the probabilistic assignment of line 46. Upon receiving
the measured data from a sensor (in the report message server), the controller stores
the value in sensorValue0 (line 82).

Periodically, in the checkSensors message server, the controller checks if the re-
ported value is above the normal amount. In case of detecting high toxicity, the
controller informs the scientist by sending an abortPlan message (line 93), and checks
the scientist's acknowledgment after a speci�ed amount of time (line 95). If the con-
troller does not receive an ack message from the scientist, the rescue team is informed
about the situation. If this process takes more than the value of scientistDeadline
units of time, the scientist will die and this is modeled by sending a message die to the
scientist by the environment. This message is scheduled immediately after changing
the gas level to the dangerous level (line 25).

In this model, there are di�erent timing variables that can a�ect the probability
of the scientist's death. The values of these variables are speci�ed at the �rst lines of
the model (Lines 1-5). For example, the network delay is assumed to be one time unit
(netDelay), and the period of checking the sensor's data by controller is set to 5 time
units (controllerCheckDelay). Note that the value of checkingPeriod ranges from 1 to
25 in di�erent experiments.

Experimental Results. The main goal of this system is to gather information about
the environment and react to a dangerous situation appropriately. Obviously, saving
the scientist's life is the ultimate goal. In this case study, we are interested in �nding the
optimum value of the timing variable checkingPeriod. This variable shows the period
in which the sensor measures the toxic level of the lab. We run di�erent experiments
to �nd the value of checkingPeriod for which the probability of the scientist's death is
minimum. In di�erent experiments, we keep the value of all timing variables except
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1 env byte scientistDeadline = 10;

2 env byte rescueDeadline = 5;

3 env byte netDelay = 1;

4 env byte controllerCheckDelay = 5;

5 env byte sciAckDeadline = 5;

6

7 reactiveclass Environment(10){

8 knownrebecs{

9 Sensor sensor0;

10 Sensor sensor1;

11 Scientist scientist;

12 }

13 statevars{

14 byte gasLevel, changingPeriod;

15 boolean meetDangerousLevel;

16 }

17 Environment(){

18 changingPeriod = 5;

19 gasLevel = 2; // 2 = safe, 4 = dangerous

20 self.changeGasLevel() after(changingPeriod);

21 }

22 msgsrv changeGasLevel(){

23 if(gasLevel == 2) gasLevel=?(0.98:2, 0.02:4);

24 if(gasLevel > 2 && !meetDangerousLevel) {

25 scientist.die() after(scientistDeadline);

26 meetDangerousLevel = true;

27 }

28 self.changeGasLevel() after(changingPeriod);

29 }

30 msgsrv giveGas(){

31 if(sender==sensor0)

sensor0.doReport(gasLevel);

32 if(sender==sensor1)

sensor1.doReport(gasLevel);

33 }

34 }

35 reactiveclass Sensor(7) {

36 knownrebecs {

37 Controller controller;

38 Environment environment;

39 }

40 statevars { int checkingPeriod; }

41 Sensor(int myPeriod) {

42 checkingPeriod = myPeriod;

43 self.checkGasLevel();

44 }

45 msgsrv checkGasLevel() {environment.giveGas();}

46 msgsrv doReport(byte value) {

47 boolean working = ?(0.01:false,0.99:true);

48 if(working){

49 controller.report(value) after(netDelay);

50 self.checkGasLevel() after(checkingPeriod);

51 }

52 }

53 }

54 reactiveclass Scientist(7) {

55 knownrebecs { Controller controller; }

56 statevars {boolean isDead, isOutEnv, ackSent;}

57 msgsrv die(){ if(!isOutEnv) isDead = true; }

58 msgsrv abortPlan() {

59 isOutEnv = true;

60 if(!ackSent) controller.ack()

after(netDelay);

61 ackSent = true;

62 }

63 msgsrv leftEnv(){isOutEnv = true;}

64 }

65 reactiveclass Rescue(7) {

66 knownrebecs {Controller controller;}

67 msgsrv go() {

68 delay(2); //unexpected obstacle

69 controller.rescuereach() after(netdelay)

deadline(rescuedeadline-netdelay);

70 }

71 }

72 reactiveclass Controller(13) {

73 knownrebecs {

74 Sensor sensor0;

75 Sensor sensor1;

76 Scientist scientist;

77 }

78 statevars {

79 int sensorValue0;

80 int sensorValue1;

81 boolean scientistAck,scientistDead,ackIsSent;

82 }

83 Controller() { self.checkSensors(); }

84 msgsrv report(int value) {

85 if (sender == sensor0) sensorValue0 = vale;

86 if (sender == sensor1) sensorValue1 = vale;

87 }

88 msgsrv rescueReach() {

89 scientistReached = true;

90 scientist.leftEnv();

91 }

92 msgsrv checkSensors() {

93 boolean danger = false;

94 if (sensorValue0 > 3) danger = true;

95 if (sensorValue1 > 3) danger = true;

96 if(!scientistAck){

97 if (danger) {

98 scientist.abortPlan() after(netDelay);

99 if(!ackIsSent)

100 self.checkScientistAck()

after(sciAckDeadline);

101 ackIsSent = true;

102 }

103 self.checkSensors()

after(controllerCheckDelay);

104 }

105 }

106 msgsrv ack() {scientistAck = true;}

107 msgsrv checkScientistAck() {

108 if (!scientistAck)

109 rescue.go() after(netDelay);

110 scientistAck = false;

111 }

112 }

113 main {

114 Environment environment(sensor0, sensor1,

scientist):();

115 Sensor sensor0(controller,environment):(10);

116 Sensor sensor1(controller,environment):(10);

117 Scientist scientist(controller):();

118 Controller controller(sensor0, sensor1,

scientist, rescue):();

119 Rescue rescue(controller):();

120 }

Listing 5.4: The model of a toxic gas
sensing system.
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sensorFreq Pmax Pmin sensorFreq Pmax Pmin
1 0.006519 0.005525 1 0.7259 0.7232

2 0.5675 0.5654
3 0.4668 0.4651
4 0.54 0.3957

2 0.003983 0.003547 adminCheck =1 5 1 0.3422
6 0.6378 0.4162
7 0.6833 0.4787
8 0.7096 0.5293
9 0.7434 0.5711

5 10 1 0.6096
12 0.7934 0.662
14 0.8231 0.7041

killAfter=10 15 1 0.724
16 0.8308 0.7374
17 0.847 0.7513
18 0.8505 0.7639
20 1 0.7876
22 0.8788 0.804
25 1 0.828

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6

Pmax

Pmin

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6
0

0.2

0.4

0 2 4 6 8 10 12 14 16 18 20 22 24

Pr
ob

ab
ili

ty

Period in which the Sensor checks the environment

Pmax Pmin

(a) The value of variable scientistDeadline is 10.

sensorFreq pmax Pmin
1 0.7259 0.7232
3 0.4668 0.4651
5 0.3488 0.3422
7 0.2763 0.2753
10 0.6016 0.2112
12 0.4501 0.3172
15 0.7184 0.4424
17 0.5944 0.4975
20 0.7832 0.5708
22 0.6798 0.6041
25 0.8245 0.6525
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(b) The value of variable scientistDeadline is 12.

Figure 5.1: The maximum and minimum probabilities that the scientist eventually
dies, when the sensor frequency changes.

checkingPeriod �xed, and calculate the probability of the scientist's death. Since the
model includes nondeterministic behaviors, the model checker computes the maximum
and the minimum probabilities over all paths in the generated state space.

Figure 5.1a shows the maximum and the minimum probabilities of the scientist's
death when the value of variable checkingPeriod of the sensor changes. If the sensor
checks the environment with a high frequency (i.e. the value of variable checkingPeriod
is low) the probability of sensor failure will increase, resulting in a high probability
of the scientist's death. For example, when the sensor checks the environment once
every unit of time, the environment is checked �ve times before the �rst change in the
environment. Therefore, the cost of the sensor use and consequently the probability of
sensor failure increases. When the sensor frequency is low, the environment changes
cannot be detected on time; resulting in a high probability of the scientist's death. The
optimal value for the variable checkingPeriod (i.e. sensor frequency) is �ve according
to the obtained results reported in Figure 5.1a for the minimum probability of the
scientist's death.

As the results show, the trend of changes in the value of the maximum probability of
the scientist's death is almost the same as the minimum probability trend, but at times
5, 10, 15, 20, and 25 it jumps to one. At these times, because of concurrency between
time related behaviors in the system, there is a scenario in which the dangerous level
is reported too late to the administrator and the scientist will die. At these times,
the execution sequence of the following messages is important and causes the special
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behavior: (1) checking the sensor value by the controller (it is repeated periodically
after 5 units of time), (2) changing the toxic level of the environment to a dangerous
level (period is 5 units of time), (3) checking the environment by the sensor (Figure 5.1a
shows the probability of the scientist's death for a di�erent value of this period), and
(4) sending a message die to the scientist (after 10 units of time) when the environment
is dangerous.

In Figure 5.1b, the value of variable scientistDeadline equals 12; the scientist has
more time to be saved before being killed by the toxic environment. The maximum
probability of the scientist's death is not equal to one at times 5, 10, 15, 20, and 25, but
because of concurrency between time related behaviors, there is a scenario in which
the dangerous level is reported too late and consequently the maximum probability of
the scientist's death increases. Similar to the previous case, there is an optimum value
for the variable checkingPeriod, i.e. sensor frequency, which is ten in this experiment.

5.1.2 Parallel Composition Approach for Probabilistic Timed

Rebeca

Probabilistic timed automata (PTA) are one of the most widely used modeling lan-
guages for modeling of real-time probabilistic systems. They are supported by the
Modest toolset [108] and by PRISM. An alternative approach for performance anal-
ysis of a PTRebeca model is a component-wise mapping of the PTRebeca model to
a number of PTA. The parallel composition of these modules (PTAs) represents the
PTRebeca model. We optimized the mapping to achieve the smallest possible state
space, similar to what we did for the mapping from Timed Rebeca to timed automata
in [39]. In the proposed mapping, each rebec is mapped into two timed automata,
called rebec-behavior automaton and rebec-bag automaton. Additionally, one time
automaton is de�ned to handle the behavior of after primitive for all rebecs, called
after-handler automaton.

The rebec-behavior automaton models the behavior of a rebec according to the
statements of its message servers and valuations of state variables. The state variables
of each rebec are mapped into variables of its corresponding rebec-behavior automa-
ton and its statements are mapped to transitions of the automaton. The rebec-bag
automaton handles the behavior of the message bag of each rebec using an inter-
nal bu�er. The rebec-bag accepts messages which are sent to its corresponding rebec
asynchronously, regardless of the state of the corresponding rebec-behavior automa-
ton. The after-handler automaton handles the messages which should be delivered to
the rebec-bag automaton in the future (messages which are sent by after primitive).
The after-handler automaton accepts messages and puts them into its bu�er until the
release time of the messages arrives. When a message in the bu�er of after-handler
is released, the message is sent to its corresponding rebec-bag automaton. Each PTA
can be implemented in PRISM in the form of an MDP module with integer-valued
variables representing digital clocks.

