
INSIGHTS INTO WASTE IN AGILE
SOFTWARE DEVELOPMENT

Michael Simader
Master of Science
Computer Science
December 2013
School of Computer Science
Reykjavík University

M.Sc. PROJECT REPORT
ISSN 1670-8539

Insights into Waste in Agile Software Development

by

Michael Simader

Project report submitted to the School of Computer Science
at Reykjavík University in partial fulfillment of

the requirements for the degree of
Master of Science in Computer Science

December 2013

Project Report Committee:

Marta Kristín Lárusdóttir, Supervisor
Assistant Professor, Reykjavik University

Asa Cajander
Lecturer, Uppsala University

Guðlaugur Stefán Egilsson
Software Developer and Founder, Sprettur

Copyright
Michael Simader
December 2013

Insights into Waste in Agile Software Development

Michael Simader

December 2013

Abstract

Agile development processes are less prone to waste than traditional pro-
cesses, e.g. waterfall model. Waste can be seen as non-value adding activ-
ities within the software development process, e.g. the loss of knowledge.
Waste can remain invisible though, only the effects become apparent. The
first step to address inefficiencies is to identify them. When IT-professionals
are aware of waste, they may be able to address and eliminate it. Hence, the
knowledge and understanding of waste is the cornerstone of diminishing it.
IT professionals in Iceland were interviewed regarding waste in their orga-
nizations, all of which applied agile development processes. Even though
there are efforts to reduce waste, these organizations are still confronted with
problems attributed to miscommunication and the impediments by the exter-
nal environment. The results of the interviews show the flaws within the de-
livery chain and provide software development organizations with important
insights into waste. This can help to raise the awareness of waste in software
development and eliminate non-value adding activities in general.

iv

v

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 Background 5
2.1 Agile Software Development . 5

2.1.1 SCRUM . 6
2.2 Lean Software Development . 8

2.2.1 Principle 1: Eliminate Waste . 8
2.2.2 Principle 2: Build Quality In . 9
2.2.3 Principle 3: Create Knowledge 9
2.2.4 Principle 4: Defer Commitment 10
2.2.5 Principle 5: Deliver Fast . 10
2.2.6 Principle 6: Respect People . 11
2.2.7 Principle 7: Optimize the Whole 11
2.2.8 Kanban Overview . 11

2.3 The Seven Wastes . 12
2.4 Value . 14

3 Methodology 15
3.1 The Interviews . 15

3.1.1 Companies . 16
3.1.2 Informants . 17
3.1.3 Interview Questions . 18

3.2 Qualitative Data Analysis . 19
3.3 Limitations . 20

4 Results of the Interviews 23

vi

4.1 The informants’ definition of the term waste in software development . . 23
4.2 Occurrence of Partially Done Work . 27
4.3 Occurrence of Extra Features . 29

4.3.1 Customer Involvement . 29
4.3.2 Extra Features . 31

4.4 Relearning . 32
4.4.1 Loss of Knowledge . 32
4.4.2 Team Communication . 33

4.5 Handoffs . 34
4.6 Task Switching . 35

4.6.1 Task Assignment . 36
4.6.2 Number of Tasks . 36

4.7 Delays . 37
4.8 Defects . 38
4.9 Continuous Improvement . 40

4.9.1 Process . 40
4.9.2 Metrics . 41

4.10 Difference between BESPOKE and OFF-THE-SHELF Vendors 42

5 Discussion of the Results 45
5.1 The informants’ definition of the term waste in software development . . 46
5.2 Occurrence of Partially Done Work . 47
5.3 Occurrence of Extra Features . 48

5.3.1 Customer Involvement . 48
5.3.2 Extra Features . 48

5.4 Loss of Knowledge . 49
5.5 Handoffs . 50
5.6 Task Switching . 51
5.7 Delays . 51
5.8 Defects . 52
5.9 Continuous Improvement . 53
5.10 Difference between BESPOKE and OFF-THE-SHELF Vendors 54
5.11 Is relentless elimination of Waste a good approach? 55

6 Conclusion 57

Bibliography 59

vii

List of Figures

2.1 Scrum Process (Schwaber, 2004) . 7

4.1 Basic Handoffs . 35

viii

ix

List of Tables

2.1 Agile Manifesto as described in (Beck et al., 2001) 6
2.2 Agile Manifesto and the Realization in Scrum 8
2.3 The seven wastes mapped to software development (Poppendieck & Pop-

pendieck, 2007, p.74) . 12

3.1 Overview of the informants’ roles . 17
3.2 List of Interview Questions . 19
3.3 Themes and Sub-Themes according to Interpretative phenomenological

analysis (Silverman & Rapley, 2011) . 20
3.4 Number of ICT enterprises and employees in ICT in Iceland (Statistics

Iceland office, 2013) . 21

4.1 Results of the informants’ definition of the term waste in software devel-
opment . 25

4.2 Frequency of references to value during the interviews 27
4.3 Comparison Bespoke and Off-the-shelf 42

x

1

Chapter 1

Introduction

Business value is delivered relatively late in traditional development processes which

raises the volatility of the project’s budget and time estimates and lowers the adaptabil-

ity of the software. Agile processes provide a solution to these problems by introducing

incremental stages and focussing on delivering business value as fast as possible. As a

result, agile software development has been a rising movement over the last years, espe-

cially in Iceland. Agile processes aim to alleviate disadvantages that come with traditional

processes, e.g. the waterfall model. This might sound like a major improvement, yet there

might be some flaws hidden in the correct implementation of agile processes and espe-

cially the adaptation to environmental factors. These environmental factors incorporate

the interaction with customers for instance. As Highsmith (2009) stated interaction is

more important than comprehensive documentation. It is crucial to balance the neces-

sities and agility within the agile process and follow a steady improvement approach.

Those flaws or inefficiencies might lead to hinder the ability to deliver value to the cus-

tomer. Hence, activities occur that are non-value adding to the customer’s business. This

phenomenon is further described as waste.

2 Insights into Waste in Agile Software Development

Lean Software Development has developed along with the agile processes. Within

Lean Software Development the elimination of waste is one of the most important prin-

ciples. This set of principles can be utilized to support agile processes. Anderson (2012)

describes that agile processes contain little waste and hence produce a better economic

outcome than traditional processes. In order to accomplish the elimination of waste, it is

necessary to be able to identify waste within the software development process. Hence,

the knowledge and understanding of waste is the cornerstone of diminishing it. When

IT-professionals are aware of the waste in their software processes, they may be able to

address waste and eliminate it. This awareness is subject to the research presented in

this thesis. Are IT-professionals aware of waste within the software development pro-

cess? There are many commonalities between agile processes and Lean Software De-

velopment. This thesis mainly focuses on B2B software providers applying Scrum as

development process. B2B software providers are inclined to have a closer relationship

to the customers, this might cause problems to the same extent as it offers benefits, as the

research will show.

Furthermore, this research should help IT-professionals to identify waste within their

software processes. For this purpose qualitative research was conducted in form of inter-

views to find out what typical types of waste occur in Icelandic IT organizations. This

does not include a quantifiable assessment of waste in general. The focus is merely on the

perception of waste within the software development process. The work of Poppendieck

and Poppendieck (2007) presents a mapping of waste types from Lean Management to

software development. These Seven Wastes build the foundation for the qualitative in-

terviews in order to categorize the types of waste within the IT organizations. These

results can be used by IT professionals as a starting point to analyze waste within their

development teams.

Michael Simader 3

The following chapters cover the theoretical background that is necessary for the un-

derstanding of waste in software development. This is followed by the methodology

and results. To complete with the results are discussed and a conclusion is given in the

end.

4

5

Chapter 2

Background

The following chapter explains the theoretical background of the thesis. In the be-

ginning the agile software development processes will be presented, Scrum in particular.

Followed by an explanation of agile software development and the Lean Software De-

velopment principles. The Seven Wastes by Poppendieck and Poppendieck (2007) are

discussed including the concept of value as their counterpart.