In the Rebeca language and its extensions, the execution of message servers is
atomic, making the coarse-grain execution of a Rebeca model possible [28]. The coarse-
grain execution of message servers reduces the state space size signi�cantly. We use the
same approach in the TMDP semantics of a PTRebeca model to reach a smaller state
space. In the parallel composition approach, we implemented coarse-grain execution
by combining statements of di�erent transitions; however, because of synchronization
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points among automata, there is a poor chance for combining statements. It is the
main obstacle against using a network of PTAs as an ideal approach for PTRebeca
models. Di�erent automata need to be synchronized on di�erent points: when a
message is sent; when a message is taken from the message bag to start its execution;
when a transition modeling a delay statement is reached; when it is the time for a sent
message to be delivered to its receiver. The mapping from a PTRebeca model to PTA
is discussed in more details in the following subsection.

5.1.2.1 Mapping from a PTRebeca Model to PTA.

To show the mapping procedure, the PTRebeca model of Figure 4.1 in Section 4.1 is
considered and the resulting PTAs are explained. In these PTAs, the condition on a
state should be satis�ed on its outgoing transitions. It means that, the condition on
a state can be considered as a guard for all the outgoing transitions. The transition
guard is the same as the one in PTA, meaning that a transition can be enabled if its
guard is satis�ed. The mapping is not straightforward because in PTRebeca message
passing is asynchronous, while in PTA message passing occurs synchronously.

Rebec-behavior. The rebec-behavior automaton models the behavior of a rebec
according to the statements of its message servers and valuations of variables. To
construct the rebec-behavior automaton of a rebec, a corresponding PTA is generated
for each message server, and then PTAs (of message servers) are connected together in
a way to describe the overall behavior of the rebec. Figures 5.2, 5.3, and 5.4 show the
rebec-behavior PTA for the reactive classes of Customer, TicketService, and Agent,
respectively.

Here, we explain the mapping of di�erent statements and valuation of state vari-
ables.

� State Variables: State variables are mapped to variables of the PTA.

� Ordinary Statements: The mapping for statements like conditionals, loops, as-
signments, etc., is straightforward.

� nondeterministic Assignment: A nondeterministic statement is mapped to a
number of states and transitions. The number of states depends on the number
of di�erent possible values for the variable. Line 23 of Figure 4.1 is mapped
to transitions from �S2� to �S5� and to �S6� in Figure 5.4. The transitions are
chosen nondeterministically.

� Probabilistic Assignment: In PTA, a probabilistic assignment statement is mapped
to a number of states, each of them assigning a di�erent value to the variable,
and a probabilistic transition into the states. The mapping of line 42 of Figure
4.1 is shown in Figure 5.2 as the transitions from �S2� to �S4� and �S5�.

� Delay Statement: Delays are mapped by the use of one clock, a location and
transition guards. Mapping for delay statement of line 12 of Figure 4.1 is depicted
in Figure 5.3, speci�ed as transitions from �S1� to �S3�. The required clock is
extracted from a pool of clocks using the function selectClock.

� Sending Message Statement: In PTRebeca, each rebec has an internal clock,
which shows the time elapsed since the creation of the rebec. This speci�es an
absolute model of time, which cannot be implemented in PTA, because it makes
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clock values grow unboundedly. To solve the problem, for message sending, a
clock is dedicated to the message. The clock of a message is used for checking its
deadline and enabling time. The clock is returned to the pool, when the message
is delivered to the rebec-behavior automaton for execution. For example, message
sending of Line 24 of Figure 4.1 is mapped to the transitions from �S1� to �S3�,
and from �S3� to �S7� in Figure 5.4.

Figure 5.2: The rebec-behavior PTA of the Customer reactive class

Figure 5.3: The rebec-behavior PTA of the TicketService reactive class

Figure 5.4: The rebec-behavior PTA of the Agent reactive class

Message sending is synchronized with either the rebec-bag automaton or the after-
handler automaton. We use channel �send� if the message is sent immediately and
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channel �after� if the sent message has the �after� value. Messages which are sent via
the send channel are directly put in the rebec-bag of their receivers. Messages which
are sent via the after channel are put in a bu�er in the after-handler automaton. A
message will be delivered to the rebec-bag of the receiver when the value of the clock
which is dedicated to the message reaches the value �after�.

Rebec-bag. The rebec-bag PTA always accepts messages asynchronously, regard-
less of the state of the corresponding rebec-behavior, and then delivers them, upon the
rebec-behavior automaton's request. The rebec-bag is responsible to handle activation
time and deadlines of messages. As depicted in Figure 5.5, the rebec-bag PTA inserts
the incoming messages of the owner rebec (transition from �S1� to �S3�), discards the
messages with passed deadlines (self loop transition in �S1�), and extracts the messages
from its bu�er and delivers them (transition from �S1� to �S2�). Extracting the mes-
sage from the bu�er is done by the shift function which is used as the update function
of the transition from �S2� to �S1�.

Figure 5.5: PTA of rebec-bag for a rebec

After-handler. The after-handler PTA always accepts messages asynchronously
and puts them in a bu�er until their enabling time. Figure 5.6 shows the PTA of the
after-handler. As depicted in Figure 5.6, it inserts the incoming messages (transition
from �S1� to �S2�) and extracts the messages from its bu�er and delivers them if the
clock of any of them reaches the value of its corresponding enable time, i.e. the value
of its after (self loop transition of �S1�).

Figure 5.6: PTA of After-handler
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5.1.3 Comparison of Parallel Composition Approach with

TMDP Semantics

In this section, we discuss which of the proposed PRISM-based analysis techniques is
appropriate for performance analysis of PTRebeca models. In [39] we reported the size
of the state space for the timed semantics of Timed Rebeca and parallel composition
approach of Timed Rebeca. In the parallel composition approach, each rebec is con-
verted to a timed automaton and parallel composition of timed automata represents
the behavior of the Timed Rebeca model. There, UPPAAL was used, a well-known
model checker for timed systems, for the parallel composition of timed automata. We
developed a tool to generate the state space based on the timed semantics of Timed
Rebeca.

Experimental results show that the parallel composition of timed automata gener-
ates too many states in comparison to timed semantics of Timed Rebeca. The main
reason of this di�erence lies in the modeling of asynchronous message passing between
actors using synchronous communication between timed automata. This increases the
number of states. This problem is also mentioned in [84] on modeling distributed sys-
tems using timed automata. Additionally, the number of clocks grows linearly by the
number of rebecs. When the number of clock increases, the state space grows expo-
nentially. We have the same results for the comparison of the parallel composition of
PTAs and the TMDP semantics of a PTRebeca model. The parallel composition of
PTAs generates too many states.

We explained the parallel composition approach in Section 5.1.2 without consid-
ering the details of the implementation. We chose PRISM, a well-established model
checker, for modeling PTAs and verifying probabilistic properties. Since the input
language of PRISM is a state-based language and lacks array, conditional and loops
statements, implementing these statements in PTAs increases the number of gener-
ated states signi�cantly. For example, implementation of rebec-queue PTA and related
functions (like insert, shift, and discard shown in Figure 5.5) adds many states to the
corresponding PTA. So, the proposed approach becomes more complicated and creates
a large state space.

Although the parallel composition approach supports the de�nition of rewards, it
generates more states comparing to the TMDP semantics of a PTRebeca model, and it
cannot be the suitable approach for large PTRebeca models. In Section 5.2, we provide
a new approach in which the TMDP model of a large case study is converted into one
Markov automaton. Then, the IMCA is used as the back-end model checker to ana-
lyze the PTRebeca model against expected reachability and probabilistic reachability
properties.

5.2 Performance Analysis of PTRebeca Models

Using IMCA

As we concluded in Section 5.1.3, the parallel composition approach is not e�cient
for performance analysis of large PTRebeca models. To provide a practical approach,
we convert the TMDP underlying a PTRebeca model to a Markov automaton (MA)
[109] to be able to use the IMCA model checker for performance analysis of PTRebeca
models. In this section, we mathematically prove that expectation properties are
preserved by this conversion. The proofs are presented for minimum expected time
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reachability and minimum expected reward reachability properties. Maximum values
of expected time reachability and expected reward reachability can be proved similarly.

5.2.1 Preliminaries

Prior to our proof, we have to prepare the following de�nitions and notations for
TMDP. We also de�ne how a TMDP is converted to MA.

De�nition 13 (Timed Markov Decision Process) A timed Markov decision pro-
cess T = (S, s0, Act, ↪→, L) consists of a set S of states, an initial state s0 ∈ S,
a set Act of actions, and a timed probabilistic, nondeterministic transition relation
↪→⊆ S × Act × N ×Dist(S) such that, for each state s ∈ S, there exists at least one
tuple (s, a, d, µ) ∈↪→. �

The transitions in a TMDP are performed in two steps: given that the current
state is s, the �rst step is a nondeterministic selection of (s, act, d, µ) ∈↪→, where act
denotes a possible action and d speci�es the duration of the transition; in the second
step, a probabilistic transition to state s′ is made with probability µ(s′). Function
µ ∈ Distr(S), Distr(S) denotes the set of discrete probability distribution functions
over the countable set S.

We present the TMDP TM of a given PTRebeca modelM as a tuple (S, s0, Act,→
,⇒) where S is a set of states, s0 is the initial state, Act is a set of actions which
consists of τ , signatures of all the messages, and N. Considering Section 4.3, the union
of scheduler and msg-fetcher transitions is → (probabilistic transitions) and the set of
time-progress transitions (delay transitions) is ⇒.

In the TMDP of a PTRebeca model, because of the maximal progress assumption,
probabilistic transitions have a higher priority than delay transitions in the execution as
their execution time is zero. According to the maximal progress assumption, transitions
with execution time of zero, i.e. probabilistic transitions, must be executed before any
time progress which is caused by the execution of delay transitions. Therefore, in states
with enabled probabilistic transitions, delay transitions are disabled. Here, states with
some enabled probabilistic transitions are called probabilistic states (PS) and states
with delay transitions are called delay states (DS). For a given delay state s the value
of its unique outgoing delay transition is shown by ds.

De�nition 14 (Paths) A path in a TMDP is an in�nite sequence π = s0
σ0,µ0,t0−−−−→

s1
σ1,µ1,t1−−−−→ · · · where si ∈ S, σi ∈ Act∪{⊥}, and ti ∈ N. In case of σi ∈ Act the value

of ti is zero, which means that the TMDP moves from si to si+1 using a probabilistic
transition with probability µi = µsiσi(si+1). In case of σi = ⊥ the value of ti is larger
than zero and the TMDP moves from si to si+1 after residing ti units of time with
probability µi = 1. For any given t ∈ N>0, π@t denotes the sequence of states that π
occupies at time t. �

Due to the instantaneous probabilistic transitions, a TMDP may occupy various
states at the same time instance. The time elapsed along the path π is computed
by
∑∞

i=0 ti. Path π is Zeno whenever this summation converges to a number and its
corresponding TMDP has Zeno behavior. A TMDP has Zeno behavior if and only if
it has a strongly connected component with only probabilistic transitions. In the rest
of this chapter we assume that TMDPs do not have Zeno behavior.
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De�nition 15 (Policies) Policies are used to resolve nondeterministic choices in
states. To de�ne a probability space, nondeterminism should be resolved. A policy
is a measurable function (ranged over D) which provides for each �nite path ending in
state s, a probability distribution over the set of enabled transitions in s. A stationary
deterministic policy is a special type of policy which always takes the same decision in
a state s. �

De�nition 16 (Stochastic Shortest Path (SSP) Problem) A tuple (S, s0, G,Act
,P, c, g) is an SSP problem (non-negative) such that (S, s0, Act,P) is a MDP, G ⊆ S
is a set of goal states, c : S \ G × Act → R≥0 is a cost function for non-goal states,
and g : G× Act→ R≥0 is a cost function for goal states. �

As described in [110], the minimum expected cost reachability of one of the goal
states in G from state s, shown by eRmin(s,♦G), can be obtained by solving a linear
programming (LP) problem. To compute the minimum expected cost reachability, we
reduce the analysis of a TMDP to the analysis of a non-negative SSP problem to be
able to use an LP problem.

In addition to the above de�nitions on TMDPs, we have to formally de�ne MAs.

De�nition 17 (A Markov Automaton) An MA is a transition system with two
types of transitions, called probabilistic and Markovian transitions, shown by the tuple
(S ′, s′0, Act

′,→′,⇒′). Here, S ′ is a set of states, s′0 ∈ S ′ is an initial state, Act′ is a
set of actions, →′ is a set of probabilistic transitions, and ⇒′ is a set of Markovian
transitions. Probabilistic transitions are instantaneous transitions which are de�ned
as →′⊆ S ′ × Act′ ×Distr(S ′) (where Distr(S ′) denotes the set of discrete probability
distribution functions over the countable set S ′) and Markovian transitions are de�ned
as ⇒′⊆ S ′ × R≥0 × S ′ [109]. �

Here, transition (s′, α, µ) ∈ →′ is abbreviated to s′
α

→′ µ and (s′, λ, t′) ∈⇒′ by

s′
λ

⇒′ t′. An MA can evolve via its probabilistic and Markovian transitions. In case
of s′ α→

′
µ, it leaves state s′ by executing action α and state t′ is its destination with

the probability of µ(t′). Here, s′ is called a probabilistic state (PS). In case of s′ λ⇒
′
t′,

state s′ is left after waiting for exponentially distributed units of time with rate λ and
the target state is t′. It means that the expected delay from s′ to t′ is 1/λ. Here, state
s′ is called Markovian state (MS).

In the rest of this chapter we use the primed version of alphabet and arrows to
address MAs and the normal ones to address TMDPs.

De�nition 18 (Conversion of the TMDP of PTRebeca model M) A given
TMDP TM = (S, s0, Act,→,⇒) is converted to MA AM = (S ′, s′0, Act

′,→′,⇒′) such
that S = S ′, s0 = s′0, Act = Act′, and →=→′. In addition, (s, d, t) ∈⇒ implies
that (s′, 1/d, t′) ∈⇒′. In other words, TM and AM are the same except that the delay
transitions in TM are converted to Markovian transitions in AM. In this conversion,
if a given state s ∈ S is a delay state in TM, its corresponding state s′ ∈ S ′ is a
Markovian state in AM, and if s is a probabilistic state in TM, its corresponding state
s′ is a probabilistic state in AM. �
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5.2.2 Expected Time Reachability in TMDP

Assume that for a given PTRebeca modelM, its TMDP TM = (S, s0, Act,→,⇒) and
the set of goal states G ⊆ S are de�ned. Here, we want to �nd the minimum expected
time for reaching one of the states in G. We de�ne random variable VG : Paths→ N

as the elapsed time in paths from the start state to one of the goal states of G. So, the
minimum expected time reachability for a given state s ∈ S to one of the goal states
is de�ned by

eTmin(s,♦G) = inf
D
Es,D(VG) = inf

D

∑
π∈Paths

VG(π) · Prs,D(π)

where D is a generic policy onM. To compute the value of eTmin(s,♦G) we have to
reformulate the above equation into a linear equation system, as shown in the following
theorem. Note that the proofs of theorems are given in Appendix B.

Theorem 2 The function eTmin is a �x point of the Bellman operator

[L(v)](s) =


ds + v(t) s ∈ DS \G

min
a∈Act(s)

{∑
t∈S

µsa(t) · v(t)

}
s ∈ PS \G

0 s ∈ G

(5.1)

where Act(s) = {α|s α→ µ} and µsa ∈ Distr(S) such that s
α→ µsa. �

The above result is explained as follows. For a goal state, the expected time is
zero. For a delay state s /∈ G, the minimal expected time to G is the summation
of the sojourn time in s (which is ds) and the expected time to reach G from one of
its successor states t ∈ S. For a probabilistic state s /∈ G, an action is selected that
minimizes the expected time according to the distribution µsa.

The characterization of eTmin(s,♦G) in Theorem 2 allows us to reduce computing
the minimum expected time reachability problem in a TMDP to the minimum expected
time reachability in a non-negative SSP problem, denoted by sspet.

De�nition 19 (SSP for minimum expected time reachability) The SSP of a
given TMDP TM = (S, s0, Act,→,⇒) for the expected time reachability to a set of
goal states G ⊆ S is a tuple sspet(M) = (S, s0, Act ∪ {⊥}, G, c, g) where:

� S, s0, andAct in TMDP and sspet are the same,

� P(s, α, t) =


1 s ∈ DS \G
µsα(t) s ∈ PS \G
0 s ∈ G

,

� c(s, α) =

{
ds s ∈ DS \G ∧ α = ⊥
0 otherwise

,

� g(s) = 0.

�
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As shown in [111], the minimum expected cost problem of an SSP has a unique
�xed point; which enables us using standard solution techniques like value iteration
and linear programming to compute the minimum expected cost of the SSP.

Theorem 3 For a TMDP TM the value of eTmin(s,♦G) equals cRmin(s,♦G) in sspet
(M). �

This way, we showed how the minimum expected time reachability for a TMDP is
computed. As we want to use the IMCA for computing the expected time reachability
of the TMDP, we present the conversion of a TMDP to its corresponding MA (which
can be analyzed by the IMCA). Then, we prove that expected time reachability in the
TMDP and its conversion in the form of MA are equal.

As shown in [109], for a given MAAM = (S ′, s′0, Act
′,→′,⇒′) the following Bellman

operator is used for �nding the expected time reachability.

[L(v)](s′) =



1

E(s′)
+
∑
t′∈S′

P (s′, t′) · v(t′) s′ ∈MS \G′

min
a∈Act(s′)

{∑
t′∈S′

µa(t
′) · v(t′)

}
s′ ∈ PS \G′

0 s′ ∈ G′

(5.2)

The TMDP conversion to its corresponding MA preserves the expected time reach-
ability properties. As depicted in Equations 5.1 and 5.2, for a given state s ∈ S
in TM where s is a probabilistic (or goal) state, its corresponding state s′ ∈ S ′ in
AM is a probabilistic (or goal) state, and the equations for �nding [L(v)](s) are the
same as for [L(v)](s′). In the case that s is a delay state, based on the semantics
of PTRebeca, delay states have only one outgoing delay transition. So, in its corre-
sponding state s′ in AM there is only one outgoing transition with probability one,
which results in changing the formula of computing the expected time reachability
from 1

E(s′)
+
∑

t′∈S′ P (s′, t′) ·v(t′) to 1
E(s′)

+v(t′). As during conversion from TM to AM
a delay value ds is changed to 1/ds, we have 1

E(s′)
+v(t′) = ds+v(t). Here, we assumed

that there are states t ∈ S and t′ ∈ S ′ such that s ds⇒ t and s′
1/ds

⇒′ t′. In a nutshell, the
minimum expected time reachability in all three cases of Equation 5.1 for state s is
the same as the minimum expected time reachability in all three cases of Equation 5.2
for state s′.

5.2.3 Expected Reward Reachability in TMDP

We want to compute expected reward reachability in TMPDs where the rewards are
associated to delay states and probabilistic transitions. This is similar to what we
did for computing expected time reachability in TMDPs. Assume that there are two
functions ρ and r for accessing to the associated rewards to states and transitions
respectively. For a given state s, function ρ(s) returns the reward which is associated
to s. For a given transition from s to t with action α, function r(s, α) returns the
reward which is associated to the transition.

Now, assume that TMDP TM = (S, s0, Act,→,⇒) is given and the set of goal states
is de�ned as G ⊆ S. Here, we want to �nd the minimum expected reward which is
gained from each state s ∈ S to one of the states in G. So, we need to de�ne a random



80 CHAPTER 5. PERFORMANCE ANALYSIS OF PTREBECA MODELS

variable on the total reward which is gained in paths from s to one of the goal states
of G. Assume that random variable RG : Paths→ N is this random variable. So, the
minimum expected reward reachability from s to one of the goal states is de�ned by

eRmin(s,♦G) = inf
D
Es,D(RG) = inf

D

∑
π∈Paths

RG(π) · Prs,D(π)

where D is a generic policy onM. To compute the value of eRmin(s,♦G), we have to
reformulate the above equation into a linear equation system, as shown in Theorem 4.

Theorem 4 The function eRmin is a �x point of the Bellman operator

[L(v)](s) =


ds × ρ(s) + v(t) s ∈ DS \G

min
a∈Act(s)

{
r(s, a) +

∑
t∈S

µsa(t) · v(t)

}
s ∈ PS \G

0 s ∈ G

(5.3)

Let us explain the above result. For a goal state, the expected reward is zero. For
a delay state s /∈ G, the minimal expected reward to G is the multiplication of the
sojourn time in state s and its associated reward plus the expected reward to G from
one of its successor states t ∈ S. For a probabilistic state s /∈ G, an action is chosen
which minimizes the expected reward to G according to µsa plus the reward associated
to the transition.

The characterization of eRmin(s,♦G) in Theorem 4 allows us to reduce comput-
ing the minimum expected reward reachability problem in TMDPs to the minimum
expected cost in non-negative SSP problems, shown by ssper.

De�nition 20 (SSP for minimum expected reward reachability) The SSP of
a given TMDP TM = (S, s0, Act,→,⇒) for the expected reward reachability to a set of
goal states G ⊆ S is a tuple ssper(M) = (S, s0, Act ∪ {⊥}, G, c, g) where:

� S, s0, andAct in TMDP and ssper are the same,

� P(s, α, t) =


1 s ∈ DS \G
µsα(t) s ∈ PS \G
0 s ∈ G

,

� c(s, α) =

{
r(s, α) s ∈MS \G
0 otherwise

,

� g(s) = ρ(s).