2.1 Agile Software Development

In February 2001 advocates of software development processes like eXtreme Program-

ming, Scrum, Crystal and Feature Driven Development met to agree on the Agile Man-

ifesto. It was remarkable that those 17 creators brought forward their common interests

and philosophies to combine them into the Agile Manifesto rather than endorsing their

own ideas coming from their expertise. The term Agile Software Development was born

(Williams, 2012). The following table 2.1 depicts their ideas. Beck et al. (2001) state in

addition to the manifesto the following: “That is, while there is value in the items on the

right, we value the items on the left more.”

6 Insights into Waste in Agile Software Development

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

Table 2.1: Agile Manifesto as described in (Beck et al., 2001)

Individuals and interpersonal communication between stakeholders, also a rapid feed-

back based delivery of value, i.e. software, are in the center of attention. These methods

are iterative and incremental, hence it is possible to adapt to a changing environment and

circumstances (Beck et al., 2001). Highsmith (2009) criticizes the so called “plan-driven”

methodologies for the missing communication and collaboration as follows: “Documen-

tation is not a substitute for interaction.” This is relevant for the results as they are pre-

sented in section 4.

2.1.1 SCRUM

Sutherland and Schwaber (1997) presented a paper on Scrum methodologies. Over the

following years their experiences and industry best practices were merged into what is

now known as Scrum. Scrum is an agile development process and belongs to the same

family of management processes like eXtreme Programming or Crystal. All of which are

characterized by the agile manifesto as shown in section 2.1. In this line of agile methods

Scrum is a widespread and the most commonly used process (Leffingwell, 2011). As the

work of Larusdottir (2009) has shown, 37% of the respondents in her study apply Scrum

as development method, whereas 44% use their own process the rest 19% account for XP

or traditional methods, e.g. the waterfall model.

Sutherland and Schwaber (1997) also defined the roles as follows, Product Owner,

Scrum Master, Scrum Team. The Scrum Master coaches the self-organizing and self-

accountable team and is responsible for the compliance to the process. He handles the

Scrum Team’s problems that impede their work and removes obstacles. The Product

Michael Simader 7

Figure 2.1: Scrum Process (Schwaber, 2004)

Owner can be seen as the customer proxy and is responsible to represent the needs and

ideas of other stakeholders and the business. He also defines and maintains the user

stories, which are collected in the Product Backlog, as functional and non-functional re-

quirements to the software. The Scrum Team is a self-organizing and self-accountable

team and works on and develops independently the software.

A development cycle is called Sprint and the duration should be between 2 and 4 weeks.

Figure 2.1 depicts an overview of the process of Scrum. The user stories are prioritized

by the Product Owner and the Scrum Team estimates and chooses user stories which they

commit on to develop in the following sprint. The Scrum Team collects feedback from the

customers and reacts to it accordingly in the following sprints. Scrum is an agile approach

and adheres to the principles of the Agile Manifesto, as can be seen in table 2.2.

Principles in Agile Manifesto Realization in Scrum

Individuals and Interactions Team manages Sprint Backlog

Team is self-organizing and self-accountable

Daily Scrums

Working Software New functionality each Sprint

Customer Collaboration Product Owner

Sprint Planning

Sprint Review

8 Insights into Waste in Agile Software Development

Principles in Agile Manifesto Realization in Scrum

Responding to Change Daily Scrums

Sprint Planning

Sprint Retrospective

Table 2.2: Agile Manifesto and the Realization in Scrum

2.2 Lean Software Development

Lean Management is a holistic approach towards the objective to provide the right prod-

uct in the correct amount at the right place and time in the right quality. Lean Software

Development is not a process like Scrum but can be seen as as a set of principles extending

the ideas of agile development (Kniberg, 2010). The following section summarizes the

seven principles in Lean Software Development. The first and most important principle is

the subject of this thesis. It has been stated by Ohno (1988), that the following principles

are necessary in order to satisfy the first principle, Eliminate Waste.

2.2.1 Principle 1: Eliminate Waste

According to Ohno (1988) the highest goal to pursue is “the absolute elimination of

waste”. This can be achieved by removing non-value adding waste in the timeline of

starting with receiving an order until ending with collecting the cash. The phases of value

creation lie in between those two points in time, e.g. requirements engineering and soft-

ware development. It is necessary to develop an understanding of what customers value in

the product. This value might change over time, as the customers do not really know what

they want. Even after the software had been distributed customers might change their per-

spective of value. The next step is to identify non-value adding waste. Anything that does

Michael Simader 9

not contribute to a customer’s value can be considered as waste. Poppendieck and Pop-

pendieck (2007, p.23) developed a mapping of types of waste from the original Toyota

Production System to software development, as can be seen in the section 2.3.

2.2.2 Principle 2: Build Quality In

The avoidance of defects in the product is more important than testing the quality into

the product at later stages. Hence, the focus is not on managing defects in a tracking

system, but to prevent them in the very beginning. Defects managed in a queue within a

tracking system can be considered as a waste of the type Partially Done Work, compare

with section 2.3. (Poppendieck & Poppendieck, 2007, p.25)

Shingo (1982) argued that there are two types of inspection: inspection to prevent de-

fects and inspection after defects occurred. If a defect is found, the production is stopped,

and the cause for the defect should be detected and removed immediately. This requires a

highly disciplined organization. (Poppendieck & Poppendieck, 2007)

2.2.3 Principle 3: Create Knowledge

Software development is a constant process of knowledge creation. Even if knowledge

exists prior to the actual coding, in form of requirements, the detailed design and archi-

tecture will come in further stages of the development process. Early designs can not

take the complexity into account, as it is revealed in the implementation process. Fur-

thermore, as aforementioned, customer’s change their perspective of what they want over

time, a fixed and inflexible design can hinder the process of creation and is not open for

feedback. (Poppendieck & Poppendieck, 2007, p.29)

10 Insights into Waste in Agile Software Development

2.2.4 Principle 4: Defer Commitment

The first goal should be to make situations based on decisions reversible, so they can

be easily changed afterwards. This does not have to be applied on every decision, but

the software system should be open for different options at points changes are likely to

occur. If a decision is irreversible, the decision maker should wait until the latest possible

moment. At this moment most of the information is present and it is more likely to make

the correct decision. Although team-leaders tend to manage uncertainty in their early

occurrence and estimate risks. Leaving options open and experimenting with them can

help with gathering information and postpone irreversible decisions to the latest possible

point of time. (Poppendieck & Poppendieck, 2007, p.32)

2.2.5 Principle 5: Deliver Fast

One of the main principles in agile methodologies is to deliver features with the high-

est business value first. This has a positive effect on the customer satisfaction, as the

customer can start using the software in early stages of the project. With each iteration

new business value is delivered to the customer. As there are also changes involved in

this process, the development team must have good reflexes and be disciplined in order to

keep the level of quality on the desired level. This is supported by a continuously improv-

ing environment and engaged and skilled people. Quality in general can be built in in two

ways. Firstly, following a slow and careful approach, which might have negative effects

on the customer excitement and changes may impede with the process even more, which

leads to more waste. Secondly, a fast and reflexive approach with continuous feedback

from the customer. (Poppendieck & Poppendieck, 2007, p.34)

Michael Simader 11

2.2.6 Principle 6: Respect People

In agile methodologies the awareness of people who add value to the product must

be high and those people need to be respected by empowering them to develop their own

practices and improvements to the process. This leads to a higher level of problem-solving

and reflection skills. (Leffingwell, 2011, p.23)

2.2.7 Principle 7: Optimize the Whole

As stated in Principle 1: Eliminate Waste the main goal is to optimize the whole value

stream within an organization. It is not enough or might be even counterproductive to

concentrate on single aspect of the value stream. This needs to be supported by the

whole organization and the managers need to be able to defer responsibilities to lower

levels (Poppendieck & Poppendieck, 2007, p.38). Auxiliary tools can be used to give an

overview of the situation, e.g. Kanban-board.

2.2.8 Kanban Overview

Kanban is a lean approach to agile software development. Kanban is a tool for visual

management and literally means “visual card”. The following listing shows how Kanban

works (Kniberg, 2010):

• Visualize the Workflow Split the work into smaller chunks, write each item on a

card and attach them to a wall

• Limit Work in Progress (WIP) assign explicit limits to which how many items

may be in progress at each workflow step

• Measure the lead time Average time to complete one item (cycle-time), optimize

the process to make the lead time as predictable and small as possible

12 Insights into Waste in Agile Software Development

Kanban does not define particular roles or meetings, but can be added as needed,

e.g. Daily Meetings as they occur in Scrum are commonly used. Kanban describes the

Kanban-Board as a visiual instrument as the only artifact. Again, further artifacts can be

added to the process. However, Kanban is a light-weight and agile approach and meetings,

roles and artifacts should only be carefully and justifiably added to each individual pro-

cess (Kniberg, 2010). The highest goal is to eliminate waste, not to introduce additional

waste.

2.3 The Seven Wastes

Shingo (1982) has studied lean manufacturing and identified seven wastes of manu-

facturing. Poppendieck and Poppendieck (2007) mapped these seven wastes to software

development equivalences, as table 2.3 shows.

Manufacturing Software Development
In-Process Inventory Partially Done Work
Over-Production Extra Features
Extra Processing Relearning
Transportation Handoffs
Motion Task Switching
Waiting Delays
Defects Defects

Table 2.3: The seven wastes mapped to software development (Poppendieck & Pop-
pendieck, 2007, p.74)

Partially Done Work is present when artifacts in the development process are impeded

in the process of start of work to integrated, tested, documented and deployable. Par-

tially done work can be diminished by dividing work into smaller chunks or iterations.

(Poppendieck & Poppendieck, 2007, p.74) Middleton, Flaxel, and Cookson (2005) de-

scribe that bottlenecks delay the product from being deployed, therefore a continuous

flow should be pursued. A high amount of requirements put into the system is mentioned

Michael Simader 13

as a typical example. Further examples for partially done work are Uncoded Documen-

tation, Unsynchronized Code, Untested Code, Undocumented Code, Undeployed Code.

(Poppendieck & Poppendieck, 2007, p.74)

Extra Features are similar to over-production, which is deemed by Ohno (1988) as the

worst of the seven wastes. The feature should not be developed, if there is no clear value

for the customer, or the feature does not support the accomplishment of the customer’s

current job. (Poppendieck & Poppendieck, 2007, p.75)

Relearning stands for rediscovering forgotten knowledge. Therefore it is essential to

create and preserve knowledge as part of a learning process. Further, it is crucial to uti-

lize existing knowledge and experiences from employees. (Poppendieck & Poppendieck,

2007, p.76)

Handoffs happen when knowledge is transferred from one colleague to another. With

every single handoff tacit knowledge gets lost, because it is very difficult to make tacit

knowledge explicit. Poppendieck and Poppendieck (2007) state that only 6 % of the

original knowledge is left after 4 handoffs. Therefore it is necessary to reduce handoffs in

order to reduce waste. (Poppendieck & Poppendieck, 2007, p.77)

Task Switching requires knowledge workers to reset their mind after each switch. This

resetting is time consuming and therefore waste. It is considered, that working on tasks

in sequence compared to in parallel is more time efficient. As a result the number of

tasks ought to be kept to a minimum in order to reduce task switches. (Poppendieck &

Poppendieck, 2007)

Delays occur in many different situations. One of the most important types of delay is

waiting for people in different areas. Developers make critical decision about every 15

14 Insights into Waste in Agile Software Development

minutes. These decisions can only be made, if the required information is present. Co-

located teams with short iterations and regular feedback can provide developers with the

information they need to make decisions without delay. Hence, knowledge needs to be

available when and where it is needed. (Poppendieck & Poppendieck, 2007)

Defects within the software cause numerous problems and may lead to customer dissat-

isfaction. The target should be to deploy or deliver the product with the lowest possible

defect rate. Mistake-proofing tests and the discovery of defects in early stages should be

in focus of the whole development process. (Poppendieck & Poppendieck, 2007)

2.4 Value

Waste is non-added value within the defined timeline. Hence, it is necessary to study

the value when studying waste. The view on value varies from company to company

and also if product development or project management is exercised. Within product

development oriented organization value might be market-share or profitability, whereas

in project management organizations value could be understood as the ability to meet

costs, schedule and scope commitment constraints. (Poppendieck & Poppendieck, 2007,

p. 61)

Software applications can be disassembled into units of marketable value, into so called

Minimum Marketable Features (MMF). Every single MMF can be sold to the market in-

dependently and generates value for the customer. Apparently a software product has

value to the customer. However this value is not experienced as a whole, but as the series

of valuable features. Utility software might only consist of 1 MMF and more comprehen-

sive software of many more, still it is of value for the customer (Denne & Cleland-Huang,

2004). This results in different value expectations for different customers, which need to

be balanced and considered for the MMF delivery.

15

Chapter 3

Methodology

This chapter comprises the description of the applied methodology. In order to un-

derstand the perceived state of waste in Icelandic software development teams interviews

were conducted. The structure of the interviews, informants and analysis are described in

the following sections as well as the limitations of the methodology.

3.1 The Interviews

The qualitative study included 10 interviews, all following the same structure asking

for the experience and context of the informants within the organization. Questions to the

informants were related to the seven wastes defined in the section 2.3 and were aiming

on the perception of waste in the informant’s organization. The introductory part was

focussing on the experience of the informants and the applied processes to get an opinion

about the context. Whereas the main part was particularly aimed on the seven wastes

and how they are perceived. Followed by questions about a continuous improvement

process and other common problems in the development process. The table 3.2 shows the

template of the interview questions.

16 Insights into Waste in Agile Software Development

The interviews were conducted mostly on site of the informants’ organizations in a

quiet and undisturbed environment. Two of the interviews were conducted in a meeting

room at Reykjavik University. All of them lasted for about 45 minutes. The interviews

were all conducted in English and the conductor also took notes and recorded the inter-

views. There were no technical problems encountered during the interviews. All recorded

interviews were transcribed verbatim, with slight modifications to make the text more

readable, when filler words or phrases disrupted the structure of a sentence. Informants

are addressed as males despite their actual gender when describing their comments.

3.1.1 Companies

The companies were chosen through personal contacts supported by data by the Statis-

tics Iceland office (Statistics Iceland office, 2013) and the Icelandic chamber of commerce

(Icelandic Chamber of Commerce, 2013). The focus was on businesses either providing

bespoke or off-the-shelf software, hence only companies selling B2B software were con-

sidered in this research. Those companies were equally balanced and 5 were chosen from

each category. The categories are described in section 3.1.2. This helps to analyze a

possible difference in the meaning of waste, because the costumers base is different and

hence the communication with them.

All the chosen companies exert agile management methodologies, and Scrum in par-

ticular. Some of the companies have adapted the Scrum process to their own needs and/or

also apply Lean Software Development principles.

Michael Simader 17

3.1.2 Informants

The informants were found through personal contacts and recommendations within

the chosen companies. All of which have several years of experience in the applica-

tion of agile methodologies, especially in Scrum, and worked also as members of the

development teams. The roles of the informants vary from company to company. The

informants held the roles depicted in table 3.1 within their organizations. The table also

shows the allocation of these roles regarding the distinguished groups and the hierarchy

levels within the organization of each role (1. . . Executive Level, 2. . . Upper Management,

3. . . Development Team Level).

Level Role Bespoke Off-The-Shelf

1 Chief Technology Officer or 1 2

Director of Development

2 Head of Development Department 2 2

3 Scrum Master or 2 1

Product Owner

Table 3.1: Overview of the informants’ roles

The interviewees did not prepare for the interview in advance, because they were only

asked for their experiences they had made within the prevalent environment. Any prepa-

ration might have led to a biased opinion and it can be assumed that the preoccupation

might have lead to results that do not reflect how waste is perceived but defined. Fur-

thermore, the informants are categorized in two different groups, depending on the type

of software that is developed in the informants’ organization. The 2 groups are as fol-

lows BESPOKE-Software and OFF-THE-SHELF-Software. This categorization is made

because Poppendieck and Poppendieck (2007) point out the different focus on value for

these groups, as discussed in section 2.4.