�

As the problem is reduced to the minimum expected cost problem of an SSP, we
conclude that there is only one �xed point in TMDPs as discussed before.

Theorem 5 For a TMDP TM the value of eRmin(s,♦G) equals cRmin(s,♦G) in ssper
(M). �
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This way, we showed how the minimum expected reward reachability for a TMDP
is computed. As we want to use the IMCA for computing the expected reward reach-
ability of TMDPs, we present the conversion of a TMDP to its corresponding MA.
Then, we prove that expected reward reachability in a TMDP and its conversion in
the form of an MA are equal.

A given TMDP TM = (S, s0, Act,→,⇒) with reward functions ρ and r is converted
to MA AM = (S ′, s′0, Act

′,→′,⇒′) with reward functions ρ′ and r′ such that S = S ′,
s0 = s′0, Act = Act′, →=→′, r(s, a) = r′(s′, a), and ρ(s) = ρ′(s′). The properties
of this conversion is the same as the properties of conversion which is described in
Section 5.2.2.

As shown in [112], for a given MA AM = (S ′, s′0, Act
′,→′,⇒′) with reward func-

tions ρ′ and r′ the following Bellman operator is used for �nding the expected reward
reachability.

[L(v)](s′) =



ρ′(s′)

E(s′)
+
∑
t′∈S′

P (s′, t′) · v(t′) s′ ∈MS \G′

min
a∈Act(s′)

{
r′(s′, a) +

∑
t′∈S′

µa(t
′) · v(t′)

}
s′ ∈ PS \G′

0 s′ ∈ G′

(5.4)

As depicted in Equations 5.3 and 5.4, for a given state s ∈ S in TM where s is a
probabilistic (or goal) state, its corresponding state s′ ∈ S ′ in AM is a probabilistic (or
goal) state, and the equations for �nding [L(v)](s) are the same as for [L(v)](s′). In
the case that s is a delay state, based on the semantics of PTRebeca, delay states have
only one outgoing delay transition. So, in its corresponding state s′ in AM there is only
one outgoing transition with probability one, which results in changing the formula
of computing the expected reward reachability from ρ′(s′)

E(s′)
+
∑

t′∈S′ P (s′, t′) · v(t′) to
ρ′(s′)
E(s′)

+v(t′). As during conversion from TM to AM a delay value ds is changed to 1/ds,

we have ρ′(s′)
E(s′)

+ v(t′) = ds × ρ(s) + v(t). Here, we assumed that there are states t ∈ S

and t′ ∈ S ′ such that s ds⇒ t and s′
1/ds

⇒′ t′. In a nutshell, the minimum expected reward
reachability in all three cases of Equation 5.3 for state s is the same as the minimum
expected reward reachability in all three cases of Equation 5.4 for state s′.

5.2.4 The Toolset and Case Studies

To illustrate the applicability of the IMCA-based approach, we developed a toolset and
analyzed two di�erent case studies, which are accessible from the Rebeca home page
[85]. The architectural overview of the toolset is depicted in Figure 5.7. As shown
in the �gure, Afra IDE serves as the front-end of the toolset and IMCA [55] is the
back-end model checking engine of the toolset.

Using the Afra IDE, a number of C++ �les are generated for a PTRebeca model.
These C++ �les are compiled and linked by a g++ compiler, which results in an
executable �le. Running the executable �le generates the TMDP of the model (i.e.
the state space of the model). In PTRebeca models, the size of message bags is
bounded. The state space of a PTRebeca model is �nite when the model shows
recurrent behavior. We used the time-shift equivalence approach, proposed in [39], to
make the state space �nite.
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Rebeca
Compiler

AST

Code
Generator

g++
CompilerC++

Files

Executable
File

TMDPAfra IDE Transformer

TMDP-MA

IMCA
Model
Checker

Analysis
Result

Goal
States

Figure 5.7: The architectural overview of the analyzer of PTRebeca models

The TMDP-MA tool is developed to convert the TMDP of the model to the input
language of IMCA model checker. To perform the conversion, the generated TMDP
and the speci�cation of the goal states of the model are input to TMDP-MA and one
Markov automaton is generated. The obtained MA is imported to the IMCA for model
checking.

Evaluation of The Toolset IMCA provides algorithms for expected time and ex-
pected reward reachability analysis, long-run average analysis, time-bounded proba-
bilistic reachability and probabilistic reachability analysis of MA. Since IMCA is used
as the back-end model checker for PTRebeca models, we investigate which properties
are preserved by the conversion (refer to De�nition 18), and so can be evaluated by
our developed toolset.

In Section 5.2, we proved that expected time reachability and expected reward
reachability properties are preserved by the conversion. By using a dedicated time
action in the TMDP (equivalently to its corresponding MA) and because of the ability
of assigning rewards to the transitions in IMCA, expected reachability properties can be
computed for a PTRebeca model. Therefore, our toolset can be used for the evaluation
of expected reachability properties of PTRebeca models.

According to De�nition 18, probabilistic transitions in the TMDP are directly
converted to probabilistic transitions in the MA. Obviously, probabilistic reachabil-
ity properties are preserved in this conversion, and so can be checked for PTRebeca
models. The rate of a Markovian transition in the MA is estimated by the inverse of
the integer value of a corresponding delay transition in the TMDP. Because of this
estimation, time-bounded probabilistic reachability properties are not preserved by
the conversion. So, we are not able to evaluate this type of properties for PTRebeca
models. We believe that long-run average properties are preserved by the conversion,
but its mathematical proof remains as a future work.

In the following sections, we choose two case studies to cover the evaluation of
two types of properties: expected reachability and probabilistic reachability. The
probabilistic reachability property is checked for toxic gas sensing system, and the
expected time reachability is calculated for a network on chip case study. These case
studies show the applicability of the toolset for the performance evaluation of systems.

5.2.4.1 Performance Analysis of a Toxic Gas Sensing System

In Section 5.1.1.3, we examined toxic gas sensing case study and used PRISM as the
back-end model checker. Here, we perform the same experiments, but we use IMCA
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(a) The value of variable scientistDeadline is 10.
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(b) The value of variable scientistDeadline is 12.

Figure 5.8: The maximum and minimum probabilities that the scientist eventually
dies, when the sensor frequency changes.

for the performance evaluation of the model. As we discussed earlier, the ultimate
goal is to �nd a time setting, speci�cally a value for the variable checkingPeriod, in
which the min/max probabilities of the scientist's death have the least values. Figure
5.8 shows the maximum and the minimum probabilities of the scientist's death when
IMCA is used as the back-end model checker. Comparing to the results in Figure 5.1,
we obtain the same results via PRISM and IMCA.

5.2.4.2 Performance Analysis of Network on Chip

Our second example is a model of a network on chip (NoC). NoC has emerged as a
promising architecture paradigm for many-core systems. As complexity grows in NoCs,
functional veri�cation and performance evaluation in the early stages of the design
process are suggested as ways to reduce the fabrication cost. Globally Asynchronous
Locally Synchronous (GALS) NoC [113] has gained much attention in designing such
systems. As an example of a NoC, we model and analyze ASPIN (Asynchronous
Scalable Packet switching Integrated Network), which is a fully asynchronous two-
dimensional GALS NoC design using XY routing algorithm. Using this algorithm,
packets can only move along the X direction �rst, and then along the Y direction to
reach their destination. In ASPIN, packets are transferred through channels, using a
four-phase handshake communication protocol. The protocol uses two signals, namely
Req and Ack, to implement the four-phase handshaking protocol. To transfer a packet,
�rst, the sender sends a request by rising the Req signal, and waits for an acknowl-
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edgment which is raising Ack from the receiver. All the signals return to zero after
a successful communication. There are four adjacent routers to each router and also
four internal bu�er for storing the incoming packets of di�erent neighbors.

The timed version of ASPIN was investigated in [41] using simulation and model
checking. The Timed Rebeca language was used for modeling of ASPIN, and the Afra
tool-set [85] was applied to the model for estimating the maximum end-to-end latency
through model checking. Here, we add faulty routers to ASPIN, and examine the model
for di�erent tra�c patterns and faulty routers. In the PTRebeca model, all nodes are
working correctly with probability one except a few of them which are speci�ed in
their constructors. For example, the node with Xid=1 and Yid=0 is supposed to be
faulty (Line 15 of Figure 5.5). The fault probability is determined in the message
server coreIsFaulty (Line 18) for all faulty nodes. A faulty node fails to send received
packets with the speci�ed probability p and sends packets with probability 1 − p. In
other words, a faulty node works most of the time, and the node is not broken. The
probabilistic version of the case study is similar to the timed version presented in [41].
The way we model channels, the topology of the communication, routing algorithm,
bu�er status, and communication protocol in the model is the same as in [41].

PTRebeca Model. The simpli�ed version of the PTRebeca model of ASPIN is shown
in Figure 5.5, which contains two di�erent reactive classes: Manager and Router. The
Manager does not exists in real NoCs. Here, it is used as the starter of the model. It
sends an init message to routers to ask them to generate packets. This way, di�erent
tra�c patterns are created by modifying only Manager. The Router is the model of a
router in an ASPIN. So, its de�nition contains four known rebecs which are its neighbor
routers (line 7), its id in XY manner (Xid and Yid in line 8), its bu�er variables which
show that the bu�er is enabled or busy (line 10), a variable which shows whether it
works properly or not (line 11), and variables that show whether its neighbors are
faulty or not (line 12). The communication channel functionalities among neighbors
are modeled by message passing in Rebeca. The four-phase handshake protocol is
modeled using three message servers: reqSend, giveAck, and getAck. A router calls its
reqSend message server to send a request to its neighbor. The XY-routing algorithm
is implemented inside reqSend (lines 25-56) and determines to which neighbor router
the packet is sent. If the neighbor router is faulty, a dynamic XY-routing algorithm
presented in [114] is used to reroute the packet. The congestion links are not considered
in our algorithm. The packet is rerouted to an operative neighbor by calling function
reRoute (e.g. line 31). In lines 40-46 of Figure 5.5, the details of routing a packet
with Xtarget > Xid and Y target > Y id are shown. If the packet must be sent to
the router's east neighbor and the east neighbor is not faulty (line 41), the function
routeToEast is called (line 42). In this function message giveAck is sent to the east
neighbor and the internal state of the sender router is changed. The giveAck message
server �rst checks the address of the destination of the newly received packet. If
the address is the same as the current router, then the packet is consumed (line 85).
Otherwise, if the router's bu�er is not full (line 75), the packet will be stored and an
acknowledgment is sent to the sender router by calling its getAck message server (line
80). If the incoming bu�er of the neighbor is full (line 73), the router must wait for
some amount of time and try sending later, which is modeled by sending to itself (line
74).
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1 env byte bufSize = 2;
2 reactiveclass Manager(10){
3 knownrebecs{Router r00, r10, ... , r33;}
4 msgsrv reset(){ r00.init(); r23.init();}
5 }
6 reactiveclass Router(10) {
7 knownrebecs {Router N, E, S, W;}
8 statevars { byte Xid, Yid;
9 byte[4] bufNum;
10 boolean[4] full, enable, outMutex;
11 boolean recieved, isWorking;
12 boolean [4] neighborIsWorking; // 0=N,

1=E, 2=S, 3=W
13 }
14 Router(byte X, byte Y){ Xid = X; Yid = Y;

recieved = false; //specifying
faulty nodes

15 if(Xid == 1 && Yid == 0)
self.coreIsFaulty();

16 ...
17 }
18 msgsrv coreIsFaulty (){ isWorking = ?