18 Insights into Waste in Agile Software Development

3.1.3 Interview Questions

Table 3.2 shows the interview questions which are linked to either the seven wastes or

the context of informant’s organization. These questions can be understood as a guideline

in order to get as much information as possible and give the informant a high degree

of independence within the boundaries. Furthermore, the interviewees did not need to

prepare for the interview, because the participants were only asked about their experience

and perception of waste within the prevalent context.

Question

In
fo

rm
an

tC
on

te
xt

1.1 Describe the field of operation of your company.

1.2 What kind of software development process do you use? When did you

start with this approach?

1.3 What is your experience with other approaches?

1.4 What is the structure of the teams working in Software Development?

1.5 How do you define the term waste in your own words?

W
as

te
C

on
te

xt

2.1 How do you describe Partially Done Work in your organization?

2.2 Describe the process of requirements engineering. Do you have the

impression you would implement more feature than demanded?

2.3 How are requirements managed in collaboration with the customer?

2.4 Do you think knowledge gets lost in the progress of a project, which

makes relearning necessary?

2.5 Describe handoffs in your development process.

2.6 How are tasks assigned?

2.7 How many tasks has a developer to process at a time in average?

2.8 What are the main reasons for delays in the development process?

Michael Simader 19

Question
m

is
c. 2.9 How do you manage defects in your projects?

2.10 How would you describe the process of continuous improvement in

your organization?

Table 3.2: List of Interview Questions

3.2 Qualitative Data Analysis

The data from the interviews were compiled, analyzed and assigned to categories even-

tually. Interpretative Phenomenological Analysis as described in (Silverman & Rapley,

2011, p.274) was applied to identify and generate themes and sub-themes as depicted in

table 3.3. This was an iterative approach and the themes were refined with every single

transcript of the interviews, which results in the final themes and sub-themes. Notes and

the assigned themes were directly put down on the printed transcripts. First themes were

generated, which lead to an initial list of themes. The themes in this list were clustered,

which resulted in a list of themes of connected areas. As the last step these themes were

organized in a table consisting of themes and sub-themes. These steps were repeated for

the following transcripts and the table was refined to the resulting table 3.3.

Theme Sub-Themes

Definition of Waste -

Partially Done Work Inventory

Defect Backlog

Extra Features Customer Involvement

Unused Features

Relearning Loss of Knowledge

Team Communication

20 Insights into Waste in Agile Software Development

Theme Sub-Themes

Handoffs -

Task Switching Task Assignment

Number of Tasks

Delays -

Defects -

Continuous Improvement Process

Metrics

Table 3.3: Themes and Sub-Themes according to Interpreta-

tive phenomenological analysis (Silverman & Rapley, 2011)

The interviews will be analyzed according to the labels and the results will be pre-

sented. Furthermore differences between the two identified groups will be discussed. In

the following the informants are referred to the following coding:

• BESP-#, belonging to the BESPOKE-Software group

• PROD-#, belonging to the OFF-THE-SHELF-Software group

3.3 Limitations

The limitation of the thesis pertains to the chosen informants mainly. There were 10

interviewees from Icelandic companies chosen as presented in section 3.1.2. Those par-

ticipants are part of organizations that develop B2B software only. It was assumed that

business customers from the defined groups are more homogenous, hence comparative re-

sults of these groups are more significant. Furthermore, the assessment of waste pertains

to the perception of the interviewees only. There was no quantitative analysis towards the

seven types of waste conducted.

Michael Simader 21

Five informants for each group may be a low number, this is attributed to the fact,

that the author of this thesis conducted the research individually, which also resulted in

time constraints. Nevertheless, the consistent results among the groups show, that this

did not influence the quality of the data substantially. Furthermore, it was difficult to

estimate how many companies operate in Iceland that offer B2B services, as there were

no reliable sources present. The following table shows the number of ICT enterprises

and people employed in ICT sector in Iceland, these numbers include all ICT providers,

also ICT wholesaler or consulting firms, but not banks that have software development

departments incorporated. Assuming that half of these companies would provide soft-

ware development services and 35% of these would apply agile processes, as the work of

Larusdottir (2009) has shown. Additionally, 70% of these would develop B2B software.

Year ICT sector total
number of enterprises assumed relevant population employees

2005 422 52 6,145
2006 456 56 6,394
2007 459 56 6,349
2008 433 53 6,120

Table 3.4: Number of ICT enterprises and employees in ICT in Iceland (Statistics Iceland
office, 2013)

Ten representatives out of nine companies were interviewed, this is equal to 20% of

the assumed and restricted population of companies. These numbers were pessimistically

appraised. The size of the software development divisions ranged from 5 to 80 software

developers and 15 in average within the companies.

22

23

Chapter 4

Results of the Interviews

In the following chapter the results of the interviews are presented. The results are

structured according to the identified themes in the analysis process. The first section

describes the informants’ definition of waste in software development. Furthermore, the

results of common problems within software development teams and customers are de-

picted. To conclude with the results pertaining to the two identified groups are com-

pared.

4.1 The informants’ definition of the term waste in soft-

ware development

The following table 4.1 shows the results of the informants’ definition of the term waste

in software development. The informants were not prepared for this question, in this case

they responded with their personal experience and not with a biased opinion of waste in

software development.

24 Insights into Waste in Agile Software Development

Informant Definition

BESP-1 Waste is something that you redo, which should have been done in the

first place. It can be a programmer, the project manager, the manager,

whatever. It is something you do twice, when you could have done it

once.

BESP-2 Waste is developing the same requirements many times. The problem

is not the correct understanding of the requirements or business, or the

customers would change their minds. Waste is also when systems are

not designed well, and the system evolves over time, which raises the

complexity. A lot of waste can be found in refactoring, although the sys-

tem maybe does not have complex functionality, but bad design makes

it difficult to train developers. If quality is not assured in the early stage

of the process, defects might end up more frequently in the released

software. Misunderstanding of requirements with the customer, when

the user was not involved.

BESP-3 Waste is anything that you have done, that would not have changed

anything about the value that you are delivering or the ability to deliver

that value. Anything that does not contribute to the value is waste.

BESP-4 Waste is work that does not contribute to the value.

BESP-5 Waste is, when you are working on a badly defined project and the

project is delayed. The project cannot be put live, because of outstand-

ing decisions that need to be made. When projects cannot be finished

because higher prioritized projects interrupt, which leads to putting the

first project on hold.

PROD-1 Waste is something unnecessary, if you do something or make some-

thing, that is not used or means extra effort.

Michael Simader 25

Informant Definition

PROD-2 Waste is noise created by the external environment. When developers

are distracted or have direct contact with the customer and the customer

asks for new features directly. This feature is developed although it

did not go through a thinking process, and it might even not be needed

anymore.

PROD-3 Waste is when you are doing something that is not needed. Or you are

doing something that is not delivered. When you are doing something

that nobody needs or nobody wants or you are not shipping it.

PROD-4 The major waste in software development is software that has already

been written, that is too specialized and customized, so you cannot use it

for other customers and it does not fit in the structure of the framework.

Waste are also solutions of low quality, that are not tested enough and

do not fulfill the requirements very well.

PROD-5 Waste is, if you develop a feature or function that you end up with

throwing away, you may have even known it beforehand, because you

are following the old-style waterfall model. You know after a while that

it is not going to be of any use, but it is in the contract somewhere in

the business requirements document. Developing a feature that will be

needed in the future and you start working on this feature although it

will be needed in a few months, so you will put it on the shelf. There is

a lot of waste that goes on, if you are not process driven and you have

to switch contexts a lot.

Table 4.1: Results of the informants’ definition of the term

waste in software development

26 Insights into Waste in Agile Software Development

The informants commented on waste in many different ways. BESP-4 had a very clear

definition of waste,“Waste is work that does not contribute to the value.”, whereas the

others were referring to more specific types of wastes, e.g. PROD-4 mentioned Partially

Done Work when he said,“The major waste in software development is software that has

already been written, ..., but you cannot use it for other customers.”. This also includes

activities that have to be done repeatedly, because there was not a common understanding

about the requirements with the customer. It also seems that the complexity of the sys-

tems is a problem in the development process, as BESP-2 and BESP-5 mentioned it very

clearly. Furthermore, noise and distractions from the outer environment was considered

to be waste for PROD-2.

The table 4.2 shows an analysis of the interviews against value, the counterpart to waste.

It was counted how often the informants refer to value during the interview.

Informant Number of references to value

BESP-1, PROD-1,

PROD-2, PROD-5

0

BESP-2 1

‘clear value adding features’

BESP-3 17

‘delivering value’, ‘contribute to the value’, ‘business value’,

‘prioritizing value’, ‘item of value’, ‘achieve the value’, ‘re-

sponsible for the value’

BESP-4 1

‘Waste is work that does not contribute to the value’

BESP-5 2

‘value on the market’

Michael Simader 27

Informant Number of references to value

PROD-3 2

‘Value that we are getting’,‘Value goes up for the customer’

PROD-4 1

‘Value is sellable functionality’

Table 4.2: Frequency of references to value during the inter-

views

The informants did not mention the customer’s value very often. Only BESP-3 was

emphasizing on value throughout the interview. He also highlighted the necessity of being

as fast as possible and involving the customer is very important, “We are so focussed on

the value of delivering fast and getting response.” Delivering fast was also very important

to PROD-1,“Have a short turnaround time for everything. Move fast!”, also he saw the

need of releasing in shorter cycles,“We are constantly working on speed, quality, and

reducing the release cycles”.

4.2 Occurrence of Partially Done Work

The main results on the Occurrence of Partially Done Work include:

(a) Defect backlog is not recognized as Partially Done Work.

(b) Unfinished features do not generate value for the vendor and the customer.

(c) Communication over heavy-weight documentation.

Nine out of 10 informants reported that unfinished features or non-fulfillment of re-

quirements would be the most common problem when it comes to partially done work.

The documentation of the process or products seems to be not a common problem. The

28 Insights into Waste in Agile Software Development

informants were referring to the communication structure within the team as being sup-

portive for neglecting heavy weight and completed documentation. PROD-2 for example

explains the lack of documentation as follows, “Within the team everyone is telling ev-

eryone about everything.”. PROD-4 explains the lack of documentation with “We have

daily stand-ups and show and tell sessions.”.

The informants do not have problems with unfinished, untested or undocumented code.

This is attributed to the used process in development. The developers pick a task and finish

it all the way until testing. BESP-2, BESP-3, BESP-5, PROD-1, PROD-3, and PROD-5

have testing separated from the development, the rest of the informants reported, that the

developers also test the software. All of the informants stated, they would use KANBAN-

like boards or status walls for better visibility of the status of the software artifacts, e.g.

BESP-2 said, “We do visual management, so we have every ticket up on the wall.”.

Although the informants do not recognize a defect backlog as partially done work, but 8

out of 10 maintain an inventory of defects, except for BESP-3 and he said,“It’s an absolute

waste to collect huge backlogs of defects, that you review every 2 months and it’s only

the top 10% that’s going to get ever implemented.”. This is considered to be waste in the

terms of partially done work, as defined in section 2.2.2. BESP-3 explained further, “We

have a zero bug policy, although this is utopian, but we try at least.”.

Michael Simader 29

4.3 Occurrence of Extra Features

In the following the results of the waste type Extra Features are presented. First of all

the customer involvement in the process will be discussed, followed by the occurrences of

extra features and the efforts of the informants to streamline the products. The assumption

is, the closer the customer is involved within the process the less extra features occur.

This is attributed the higher degree of communication, which leads to a lower level of

misconception of requirements and hence a lower amount of extra features.

4.3.1 Customer Involvement

The main results on Customer Involvement include:

(a) Close relationship and customer involvement is very important to reduce misunder-

standings.

(b) Customer needs to be educated to collaborate in an agile environment.

(c) FAQs are a helpful way to handle a high amount of users with a small team.

The following results show the customer involvement in the process of software devel-

opment. This exceeds the regular requirements engineering process and shows how the

informants stay in touch with the customer throughout the development process. The term

customer refers to different stakeholders on the customer side. This might also include

users.

Most of the informants shared a common desire for a high degree of customer involve-

ment. A close relationship can prevent from misunderstandings about the requirements

and can even make training of the user irrelevant. BESP-2 reported about a loose rela-

tionship with the customer, which led to misunderstandings and a higher amount of later

30 Insights into Waste in Agile Software Development

improvements, once the software had been delivered. Most of the interviewees prefer

direct communication via phone over emails, for the reason to prevent misunderstandings

again and it is “more convenient to just pick up the phone”, so BESP-3.

The customers need to be familiarized with this close involvement as BESP-1, BESP-3

and BESP-4 reported. BESP-3 explained this as follows, “The customer needs to fit the

agile process in their environment. They must learn it and it is hard in the beginning.”

BESP-1 also argued that, “some customers want to stay with the plain and old-fashioned

waterfall model, and this is reflected in the nature of the tenders.”. The need for educat-

ing customers was high for BESP-4, because they were still reluctant to give feedback,

“We ask for feedback, but the answer comes a lot later.”. BESP-4 also spoke about a de-

crease of service level experienced by the customer, because they shielded the developers

from the customer in order to reduce distractions, “but in fact the service level is actually

increasing”. Furthermore, PROD-5 said, “Interesting side effects also are, after devel-

oping a big piece the training was basically nonexistent.”, because of the high customer

involvement.

PROD-3 provides FAQs for the customers, to support them with installation and con-

figuration of the product and to reduce the amount of support requests to the help-desk.

PROD-5 complained about the process and the interaction with the customer was less

agile due to the acquisition by a large corporation, “We are less agile today than before

the acquisition.”. He reckoned, it was not possible anymore to involve the customers as

much, although when “the customer invests the time, then this is really beneficial when it

comes to waste”.

There is are differences noticeable between the two interviewed groups. The degree of

customer involvement is much higher in the BESPOKE-Software group than in the OFF-

THE-SHELF-Software group. This can be explained with the nature of the customers. On

Michael Simader 31

the one hand BESPOKE customers actively request the software product on the other hand

the OFF-THE-SHELF-Software group tries to advertise the product to a broader audience

of customers, without changing and customizing the product too much.

It comes all down to the delivering the right value to the customer. OFF-THE-SHELF-

Software providers need to think about value differently as they need to balance the deliv-

ered value with the individual expectations of the customers, which is described in section

2.4.

4.3.2 Extra Features

The main results on Extra Features include:

(a) Extra features do occur, but there are efforts to streamline the solution.

(b) Extra features can be an opportunity to learn.

(c) It is better to exceed the expectations, than to fail to meet the basic requirements.

Extra features occur in the informants’ organizations. Some interviewees stated, they

knew of this issue, whereas others claimed to exactly develop what is demanded by

the customers. There are different reasons and approaches to face this problem though.

BESP-1 did not see a problem with extra features, because even though they cannot charge

this extra effort, “but in the long run, we do not lose money with it, because of repeat busi-

ness” and they want to live up to the expectations and even exceed them. Also PROD-1

appraised this issue similarly, “We learn from it and we profit from the knowledge we

gain from it.”. Reasons for extra features can often be found in miscommunication, and

hence not knowing exactly what the customer demands. BESP-2 has the problem of a

“non-mutual understanding of what the users and what the business customers are actu-

ally asking for”. In order to “keep the solution user friendly” PROD-1 stated they removed

32 Insights into Waste in Agile Software Development

features and streamlined the solution. The same happens in BESP-3’s organization, be-

cause “it’s a work system, there are people in there and there is no value having this

feature in there” when it’s not used.