(0.95:true,0.05:false);}
19 msgsrv init(){ ... }
20 void routeToSouth( ){...}
21 void routeToNorth(){...}
22 void routeToWest(){...}
23 void routeToEast(){...}
24 void reRoute(){...}
25 msgsrv reqSend(byte Xtarget, byte

Ytarget, int dirS, int packId,
boolean routing) {

26 if (enable[directionS]){
27 boolean sent = false; int

hardwareDelay; hardwareDelay = 26;
28 if (Xid == Xtarget){
29 if(Ytarget > Yid){
30 if(neighborIsWorking[2] && senderR

!= 2){routeToSouth();}
31 else{reRoute();}
32 }
33 else if (Ytarget < Yid ){...}
34 }
35 else if (Yid == Ytarget){
36 if(Xtarget > Xid){...}
37 else if (Xtarget < Xid){...}
38 }
39 else{ //first move through horizontal

channels
40 if(Xtarget > Xid && Ytarget > Yid){
41 if(neighborIsWorking[1] && senderR

!= 1){
42 routeToEast();}
43 else if(neighborIsWorking[2] &&

senderR != 2){
44 routeToSouth();}
45 else{
46 reRoute();}
47 } else if(Xtarget < Xid && Ytarget >

Yid){...}
48 else if(Ytarget < Yid && Xtarget >

Xid){...}
49 }
50 else if(Ytarget < Yid && Xtarget <

Xid){...}

51 }
52 }
53 else
54 self.reqSend(Xtarget,Ytarget,directionS,
55 packId,senderR) after(1);
56 }
57 msgsrv isFaulty(int senderCore,byte

Xtarget, byte Ytarget, int
directionS, int packId){...}

58 msgsrv getAck(int dirS){ ... }
59 msgsrv giveAck(byte Xtarget, byte

Ytarget,int dirS, int dirD, int
msgSender, int packId, boolean
routing) {

60 int MSGSender;
61 if(sender == N) MSGSender = 0;
62 else if (sender == E) MSGSender = 1;
63 ...
64 else MSGSender = msgSender;
65 if(!isWorking){
66 if(MSGSender == 0)
67 N.isFaulty(2,Xtarget,

Ytarget,directionS, packId);
68 else if(MSGSender == 1)
69 E.isFaulty(3,Xtarget,

Ytarget,directionS, packId);
70 ...
71 }
72 if(!(Xtarget == Xid && Ytarget == Yid))

{
73 if (full[dirD])
74 self.giveAck(Xtarget,

Ytarget,dirS,dirD, MSGSender,
packId, routing) after(2)
deadline(5);

75 else {
76 bufNum[dirD] = (byte)bufNum[dirD] +

1;
77 if (bufNum[dirD] == bufSize)
78 full[dirD] = true;
79 self.reqSend(Xtarget, Ytarget, dirD,

packId,routing) after(1);
80 if(MSGSender == 0) N.getAck(dirS);
81 else if(MSGSender == 1)

E.getAck(dirS);
82 ...
83 }
84 }
85 else if((Xtarget == Xid && Ytarget ==

Yid)) { ... if (packId == 1)
recieved = true; ...}

86 }
87 }
88 main {
89 Manager m(r00,r10, ... ,r33):();
90 Router r00(m,r03,r10,r01,r30):(0,0);
91 Router r10(m,r13,r20,r11,r00):(1,0);
92 ...
93 Router r33(m,r32,r03,r30,r23):(3,3);
94 }

Listing 5.5: The model of the ASPIN
network.

To model the behavior of router bu�ers, we use the rebec's queue to store all packets
received by a router and only keep track of the length of north, south, east and west
bu�ers to have the bu�er status at all time. The variable bufSize speci�es the bu�er
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size in each direction of the routers. In the experiments, bufSize equals two (Line
1). Each router has an array bufNum which keeps the number of sent packets in each
direction for which their ack signals haven't been received yet. When a message is sent
to a direction, the number of sent messages to that direction is increase by one (Line
76). When an ack signal is received from a direction, the number of sent messages
to that direction is decreased by one. The complete PTRebeca model of ASPIN is
accessible from the Rebeca home page [85].

Experimental Results The dynamic XY-routing algorithm implemented in each
node reroutes a packet if the node's neighbor is faulty. All faulty nodes do not work
with the speci�ed probability p. So, two scenarios happen when a packet face a faulty
node: 1) the packet is rerouted to a di�erent path to round the faulty node with
probability p, and 2) the faulty node can route the packet correctly with probability
1 − p. The main goal of our experiments is to understand the relation between the
value of the fault probability and the expected latency for packet (1). This relation is
important if we notice that rerouting may increase the expected latency.

We performed three experiments in a 4× 4 ASPIN model. In each experiment we
consider di�erent scenarios, each of which include di�erent faulty nodes. The traf-
�c pattern of all scenarios of each experiment is identical. In each experiment, the
minimum and maximum expected latencies of packet (1) are reported. The expected
latency shows the needed time for delivery of packet (1) to its destination. The min-
imum and maximum probabilities of packet (1) reaching its destination are equal to
one for all scenarios. In other words, there is no scenario in which packet (1) does not
reach its destination. In the following we explain each experiment and the obtained
results in more detail.

As shown in Figure 5.9, in the �rst experiment, packet (1) is sent from R00 to R23
and there is no other packet in the network. In scenario 1, router R10 is faulty. In
scenario 2, routers R10 and R11 are faulty, and in scenario 3, routers R10, R11 and
R12 are faulty. The results are presented in Figure 5.10, where the minimum expected
latency is the same as the maximum expected latency for all scenarios. Scenario 3
has the highest expected latency since there are more faulty routers and the packet is
rerouted more times in comparison to other scenarios. Also, scenario 1 has the least
expected latency as there are fewer faulty nodes in the network.

R00 R10 R20 R30

R01 R11 R21 R31

R02 R12 R22 R32

R03 R13 R23 R33

(1)

(a) R10 is faulty in scenario 1

R00 R10 R20 R30

R01 R11 R21 R31

R02 R12 R22 R32

R03 R13 R23 R33

(1)

(b) R10 and R11 are faulty in
scenario 2

R00 R10 R20 R30

R01 R11 R21 R31

R02 R12 R22 R32

R03 R13 R23 R33

(1)

(c) R10, R11, and R12 are
faulty in scenario 3

Figure 5.9: The 4× 4 ASPIN model: The tra�c in experiment 1.
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Figure 5.10: Experiment 1: the min/max expected latency for di�erent scenarios.

In the second experiment as shown in Figure 5.11, router R10 generates packet (2)
as soon as it receives packet (1), thus packet (2) may cause disruption to packet (1).
On the other hand, R02 produces packet (3) in a way that it reaches R22 at the same
time as packet (1), so packet (1) may be delayed by packet (3) too. In scenario 1, router
R10 is faulty. In scenario 2, routers R10 and R11 are faulty, and in scenario 3 routers
R10, R11 and R12 are faulty. The results are presented in Figure 5.12. Scenario 3 has
the highest and scenario 1 has the least expected latency. The reason is the same as
the one explained for the �rst experiment.

In the third experiment, packet (1) is disrupted by packet (2), and packet (2) is
itself disrupted because of congestion in R21. On the other hand, congestion in R23
leads packet (5) to be blocked until packet (4) leaves the input port of R22. This may
result in disruption of packet (1) by packet (5), if they reach R32 at the same time
(Figure 5.13). In scenario 1, router R10 is faulty. In scenario 2, routers R10 and R11
are faulty. The results are presented in Figure 5.14. In contrast to experiments 1 and
2, increasing the probability of fault decreases the maximum expected latency. The
reason is that rerouting packet (1) from the normal path (i.e. R00 → R10 · · · → R30
→ R31· · · → R33) to an alternative path (i.e. R00 → R01 → R02 → R12· · · → R32
→ R33 in case of in scenario 2), avoids the congestion caused by packets (3), (5), and
(7). So, the total latency decreases.

R00 R10 R20 R30

R01 R11 R21 R31

R02 R12 R22 R32

R03 R13 R23 R33

(1)

(2)

(3)

(a) R10 is faulty in scenario 1

R00 R10 R20 R30

R01 R11 R21 R31

R02 R12 R22 R32

R03 R13 R23 R33

(1)

(2)

(3)

(b) R10 and R11 are faulty in
scenario 2

R00 R10 R20 R30

R01 R11 R21 R31

R02 R12 R22 R32

R03 R13 R23 R33

(1)

(2)

(3)

(c) R10, R11, and R12 are
faulty in scenario 3

Figure 5.11: The 4× 4 ASPIN model: The tra�c in experiment 2.
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Figure 5.12: Experiment 2: the min/max expected latency for di�erent scenarios.
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Figure 5.13: The 4× 4 ASPIN model: The tra�c in experiment 3.0.01 185.1199983 185.1225983
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Figure 5.14: Experiment 3: the min/max expected latency for di�erent scenarios.
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5.3 Comparing the PRISM-based and IMCA-based

Approaches

In this section, we investigate the time and memory necessary to run experiments
using the two approaches based on PRISM and IMCA. Table 5.1 presents the results
for di�erent case studies with di�erent sizes. The experiments of the PRISM-based
approach are run on a laptop with Windows 7, 4 GB RAM, and Intel Core i5-2430M
CPU 2.4 GHz. To run the experiments of the IMCA-based approach, Ubuntu 12.04.5
LTS is installed on the same laptop, but RAM is restricted to 1 GB. In the PRISM-
based approach, the TMDP of a PTRebeca model is input to PRISM as a single MDP
module. The MDP module is de�ned using the standard PRISM input language. The
IMCA-based approach was explained in the previous section.

Problem #states #trans Using PRISM Using IMCA
time (sec) memory time (sec) memory

Toxic Gas 1 sensor 506 1170 222.787 + 0.01 NA 0.032514 ∼ 87.383 KB
Sensing System

NoC

Exp 1-Scenario 1 84 109 23.52 NA 0.000711 ∼ 12.945 KB
Exp 1-Scenario 2 484 909 167.392 + 0.02 NA 0.017655 ∼ 79.07 KB
Exp 1-Scenario 3 507 666 307.439 + 0.03 NA 0.02387 ∼ 77.172 KB
Exp 2-Scenario 1 342 379 161.835 + 0.03 NA 0.033238 ∼ 51.187 KB
Exp 2-Scenario 2 2184 3045 1031.11 + 0.17 (∼17 min) NA 0.509681 ∼ 337.226 KB
Exp 2-Scenario 3 5220 9922 2955.611 + 0.94 (∼49 min) NA 1.768932 ∼ 857.344 KB
Exp 3-Scenario 1 10032 15915 3228.434 + 0.94 (∼54 min) NA 10.631929 ∼ 1.561 MB
Exp 3-Scenario 2 43290 71106 crashed NA 136.916137 ∼ 4.842 MB

Table 5.1: The time and memory needed to evaluate di�erent case studies with the
PRISM-based and IMCA-based approaches. NA means not available.

As Table 5.1 shows, two numbers are reported for time when using the PRISM-
based approach. The �rst one is the time needed via PRISM to construct the model,
and the second one is the computation time to model check the model. The time
for model construction is considerable, and this makes the approach ine�cient even
for small case studies like scenario 1 of experiment 2 in NoC case study (refer to Exp

2-Scenario 1 in Table 5.1). In the IMCA-based approach, the Markov automaton
of a PTRebeca model is input using a state-based language. So, the time for model
construction is negligible, and the approach is e�cient for large PTRebeca models like
scenario 2 of experiment 3 in NoC case study (refer to Exp 3-Scenario 2 in Table
5.1). PRISM crashed when trying to construct the model for Exp 3-Scenario 2. The
needed memory for model checking is not reported by PRISM, so it's not available to
be compared with the IMCA-based approach.

In this research, we started with PRISM as the back-end model checker. After
applying the toolset to di�erent case studies, we found that we should turn to an-
other model checker because of what we explained in this section. Model checking of
PTRebeca models using PRISM is e�cient only if we need to check probabilistic reach-
ability properties. In this case, we can use the explicit engine of PRISM, and model
construction takes little time because the obtained MDP module is input to PRISM in
the form of matrices. Table 5.1 con�rms what we explained in Section 5.1 about the
e�ciency of di�erent PRISM-based approaches, especially about the standard input
language of PRISM. This approach is not suitable for large PTRebeca models as the
model construction takes a lot of time.
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We tried to de�ne a PTRebeca model in terms of PTA modules in PRISM. The
idea is to construct the probabilistic model corresponding to the PTRebeca model
as the parallel composition of PTA modules. As we explained in Section 5.1.3, this
approach is not applicable to PTRebeca models.

5.4 Related Work

IMCA IMCA is a powerful model checker for analyzing interactive Markov chains
(IMCs) and Markov automata (MA). IMCA has a state-based input language and lacks
high-level programming constructs. Expected time and long-run average objectives,
time-bounded probabilistic reachability and probabilistic reachability properties are
supported for MA and IMC models [55], [115].

In contrast to IMCA, PTRebeca provides high-level programming constructs and
primary data structures, which makes modeling easier. In modeling we use the capa-
bilities of PTRebeca, and in analysis we use IMCA for the evaluation of probabilistic
timed properties. The semantics of PTRebeca is de�ned in TMDP. To be able to
use IMCA, the TMDP of a PTRebeca model is converted to an MA. This conversion
preserves all the above mentioned objectives except time-bounded reachability.

UPPAAL SMC In [96], authors introduce UPPAAL SMC in which systems are
represented via networks of automata. In UPPAAL SMC, each component of the sys-
tem is modeled with an automaton whose clocks can evolve with various rates. To
provide e�cient analysis of probabilistic properties, statistical model checking is used
as a technique for fully stochastic models. The work supports modeling and perfor-
mance analysis of systems with continuous time behaviors and dynamical features.

PTRebeca has a Java-like syntax which makes the language easy to use for practi-
tioners. In PTRebeca time is discrete and discrete probability distributions are used
to model probabilistic behaviors. In this work, we use the stochastic model checking
algorithms for performance evaluation of systems via the IMCA model checker.

PRISM PRISM is a well-established and powerful model checker with a state-
based input language. An input model of PRISM is composed of a number of modules
which can share variables and interact with each other. PRISM is well equipped with
theories and reduction techniques [54], but lacks high-level programming constructs
like loops, and primary data structures like arrays, which makes modeling hard.

In contrast, PTRebeca provides high-level object-based programming features and
asynchronous message passing, which makes modeling easier. In modeling we bene�t
from capabilities of PTRebeca, and in analysis we use the capabilities of the PRISM
and the IMCA model checkers. As we showed earlier, using IMCA, we are able to
model check larger PTRebeca models comparing to PRISM as the back-end model
checker.

Modest Modest [108] is a high-level and convenient language for describing stochas-
tic timed and hybrid systems. It supports loop constructs, structs and arrays, exception
handling, and other advanced programming constructs. It also supports various model
checking approaches. For the probabilistic timed fragment of Modest, model checking
can be performed using a digital time semantics [116] or by a direct mapping to PTA.
Both approaches use PRISM as the back-end model checker.
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In contrast to Modest, PTRebeca supports object-based programming features, and
follows the asynchronous message passing paradigm of actors, while Modest relies on
synchronous message passing. We used PRISM and IMCA for the analysis of systems,
which are similar to Modest with respect to the analysis. The Modest toolset supports
all formalisms in modeling and veri�cation which are provided by PRISM and IMCA.

ProbMela ProbMela is a probabilistic version of Promela [117]. The operational
semantics of ProbMela is de�ned as an MDP [118]. In [119], ProbMela is used as
input language for the MDP model checker LiQuor which provides qualitative and
quantitative analysis of LTL properties. There is also a mapping from ProbMela to
the PRISM language, which makes probabilistic analysis possible [120].

PTRebeca is an event-driven and actor-based language whereas ProbMela is process-
based. Both languages are asynchronous in spirit. We proposed a semantics of PTRe-
beca as TMDP (or PTA with digital clocks), enabling the analysis of timing and
probabilistic behaviors of asynchronous systems via PRISM. Additionally, the TMDP
obtained from a PTRebeca model can be converted to an MA and the IMCA model
checker can be used for the performance evaluation analysis.

PMaude PMaude extends standard rewriting theories of Maude with probability
[121]. There is an actor extension of probabilistic rewriting theories for PMaude which
removes nondeterminism. A statistical technique is provided to analyze quantitative
aspects of systems using discrete-event simulation. In comparison with PMaude, mod-
eling asynchronous systems is more straightforward in PTRebeca language as it is an
actor-based language. Also PTRebeca supports nondeterminism in the model and
there is no need to resolve it by assuming distribution on di�erent choices of nondeter-
minism. It is because of the probabilistic model checking facilities which are provided
by PRISM and IMCA.

Actor Languages Some work has been done on the development of actor frame-
works based on familiar languages such as C/C++, Smalltalk, Python, Ruby, .NET
and Java. To mention a few examples, Scala Actors library [122], Kilim [123], and
ActorFoundry [124] are Java implementations of the actor model. More examples of
actor frameworks for the above languages can be found in [125].

Comparing to the above actor-based programming languages, we are using a model-
driven development approach in PTRebeca language. We can start with small models
and use model checking and simulation to �nd possible correctness problems in our
core algorithms, and also �nd how to improve the performance by changing some
parameters while the code is still small, understandable, and easily manageable.

PCreol Creol is an object-oriented modeling language based on concurrent objects,
communicating by asynchronous message passing [20]. PCreol is the probabilistic
extension of Creol, oriented towards quantitative analysis [126]. PCreol is integrated
with VeStA [127] which enables the statistical model checking and quantitative analysis
of PCreol models. Using VeStA, the full state-space exploration is replaced by Monte
Carlo simulation, controlled by means of statistical hypothesis testing.

To have more accurate results, probabilistic model checking is provided for PTRe-
beca models via PRISM and IMCA model checkers, which allows functional correctness
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and performance evaluation of PTRebeca models. Both languages are similar with re-
spect to asynchronous message passing among concurrent objects.

Summary In PMaude, probability distribution functions (rates and stochastic func-
tions) are provided for modeling probabilistic behaviors. Also, PMaude implements
stochastic continuous-time. In ProbMela, probabilities are drawn from discrete proba-
bility distributions, and passage of time can be modeled using a timer process. Modest
enables a direct high-level modelling of PTA and more complex models. In all afore-
mentioned languages, nondeterministic behavior can be modeled. In analysis, PMaude
resolves nondeterminism, and uses statistical model checking to verify properties which
results in inaccurate results. In the analysis of ProbMela and Modest, nondeterminism
is not resolved. Modest also provides the option of a digital clock semantics, which,
just like we did in Section 5.1.1, is handed over to PRISM for model checking.

Our focus in designing PTRebeca has been on ease of modeling and e�ciency
of analysis mainly for asynchronous applications. To this end, we use discrete time
model and discrete probability distributions. These decisions showed to be e�ective
in modeling di�erent applications that we have targeted. Moreover, resolving nonde-
terminism by a discrete probability distribution generates inaccurate estimations, so,
we avoided that by choosing TMDP as the semantics of PTRebeca. We were able to
formalize the advance of time in our model using a single integer-valued variable. The
language design of PTRebeca and its analysis approach when using PRISM, is closest
to the Modest approach, apart from the latter not being object-oriented and not being
asynchronous by design.

We also converted the TMDP resulted from a PTRebeca model to an MA. This
way, we are able to use the IMCA model checker for large PTRebeca models. In MA,
delays are governed by exponential distributions while in PTRebeca time is discrete.
In the conversion, the rate in a Markovian transition of the MA is approximated by
the integer value of the corresponding delay transition in the TMDP. To ensure the
approximations are correct, we mathematically proved that expectation properties are
preserved by this conversion.



93

Chapter 6

Conclusions and Future Work

This dissertation contains two parts. In the �rst part presented in Chapter 3, we de-
veloped techniques and extensions for making modeling and analysis of Timed Rebeca
models easier. From the modeling point of view, we proposed an extension to the
Timed Rebeca language [38] which provides the ability of calling Erlang functions.
This way, the modeler may de�ne functions and modules using all the programming
features of Erlang which makes modeling easier than before. We also added the list
data structure to Timed Rebeca, which is useful in modeling queues and bu�ers.

From the analysis point of view, a notable extension in the language is adding
checkpoint functions to Timed Rebeca models. Our extensions in the language as well
as timed extensions in McErlang provide us with model checking and performance
evaluation of timed models. We developed a toolset to translate the Timed Rebeca
models to Erlang. The mapping rules of the translation from Timed Rebeca to Erlang
have been modi�ed, compared to [38], to support timed extensions in McErlang. While
model checking, safety monitors in McErlang can be de�ned to verify the correctness
of models with respect to safety properties. In addition to these analysis facilities, we
developed a statistical model checking tool for Timed Rebeca models. Using statistical
model checking, we are able to verify safety properties of larger models for which the
McErlang model checking su�ers from the state space explosion problem.