Only BESP-3 stated to take the effort to analyze which features are valued by the user

in the productive system. They systematically remove them in succession, if there is no

use for a particular functionality. For the rest, no real efforts were reported to estimate the

value of a feature for the customer.

4.4 Relearning

In the following the results of the waste type Relearning are presented. First of all the

loss of knowledge will be discussed, followed by the structure of the team communication.

The assumption is, the better communication works the less knowledge is lost in the

process of software development. Even though knowledge is not tangibly available, it

will be explicit due to intensive interaction among the team members.

4.4.1 Loss of Knowledge

The main results on Loss of Knowledge include:

(a) Preservation of knowledge mainly supported by the open communication structure.

(b) Tools are used to support the communication, such as wiki-pages and issue tracking

systems.

None of the informants responded, that they would have a problem with the loss of

knowledge within the development process. This is attributed to the communication

within the teams, as the following section 4.4.2 shows. PROD-2 stated, that about half of

Michael Simader 33

the development team left the company and this did not cause troubles, because “the appli-

cation is tested, everything is tested and we use a high level language, so it’s fairly easy to

navigate through and also because everyone is telling everyone about everything.”

The utilization of heavy-weight documentation is mainly used for contractual reasons,

because it is requested by the customer. As PROD-5 stated their customers would demand

detailed documentation about the project, furthermore “The process is too partitioned,

hence, documentation is needed, because there are so many people involved.” in the

whole project development life-cycle. Some of the respondents maintain wiki pages and

issue tracking systems for general documentation purposes, but they also emphasized,

that most of the knowledge is share in an open communication process.

4.4.2 Team Communication

The main results on Team Communication include:

(a) Knowledge is distributed by respectful and open-minded face-to-face communica-

tion.

(b) Trade-off between individuals with expert knowledge and commonly shared knowl-

edge.

All of the respondents utilize daily stand-up meetings and encourage team members to

communicate face-to-face to share knowledge within the team. Most of the informants

facilitate KANBAN walls, e.g. BESP-2 explains the advantages of this tool as follows,

“So we have all the tickets up on the wall, and this makes all the tasks visible for ev-

eryone.”. In general the interviewees emphasize the open and respectful communication

within the teams. BESP-4 even reports about a social contract that is concluded among

the team members as follows “Everyone is open minded about asking questions and giv-

ing feedback.”. As teams in Scrum are self-organizing, BESP-4 also talks about, that the

34 Insights into Waste in Agile Software Development

teams decide what is important and needs to be written down and what not. Also BESP-4

highlights the level of respect and cooperativeness within the software development team

when it comes to integrating new team members, “Everybody would be so helpful, it’s

really good to pick up speed with a new team member”.

Some of the interviewees reported about rotation within the teams to distribute knowl-

edge, like PROD-4 stated, “it is helpful to be at least knowledgable of each part of the

code” and BESP-3 is of the same opinion. Whereas BESP-5 and PROD-5 think that ex-

perts are important. PROD-5 argues with the high complexity within the product, that

make experts necessary. Also he admits, that “a single point of failure” is adverse and

it is required to find the right balance. For BESP-4 experts might be distracted by other

team-members as they are a valuable source of information and the single contact point.

BESP-3 declined the evolvement of experts within the team and reported that they tried to

share knowledge as much as possible, by using e.g. pair-programming or team-member

rotation.

4.5 Handoffs

The main results on Handoffs include:

(a) Loss of knowledge during handoffs can be minimized by communication structure.

(b) Loss of knowledge happens at the interfaces between customer and development.

The results show that there is a certain pattern regarding handoffs identifiable, as shown

in figure 4.1. These 3 steps occur in all of the informants’ organizations. The single

stages are shaped differently within the organizations. Although the development process

is always characterized by ‘1 developer works on one task, for bigger tasks the work is

divided into smaller tasks’.

Michael Simader 35

Figure 4.1: Basic Handoffs

The requirements are elicited in collaboration with the customer for the BESPOKE-

Software group. The OFF-THE-SHELF-Software group maintains wish-lists, which are

compiled from requests by the customers. In general the user stories are developed by the

developers themselves and also tested.

BESP-1 saw the problem that knowledge gets lost when the requirements in form of

user stories are handed to the developers, “There is probably a loss of information on-

going.”. He also debilitated this effect, “because we sit in a really open space, so there

are a lot of discussions going on.”. PROD-5 described handoffs as problematic in the re-

quirements engineering process and the delivery process, because the development team

is embedded in a large corporation and the distance to both ends to the customer is rather

high. “The customer is fairly isolated from the development.”, additionally “For me I

think this is too partitioned, too waterfall. Especially, a lot of information is lost, when

you have a totally separated team talking to the customer. So what is developed may

have lost some context.”. BESP-3 tries to tackle this problem with the following solu-

tion,“Continuous delivery. It’s a thinking of minimizing these handoffs and the costs of

handoffs. So we have a deployment pipe all the way into operation.”. He also reported

that the same team working all the way from kick-off to the operation eliminated a lot of

waste.

4.6 Task Switching

In the following the results of task switching are presented. First of all the process

of task assignment is shown, followed by how many tasks a developer has to handle at

36 Insights into Waste in Agile Software Development

a time. This should depict the problem of context switching, which is also described in

section 2.3.

4.6.1 Task Assignment

The main results on Task Switching include:

(a) Ideally, developers work on 1 task at a time, higher prioritized tasks may interrupt.

(b) Team members pull their tasks from a task-pool.

Tasks are not assigned to team members, as all of the informants report that they apply

Scrum, an adapted Scrum process or Kanban. The teams are self-organizing and render all

of the following methods independently: Estimation, Planning, and picking or choosing

the tasks individually. This is compliant to the agile principles as described in section 2.1.

BESP-2 described the situation in this fashion, “The developer picks the task and then puts

a sticky note on the board.”. BESP-3 had the same opinion and added the following,“It’s

the agile and lean principle of pull system over push system, so the team pulls the tasks”.

BESP-4 came to the point with “This happens in the daily stand-ups, team members are

self-organized and choose the tasks. We do not assign tasks. You commit to a task.”.

PROD-2 exclaimed also, what all the other informants have in common, that tasks are

chosen accordingly to the priority, “If you are a developer and you see the accepted tickets,

there are 3 highly prioritized, so you pick 1 of those 3.”.

4.6.2 Number of Tasks

The main results on Number of Tasks include:

(a) Ideally, 1 task at a time. In reality, not always realizable.

(b) Defect reports interrupt the development process and lead to context-switching.

Michael Simader 37

The informants agreed to limit the number of tasks to just 1 task at a time, but this is

not always possible due to many different reasons. Incoming defect reports can interrupt

the development process, because defects need to be given a higher priority for some of

the informants. BESP-4 explained this as follows, “Developers should work on 1 task at a

time, but on the daily stand-ups they can choose more, because the planning period is 24

hours and they can finish more tasks within that period. Except if there are some defects

coming in, that need attention”, then the developer has to switch the task. PROD-3 and

PROD-4 also explained the switch to another task, when a higher prioritized defect is

reported. In this organization a special role was introduced that is assigned to a different

team member every sprint cycle, which only handles defect reports. PROD-1 has a similar

opinion, but also urgent customization requests from customers could interrupt a current

task. PROD-2 saw this problem more strictly and argues, “If a developer needs to work

on another ticket, the first has to be put on hold, then you can see how the hold queue

is piling up. I think it’s cumbersome to have many tickets or working on many things

at the same time”. BESP-3 reported that developers only work on 1 task at a time, but

the method of pairing is used, so there might be more tickets assigned to one developer

than he actually works on. BESP-5 pictured the situation in his organization as follows,

“Ideally 1 task, in reality things tend to get a lot worse than that. So context switching is

a problem, especially for certain team members that are very knowledgable.”.

4.7 Delays

The main results on Delays include:

(a) Waiting for decisions from outer environment is the main cause for delays.

(b) Late detection of defects within the development process leads to delays.

(c) High complexity delays the development process.