McErlang is used to generate simulation traces of Timed Rebeca models. The
traces are used for performance evaluation and statistical model checking of Timed
Rebeca models. In simulation, the statistical methods are applied to simulation traces
to reveal the system performance. In this work, two kinds of performance analysis are
provided, which are paired-checkpoint analysis and checkpoint analysis. In checkpoint
analysis, our focus is on the evolution of a particular parameter during time. In paired-
checkpoint analysis, we study the di�erence between two values, like the duration of
waiting, or service. This way, we provide the performance analysis of the system.

We evaluated the developed toolset and the proposed approaches using two case
studies. In the elevator example, for di�erent con�gurations we measure the response
time of the requests arriving from each �oor. Each con�guration includes a di�erent
scheduling algorithm and a movement policy, which are responsible for assigning the
requests to the elevators and determining how the elevators move between the �oors,
respectively. We also checked safety properties using both McErlang as the back-
end model checker and the statistical model checking approach. In the ticket service
example, for di�erent settings the mean response times to ticket requests are calculated.
Also, the safety property of �at least one ticket is issued� is checked using safety
monitors and the statistical model checking method.
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In the second part of this dissertation presented in Chapters 4 and 5, we introduced
the PTRebeca language, an actor-based modeling language, and we also developed
appropriate techniques and a supporting toolset for performance evaluation and model
checking of distributed real-time systems with probabilistic behaviors.

In Chapter 4, we introduced the syntax and semantics of PTRebeca for modeling
and veri�cation of probabilistic real-time actor systems. The semantics of PTRebeca is
presented in SOS rules. As the model of time in PTRebeca is discrete, we decided to use
discrete-time MDP with an integer-valued time variable for the semantics of PTRebeca.
PTRebeca models can thus be analyzed against PCTL, expected reachability, and
probabilistic reachability properties.

In Chapter 5, we used PRISM as the back-end model checker for performance
evaluation of PTRebeca models. As the TMDP of a PTRebeca model is input as one
MDP module to PRISM, only small models like the ticket service can be input via
the PRISM input language. To support the modeling of larger PTRebeca models, we
used the explicit engine of PRISM which works with an intermediate transition matrix
representation. Using this method, we could analyze larger models like the toxic gas
sensing system, but PRISM does not support all the features for this format. So, we
could analyze models only against probabilistic reachability properties. To overcome
this shortage, we examined a parallel composition approach in which each PTRebeca
component is converted to a PTA. The parallel composition of all PTAs represents the
model behavior. The resulting PTA can be input to PRISM for performance analysis.
We showed that this approach creates a larger state space comparing to the TMDP
semantics. So, it is not e�cient for performance analysis of PTRebeca models.

To provide probabilistic reachability and expected reachability properties for larger
models, we proposed an approach in which the TMDP of a PTRebeca model is con-
verted to one MA. The MA is input to the IMCA model checker for performance
evaluation. We developed a toolset for automatic mapping of the TMDP to a single
MA. We examined two case studies to show the applicability of our approach. The
toxic gas sensing system was examined using the explicit engine of PRISM. Here, we
obtained the identical results via mapping the TMDP to one MA and using the IMCA
model checker, but in less amount of time. We also modeled a case study of a NoC
network using PTRebeca, and evaluated the expected time properties by using the
developed toolset.

In addition to the bene�ts of using the TMDP semantics for analysis of PTRebeca
models, our technique is based on the actor model of computation where the interaction
is solely based on asynchronous message passing between the components. Hence, the
proposed semantics is general enough to be applied to similar computation models
where there are message-driven communication and autonomous objects as units of
concurrency, and there exists discrete probabilistic behavior in the model as is the
case with agent-based systems.

Future work. The state space generated from the TMDP interpretation of PTRe-
beca models su�ers from the state space explosion problem. In our semantics, the
executions of statements of message servers are interleaved from various actors that
are concurrently being executed in the real-time system. The semantics also includes a
discrete global time and probabilistic information which make the state space explosion
problem even more serious. In the semantics, the local time of all actors progresses in
a lock step manner with the global time.
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In [39], the authors proposed a �oating time transition system (FTTS) as a solution
of the state space explosion problem in model checking of Timed Rebeca models. In
FTTS, actors proceed with their own rates with independent local clocks instead of
synchronizing with the global time. In the Timed Rebeca language, and consequently
in PTRebeca language, actors can request a service from other actors by sending a
message to them; each actor has a bag of messages which stores the received messages.
The receiver actor takes a message from its bag and executes its corresponding message
server to provide the requested service. In FTTS, by taking a transition, all statements
of a message server of an actor are executed and the execution result is available in
the next state. The execution of statements of the message server does not interleave
with the execution of statements of other message servers from other actors. Since
the message server may include timed statements, the local time of actors can have
di�erent values in a state. Relaxing the synchronization of progress of time among
actors and the complete execution of a message server in a step avoid many interleaves
and result in a signi�cant state space reduction in FTTS.

As a future work, we can propose probabilistic �oating time transition system
(PFTTS) as an alternative semantics for the PTRebeca language. PFTTS is a proba-
bilistic extension of FTTS proposed in [39]. Similar to FTTS, the proposed semantics
reduces the state space signi�cantly in comparison to the TMDP semantics. Our in-
tuitive understanding is that for a given PTRebeca model, its TMDP interpretation
and its PFTTS interpretation are probabilistic trace-distribution equivalence, but a
formal proof is essential. If probabilistic trace-distribution equivalency holds, there is
no LTL-without-Next formula which distinguishes two semantics in the sense that the
min/max probabilities are the same for whatever formula is picked. As actions are
not logged in the traces of a TMDP, internal actions are not logged in the traces, so
LTL-without-Next properties are preserved. Therefore, the model checking algorithms
proposed for LTL properties can be applied to PFTTS instead of TMDP. Hence, we
should also develop a supporting toolset to generate the PFTTS semantics of a PTRe-
beca model and to verify LTL properties.

In this work, we used PRISM and IMCA for performance evaluation and model
checking of PTRebeca models. As a future work, we can use Modest as the back-end
toolset for the analysis of PTRebeca models. The Modest toolset supports the model-
ing and analysis of hybrid, real-time, distributed and stochastic systems. Modest is a
modular framework centered around the stochastic hybrid automata (SHA) formalism
[128], and provides a variety of input languages and analysis back-end tools. A wide
range of well-known and extensively studied formalisms such as PTA, timed automata
(TA), MDP, MA, IMC can be seen as special cases of SHA. The Modest toolset uses
well-established tools such as UPPAAL and PRISM for model checking of TA and
PTA, respectively. Therefore, Modest can provide what we did for the analysis of
PTRebeca models, and can be chosen as an alternative back-end tool.

In this work, we provided model checking for performance analysis of PTRebeca
models. If a model is too large to be analyzed by model checking, a simulation tech-
nique is the only way of analyzing the model. As a future work, we should provide
simulation techniques for PTRebeca models. We can propose a mapping from PTRe-
beca models to appropriate underlying models in Modest, and use the modes tool for
simulation. The modes tool, a discrete-event simulator in Modest toolset, uses meth-
ods based on partial order reduction to decide, on-the-�y whether any nondeterminism
it encounters can be safely resolved in an arbitrary way, or whether doing so could skew
the simulation results [129].
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In partial order reduction, only nondeterminism that results from interleaving due
to parallel composition can be identi�ed as spurious. The presence of a spurious
nondeterministic choice in the model does not actually a�ect the simulation results.
In modes, simulation proceeds as usual until a nondeterministic choice is encountered.
Whenever that is the case, the partial order method is invoked to check which of the
alternatives can safely be eliminated; if all can but one, simulation proceeds with that
one [86].
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Appendix A

Pseudocode of Policies

1 msgsrv handleRequst(Floor f)
2 {
3 if (sender is instance of Floor) {
4 if Contains(ElvQueue1,f) || Contains(ElvQueue2,f)
5 donothing;
6 else {
7 if (ElvLoc1 == f)
8 Add(ElvQueue1,f);
9 else if (ElvLoc2 == f)
10 Add(ElvQueue2,f);
11 else if (ElvLoc1 == ElvLoc2){
12 RandQueue = chooseRand(ElvLoc1,ElvQueue2);
13 Add(RandQueue,f);
14 }
15 else if (abs(f-ElvLoc1) > abs(f-ElvLoc2))
16 Add(ElvQueue2,f);
17 else
18 Add(ElvQueue1,f);
19 }
20 }
21 else if (sender is instance of Elevator){
22 if (sender == Elevator1 && ElvLoc1 != f && !Contains(ElvQueue1,f))
23 Add(ElvQueue1,f);
24 else if (sender == Elevator2 && ElvLoc2 != f && !Contains(ElvQueue2,f))
25 Add(ElvQueue2,f);
26 else if (ElvLoc1 == f || ElvLoc2 == f)
27 SendMessage(sender,StopAndOpen);
28 }
29 // any idle elevators should be started
30 ...
31 }

Listing A.1: Pseudo code of message server HandleRequest where the scheduling
policy is shortest distance policy.
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1 /* Scheduling policy: Shortest distance policy with movement priority. */
2 ...
3 /* Check if any elevators are already located on the requested floor */
4 ...
5 else if (abs(floor-Elv1Loc) > abs(floor-Elv2Loc)){
6 if (floor > Elv2Location && Elv2Movment==1)
7 Add(Elv2Queue,floor);
8 else if (floor < Elv2Location && Elv2Movment==-1)
9 Add(Elv2Queue,floor);
10 else if (floor > Elv1Location && Elv1Movement==1)
11 Add(ElvQueue1,floor);
12 else if (floor < Elv1Location && Elv1Movement==-1)
13 Add(ElvQueue1,floor);
14 else
15 Add(ElvQueue2,floor);
16 }
17 else{
18 if (floor > Elv1Location && Elv1Movment==1)
19 Add(Elv1Queue,floor);
20 else if (floor < Elv1Location && Elv1Movment==-1)
21 Add(Elv1Queue,floor);
22 else if (floor > Elv2Location && Elv2Movement==1)
23 Add(ElvQueue2,floor);
24 else if (floor < Elv2Location && Elv2Movement==-1)
25 Add(ElvQueue2,floor);
26 else
27 Add(ElvQueue1,floor);
28 }
29 ...

Listing A.2: Timed Rebeca pseudo code for scheduling policy shortest distance with
movement priority. [...] denotes the deleted code which has been already shown
in Listing A.1. The variable �oor is the requested �oor number sent by the rebec
pers.