38 Insights into Waste in Agile Software Development

The informants reported different reasons for delays, but there are two main themes

identifiable. First of all there is a blocking in the development process due to missing

actions by an outer stakeholder. BESP-1 explains it as follows, “We are not synchronized

enough with them. They have to do something and then we have to wait and cannot move

and then they have something done and then we have to go on. I think within the depart-

ment things run quite smoothly.”. Miscommunication and a lack of clear responsibilities

can be seen as a reason for that. BESP-3 had a concise answer to this in order to prevent

this from happening, “One of our tag lines is - Responsibility all the way. We are respon-

sible for the value and this story has no value until this blocking is resolved, we have to

finish it. So we are offering our help, call them, and make sure things happen.”.

Poor software design and the resulting complexity delays the development process,

at least for BESP-2. It takes a while until the developer understands the problem and

structure of the software. This leads to the next common problem, fixing defects. Mainly

respondents from the OFF-THE-SHELF-Software group consider this as the main reason

for delays. Also the testing process can hinder the release of a feature, because “In our

case the main reason for delays was the testing process. The testing process took too long

and then defects were found, which postponed the process. So it would be nice to have

more testers.”, as PROD-1 states.

4.8 Defects

The main results on Defects include:

(a) Defects are maintained in backlogs and increase the inventory.

(b) Detecting defects in an early stage is less waste.

(c) Removing defects can delay the development process.

Michael Simader 39

The informants handle defects similarly. In most of the organizations the defects are

registered and prioritized in the backlog, and depending on the severity level, the defects

are fixed right away or taken care of at a later moment. PROD-1 stated, in his organization

there are two defect backlogs for two different teams working on the same product, “this

is a bit of a problem.”, because of redundancy. In some of the organizations the backlogs

are assessed from time to time to evaluate the status of defects, if they had became invalid,

they would be removed them from the backlog. For PROD-5 there are 3 different levels of

defects, “It depends where a defect is found in the cycle. When it’s in development we do

not log it and take care of it immediately. In release stage we log the defect and fix it. If the

defect was delivered to the customer, there is a strict change process implemented.”

Only BESP-3 stated they would have a zero-bug policy, which is supported by auto-

mated testing and the continuous delivery approach. He also adds, that zero bugs are

utopian, but it reflects the attitude towards defects. Furthermore, defects are a Failure

Demand, which means that a defect can be more than a defect. A failure demand is some-

thing that needs attention, because it could have been avoided by setting the right actions

in the very beginning, so they evolve over the progress of a project and need to be tracked

and eradicated. BESP-2 shared this opinion and explained it with the high complexity

within the system, hence it is more defect prone. So these defects came with poor design

in the very beginning.

Informants also argued, that defects interrupt the development process, compare with

results in section 4.7. So in some organizations there was a special role introduced to

handle defects. This role is reassigned to new developers every sprint, because this is a

tedious work for developers, and it’s positive for the individual’s motivation to only be

responsible for defects every couple of months. Furthermore, PROD-3 reported, “The

rest of the developers can focus only on stories and new features.”.

40 Insights into Waste in Agile Software Development

4.9 Continuous Improvement

Optimizing the whole is a basic principle in Lean Software Development. It can also be

seen as an ongoing effort to eliminate waste. The following results show how organiza-

tions have implemented a continuous improvement process and how they utilize metrics

to support this process.

4.9.1 Process

The main results on the Continuous Improvement Process include:

(a) Retrospectives are most common used method to improve the process.

(b) Motivation among team-members is an issue, when discussing the same thing all over

again.

(c) One improvement at a time is better than parallel efforts.

Most of the development teams perform retrospectives in order to identify problems and

improve the process. There are different ways of conducting these retrospectives though.

Some of the informants reported to follow this process very strictly, whereas others define

it only loosely within the organization. BESP-1 argues, that “it’s a tedious process and

the same old stories are addressed again and again. This lowered the motivation of the

employees. This needs to be changed.”. The same happened in BESP-2’s organization. It

was part of the daily routine, “and nothing really changed, so the team members were not

interested anymore. But we are trying to develop it again.”.

Other informants follow continuous improvement more diligently. BESP-3 reported,

“We stop doing things a lot when we feel they are not working.”. In this organization

there are different colors for different types of tasks, among them are improvement tasks,

Michael Simader 41

“It’s about improving the development process, solving root cause problems, if we are

getting the same issue again and again.”. This also lowers the failure demand, as dis-

cussed in 4.8. Furthermore, “Every Friday after lunch, we only work on our company, we

do not work for the customers, we work on improving our business”. In BESP-4’s depart-

ment is a special improvement group installed, that maintains an improvement backlog,

and everyone is invited to participate in this process. Additionally, retrospectives are fa-

cilitated and “We usually pick one improvement task each sprint, that we commit on to

improve.”. PROD-1 argued for the importance of only picking one improvement task at a

time as follows, “So based on experience it’s not good to have more. If we try to do 3 or

4 improvements, we usually end up doing nothing.”

In PROD-5’s company there are retrospectives conducted on team level, but also on

corporate level. There is a dedicated team, that tries to streamline those improvements,

so teams can work together cross-functional. Another important part is training of the

employees to maintain a high level of technical knowledge.

4.9.2 Metrics

The main results on Continuous Improvement Metrics include:

(a) Metrics are hardly used to support the Continuous Improvement process.

(b) It is difficult to measure desired aspects of the process.

Metrics are not commonly used to make improvements measurable. Most important

factor to observe is the lead time of a ticket, as BESP-3 explained it, “The most valuable

metric, for instance in this Kanban thinking, is the lead time. How fast things flow through

the pipeline.”. He was again referring to being as fast as possible. This opinion is shared

by PROD-1, but they are doing it in a less formal way and have no performance indicator

defined for that.

42 Insights into Waste in Agile Software Development

PROD-3 pointed out how difficult it is to define the correct metrics, because “We are

measuring finished story points in a sprint, but when a story with 15 points is not finished,

it is passed to the next sprint, although most of its work happened in the current sprint.

So the statistics are skewed.”. BESP-4 has the same opinion, but “I think there is a lot of

potential in doing measurements.”. He also stated the problem of the correct definition of

meaningful and useful metrics.

4.10 Difference between BESPOKE and OFF-THE-SHELF

Vendors

To begin with, there were no major differences between the investigated groups notice-

able that would lead to particular problems within the development process. The follow-

ing table 4.3 contrasts the subtle differences.

Bespoke Group Off-the-shelf Group

Customer Involvement

Direct and close contact with customer Requests are handled Product Owner or

help-desk

Defects

Fixing defects seems to be a bigger issue for Off-the-shelf Vendors

Table 4.3: Comparison Bespoke and Off-the-shelf

Michael Simader 43

Communication with the customer Communication is very important to prevent cer-

tain types of waste, such as extra features or partially done work. This is inhibited by

the nature of product development for off-the-shelf vendors. However, these companies

do not observe a problem with it as they revise the set of features and try to match it to

the wish list, most of them maintain. Hence, the product is streamlined as effectively as

possible.

Educate the customer As the bespoke vendors have a the desire for collaboration with

the customer and maintain a close relationship with them, they need to get educated in the

agile process.

Defects A higher number of Off-the-shelf respondents stated that fixing defects would

be an issue for them as compared to Bespoke respondents. This might be attributed to the

relatively high amount of different customers using the same product. The frequency and

possibility of finding defects is higher the more people use the software. Considering the

low number of interviewees, as discussed in section 3.3 it might be also possible that the

chosen sample of Off-the-shelf vendors simply producer software of lower quality. The

true reason was not identifiable therefore.

44

45

Chapter 5

Discussion of the Results

The following chapter presents the discussion to the results in chapter 4. The main pur-

pose of this thesis is to find out how IT professionals perceive waste and to which extent

they are aware of waste within the development processes. The most interesting results

are discussed in the following. A statement will be given at the end of the following sec-

tions regarding the perceived severity of the particular type of waste (sections 5.2 through

5.8). Three different levels of severity are used to make the distinction:

Insignificant The respondents do not perceive waste or inefficiencies within the devel-

opment process with regards to this type of waste.