1 /* Scheduling policy: Shortest distance policy with load balancing. */
2 ...
3 /* Check if any elevators are already located on the requested floor */
4 ...
5 else if (abs(floor-Elv1Loc) > abs(floor-Elv2Loc)){
6 if (Size(Elv2Queue) < Size(Elv1Queue) || Size(Elv2Queue) = Size(Elv1Queue))
7 Add(Elv2Queue,floor);
8 else
9 Add(Elv1Queue,floor);
10 }
11 else {
12 if (Size(Elv1Queue) < Size(Elv2Queue) || Size(Elv1Queue) = Size(Elv2Queue))
13 Add(Elv1Queue,floor);
14 else
15 Add(Elv2Queue,floor);
16 }
17 ...

Listing A.3: Timed Rebeca pseudo code for scheduling policy shortest distance with
load balancing. [...] denotes deleted code which has been already shown in Listing
A.1. The variable �oor is the requested �oor number sent by the pers rebec.
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1 msgsrv handleElevatorMovement(int movement)
2 {
3 // movement=0 means elevator stopped,
4 // movement=1 means elevator is going up
5 // movement=-1 means elevator is going down
6 if (sender == Elevator1 && movement != 0){ //moving elevator
7 Elv1Movement = movement;
8 if (movement == -1)
9 Elv1Location-=1;
10 else if (movement == 1)
11 Elv1Location+=1;
12 if (Size(Elv1Queue) > 0){
13 if (Contains(Elv1Queue, Elv1Location)){
14 Elv1Queue.Remove(Elv1Location);
15 SendMessage(Elevator1,StopOpen);
16 }
17 else{
18 if (Next(Elv1Queue,Elv1Location,1) != -1){
19 Elv1Movement = 1;
20 SendMessage(Elevator1,MoveUp);
21 }
22 else{
23 Elv1Movement = -1;
24 SendMessage(Elevator1,MoveDown);
25 }
26 }
27 }
28 }
29 else if (sender == Elevator1){ // Stopped Elevator
30 Elv1Movement = movement;
31 if (Elv1Movement == 0 && Size(ElvQueue1) > 0){
32 if (Next(Elv1Queue,Elv1Location,1) != -1){
33 Elv1Movement = 1;
34 SendMessage(Elevator1,MoveUp);
35 }
36 else{
37 Elv1Movement = -1;
38 SendMessage(Elevator1,MoveDown);
39

40 }
41 }
42 }
43 // movement for elevator 2
44 ....
45 }

Listing A.4: Timed Rebeca pseudo code of message server handleElevatorMovement
where the movement policy is up priority policy. Contains and Next are custom
functions. Pseudo code presented is for Elevator 1 in the model.
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1 /* Movement policy: Maintain movement Policy. */
2 ...
3 /* Check if elevators are on the requested floor before moving */
4 ...
5 /* If elevator queue is not empty: */
6 /* If movement is UP and there is a request higher than the current floor then go up.

Otherwise go down. */
7 if (Movement==1){
8 if (Next(Elv1Queue,Elv1Location,1) != -1){
9 Elv1Movement=1;
10 SendMessage(Elevator1,MoveUp);
11 }
12 else{
13 Elv1Movement=-1;
14 SendMessage(Elevator1,MoveDown);
15 }
16 /* ElseIf movement is DOWN and there is a request lower than the current floor then go

down. Otherwise go up. */
17 else{
18 if (Next(Elv1Queue,Elv1Location,-1) != -1){
19 Elv1Movement=-1;
20 SendMessage(Elevator1,MoveDown);
21 }
22 else{
23 Elv1Movement=1;
24 SendMessage(Elevator1,MoveUp);
25 }
26 ...

Listing A.5: Timed Rebeca pseudo code for movement policy Maintain movement.
The pseudo code shows the algorithm for elevator 1.
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Appendix B

Proofs of Theorems

Proof of Theorem 2. We show that

L(eTmin(s,♦G)) = eTmin(s,♦G) (B.1)

for all s ∈ S. To this aim, we distinguish three cases which are s ∈ DS \G, s ∈ PS \G,
and s ∈ G.

� in case of s ∈ DS \G, the left-hand side of (B.1) is:

L(eTmin(s,♦G)) = ds + eTmin(t,♦G), (B.2)

where ds is delay time reaching state t from state s. This delay time is deter-
ministic. On the other hand,

eTmin(t,♦G) = inf
D
Et,D(VG) = inf

D

∑
Paths

VG(π) · Prt,D(π) (B.3)

Combining (B.2) and (B.3), we have

L(eTmin(s,♦G)) = ds + inf
D

∑
Paths

VG(π) · Prt,D(π)

= inf
D

∑
Paths

(VG(π) + ds) · Prt,D(π)

= inf
D

∑
Paths

(VG(π)) · Prs,D(π)

= eTmin(s,♦G)

(B.4)

Note that in (B.4), in the second line, paths, start from t, whereas, in the third
line, paths start from s.

� in case of s ∈ PS \G there is:
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eTmin(s,♦G) = inf
D
Es,D(VG) = inf

D

∑
Paths

VG(π) · Prs,D(π)

= inf
D

∑
s

α,µ,0−−−→ t

D(s)(α) · E
t,D(s

α,µ,0−−−→ ·)
(VG)

= inf
D

min
s
α→µsα

∑
t∈S

µsα(t) · E
t,D(s

α,µ,0−−−→ ·)
(VG)

= min
s
α→µsα

inf
D

∑
t∈S

µsα(t) · E
t,D(s

α,µ,0−−−→ ·)
(VG)

= min
s
α→µsα

inf
D

∑
t∈S

µsα(t) · Et,D(VG)

= min
s
α→µsα

∑
t∈S

µsα(t) · eTmin(s,♦G)

= min
α∈Act(s)

∑
t∈S

µsα(t) · eTmin(s,♦G)

= L(eTmin(s,♦G))

� in case of s ∈ G, based on the de�nition there is eTmin(s,♦G) = inf
D

∑
Paths

VG(π) ·

Prs,D(π) = 0, which is the same as the value of the Bellman operator for goal
states.

Proof of Theorem 3. From [110], cRmin(s,♦G) is the unique �xpoint of the bellman
operator L

′
de�ned as

[L
′
(v)](s) = min

α∈Act(s)

c(s, α) +
∑

s′∈S\G

P(s, α, s
′
).v(s

′
) +

∑
s′∈G

P(s, α, s
′
).g(s

′
)

 . (B.5)

Now we show that the Bellman operator L de�ned in Theorem 2, and the Bellman
operator L

′
de�ned in (B.5) for sspet(M) are the same. By de�nition 19, for each

s ∈ S, g(s) = 0, therefore

[L
′
(v)](s) = min

α∈Act(s)

c(s, α) +
∑

s′∈S\G

P(s, α, s
′
).v(s

′
)

 . (B.6)

Consider three cases, s ∈ DS \G, s ∈ PS \G and s ∈ G.

� Case (I): Assume s ∈ DS \G, by de�nition 19, c(s, α) = ds and

P(s, α, s
′
) =

{
1 s

′
is reaching state from s by delay ds and α = ⊥,

0 otherwise

Only action belongs to Act(s) is ⊥, furthermore only state after s is state s
′
,

thus, from (B.6),

[L
′
(v)](s) = min

α∈Act(s)

c(s, α) +
∑

s′∈S\G

P(s, α, s
′
).v(s

′
)

 = ds + v(s
′
),

where s
′
is deterministic reaching state from s by delay time ds. However from

Theorem 2, ds + v(s
′
) = [L(v)](s), for each s ∈ DS \G, so in this case, theorem

is proved.
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� Case (II): Assume s ∈ PS \ G. By De�nition 19, P(s, α, s
′
) = µsα(s

′
) and

c(s, α) = 0. Therefore,

[L
′
(v)](s) = min

α∈Act(s)

c(s, α) +
∑
s′∈S

P(s, α, s
′
).v(s

′
)

 = min

∑
s′∈S

µsα(s
′
).v(s

′
)


However in this case

[L(v)](s) = min

∑
s′∈S

µsα(s
′
).v(s

′
)

 ,

Therefore [L
′
(v)](s) = [L(v)](s), and the proof of the theorem in this case is

complete.

� Case (III): Assume s ∈ G. Here in addition to g(s) = 0, we have c(s, α) = 0, for
each action α, and P(s, α, s

′
) = 0, for each α ∈ Act(s) and s′ ∈ S. Therefore

[L
′
(v)](s) = min

α∈Act(s)

c(s, α) +
∑

s′∈S\G

P(s, α, s
′
).v(s

′
)

 = 0 = [L(v)](s).

Now the proof is complete.

Proof of Theorem 4. We show that

L(eRmin(s,♦G)) = eRmin(s,♦G) (B.7)

for all s ∈ S. To this aim, we distinguish three cases which are s ∈ DS \G, s ∈ PS \G,
and s ∈ G.

� in case of s ∈ DS \G, the left-hand side of (B.7) is:

L(eRmin(s,♦G)) = ρ(s)× ds + eRmin(t,♦G), (B.8)

where ρ(s) is the reward of staying in s. This reward is deterministic. On the
other hand,

eRmin(t,♦G) = inf
D
Et,D(RG) = inf

D

∑
Paths

RG(π) · Prt,D(π) (B.9)

Combining (B.8) and (B.9), we have

L(eRmin(s,♦G)) = ρ(s)× ds + inf
D

∑
Paths

RG(π) · Prt,D(π)

= inf
D

∑
Paths

(RG(π) + ρ(s)× ds) · Prt,D(π)

= inf
D

∑
Paths

(RG(π)) · Prs,D(π)

= eRmin(s,♦G)

(B.10)

Note that in (B.10), in the second line, paths, start from t, whereas, in the third
line, paths start from s.



116 APPENDIX B. PROOFS OF THEOREMS

� in case of s ∈ PS \G there is:

eRmin(s,♦G) = inf
D
Es,D(RG) = inf

D

∑
Paths

RG(π) · Prs,D(π)

= inf
D

∑
s

α,µ,0−−−→ t

D(s)(α) · E
t,D(s

α,µ,0−−−→ ·)
(RG) + r(s, α)

= inf
D

min
s
α→µsα

∑
t∈S

µsα(t) · E
t,D(s

α,µ,0−−−→ ·)
(RG) + r(s, α)

= inf
D

min
s
α→µsα

r(s, α) +
∑
t∈S

µsα(t) · E
t,D(s

α,µ,0−−−→ ·)
(RG)

= min
s
α→µsα

inf
D

r(s, α) +
∑
t∈S

µsα(t) · E
t,D(s

α,µ,0−−−→ ·)
(RG)

= min
s
α→µsα

inf
D

r(s, α) +
∑
t∈S

µsα(t) · Et,D(RG)

= min
s
α→µsα

r(s, α) +
∑
t∈S

µsα(t) · eRmin(s,♦G)

= min
α∈Act(s)

r(s, α) +
∑
t∈S

µsα(t) · eRmin(s,♦G)

= L(eRmin(s,♦G))

� in case of s ∈ G, based on the de�nition there is eRmin(s,♦G) = inf
D

∑
Paths

RG(π) ·

Prs,D(π) = 0, which is the same as the value of the Bellman operator for goal
states.
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