Minor Severity The respondents are aware of this type of waste and cope with it one

way or another.

Major Severity The respondents are not aware of the influence of this type of waste.

This type of waste can be a hidden waste that is not addressed either.

46 Insights into Waste in Agile Software Development

5.1 The informants’ definition of the term waste in soft-

ware development

Waste is basically defined as non-value-adding activities, but the informants have a

very wide range in their definitions of waste in software development. Starting with the

very short and precise definition of BESP-4 “Waste is work that does not contribute to the

value.” coming down to the more detailed and specific definitions of BESP-2 and PROD-

5. The respondents obviously reflected about their own organization and gave examples

that were reoccurring in the entire individual interviews. This supports the conclusion

that the informants perceive waste as obvious problems in their organization, rather than

a holistic reflection of the whole.

Considering the number of references to value it can be derived from the results that

informants are aware of value in order to deliver value to the customer. BESP-4 had a very

clear definition about waste, but did not refer to value for the customer, whereas BESP-3

had a similar view of waste and he is referring to value much more often, which indicates

that this organization is much more aware of creating value for the customer than others.

This is also supported by the emphasis on delivering as fast as possible and involving the

customer as much as possible. This is compliant to the agile principles as described in

section 2.1. Furthermore, the rest of the informants do not really comment on value, but

they share the opinion of delivering as fast as possible. This leaves the impression that

agile processes support the efforts to deliver fast, but do not emphasize the importance of

value for the customer.

Michael Simader 47

5.2 Occurrence of Partially Done Work

Partially Done Work does not seem to be an issue among the informants, when it

comes to delivering artifacts. The emphasis on delivering as fast as possible indicates,

that they try to avoid Partially Done Work automatically, yet unfinished features and non-

fulfillment of requirements seem to occur. This is also supported by Middleton et al.

(2005) and his claim to pursue a continuous flow. The described problems are probably

attributed to miscommunication between developers, product owners and customer. It

can be derived that agile processes help diminishing Partially Done Work by focusing on

delivering value fast. However the implementation of the communication structure might

lead to impediments that need to be addressed.

It seemed as though the informants were not familiar with Partially Done Work, as they

needed further explanations on the term in order to reply to the question. This indicates

that they do not experience this type of waste regularly. A possible explanation can be

found in the utilization of agile processes, that inherently aim on reducing Partially Done

Work, in order to deliver value fast by dividing the work load into smaller chunks as

proposed by Poppendieck and Poppendieck (2007) to tackle this problem.

Most of the informants maintain defect backlogs. Poppendieck and Poppendieck (2007)

consider this as inventory and should be subject to improvements. However, the infor-

mants do not perceive this collection of defects as a problem. This clearly contradicts

with the Lean Software Development principle “Build Quality In”. It is better to avoid

defects in the beginning, than to test quality into the product in late stages. Maintaining a

defect backlog leads to context switching, because developers are forced to choose more

than one task at a time, depending on the prioritization. Hence, the missing perception

or negligence of this type of waste leads to a Major Severity within the development

process.

48 Insights into Waste in Agile Software Development

5.3 Occurrence of Extra Features

The discussion of the waste type Extra Features was divided into two sections. The

results for Customer Involvement are discussed. Furthermore, extra features can be in-

hibited by interacting with customers closely, as the following discussion shows.

5.3.1 Customer Involvement

Close customer involvement seems to be very vital for the examined organizations. It

can resolve problems with extra features and miscommunication resulting in extra work

to correct insufficiently implemented features. It seems that the customers need to be

educated to fit in the agile process and to allow close involvement. The customers need

to be trained, which might be difficult in the beginning. As BESP-3 states “It is difficult

to be agile in a non-agile environment.”. The agile principle of close collaboration with

the customer, compare with the agile manifesto (Beck et al., 2001), where customers are

closely involved in the development process and give feedback. This helps diminishing

the effects of Extra Features and can increase the service level. Also a big part of training

can be omitted, because the customer is highly involved in the creation process. This way

the customer learns how to use the system during the development process. This level of

interaction is proposed by Highsmith (2009) and follows the principles described in the

agile manifesto (Beck et al., 2001).

5.3.2 Extra Features

Extra feature also occur occasionally in the respondents’ organizations, but it seems

not to be a major problem. This issue is mainly attributed to miscommunication or not

knowing exactly what the customer asks for. The companies react more or less the same

way, they remove features that are of no value for the customer. This can happen very

systematically, e.g. BESP-3, PROD-3. Other informants even think extra features can

Michael Simader 49

be beneficial, when it comes to, e.g. repeat business, as stated by BESP-1 or gain of

knowledge, as stated PROD-2. Whereas Poppendieck and Poppendieck (2007) consider

this as waste, which does not provide clear value to the business efforts.

Most of the respondents might not even be aware of the importance of this issue. As

there is no clear value for extra features, they report, it was not problematic for them.

Some see a value for themselves, as they gain knowledge and can generate repeat business

by exceeding the expectations. Even though it is considered as waste by Poppendieck and

Poppendieck (2007) and hence should be eliminated. However there is no systematic

evaluation of the benefits or losses caused by extra features. Hence, the awareness and

even tolerance of this type of waste leads to a Minor Severity.

5.4 Loss of Knowledge

Poppendieck and Poppendieck (2007) state that it is crucial to create and preserve

knowledge, yet they do not present a way that is the most efficient. The distribution

of knowledge happens in face-to-face communication, additional to that the informants

use methods of visual management, such as KANBAN boards, to visualize the current

state within the development cycle, compare with 2.2.8. Furthermore, teams are self-

organizing entities and they should decide themselves what degree of documentation they

would need. All these methods increase the flow of knowledge within the teams. Ex-

perts evolving from the communication and task assignment structure can be critical. In

highly complex systems informants rather tend to develop experts, whereas others prefer

to distribute the knowledge among the team members equally.

50 Insights into Waste in Agile Software Development

It is necessary to find the right balance. It is crucial that even experts share their knowl-

edge with other team-members occasionally, e.g. in brown-bag sessions. This way the

knowledge gets distributed and experts are less distracted in every-day work. Further-

more, the adverse effects of labor turnover are minimized. Hence, due to the support by

the applied agile process to preserve knowledge it can be assessed that this type of waste

is Insignificant.

5.5 Handoffs

As the results in section 4.4 Relearning show, that a close relationship to the customer

is beneficial when it comes to preserving knowledge. Also a vital communication process

within the team can counteract the loss of knowledge. As with every single handoff tacit

knowledge gets lost, reducing handoffs should be aspired. Poppendieck and Poppendieck

(2007) claim that only 6% of the tacit knowledge is left after 4 handoffs. The informants

reported that there are basically no handoffs within the development process, there is an

extra handoff when a separated testing team is involved. Which is not an issue regarding

to Poppendieck and Poppendieck (2007) definition of this form of waste. More problems

occur prior respectively posterior to the development process, especially when the cus-

tomer is isolated from the development team. Taking responsibility throughout the whole

development pipeline can be seen as a recipe to diminish those effects of a high distance.

This also requires a close relationship to the customer. Some of the respondents also ap-

ply code-reviews to maintain a higher quality and support the communication process.

This is technically not to be considered as a handoff, since knowledge is shared rather

than transferred. Hence, the support by the applied agile process to limit the handoffs is

beneficial and this type of waste can be assessed as Insignificant.

Michael Simader 51

5.6 Task Switching

First of all the tasks are not assigned, but chosen by the team-members. Which is

compliant to the definition of a Scrum team as a self-organizing and self-empowered

entity 2.1.1. All informants have this in common, which is part of the agile thinking.

Also the limitation of the number of tasks to 1 is a collectively shared opinion. A problem

can be identified when it comes to the number of tasks, that need to be handled at the same

time. Context switching leads to delays, because the developer has to start the thinking

process all over again (Poppendieck & Poppendieck, 2007). Those interruptions mostly

occur due to higher prioritized activities, such as fixing a defect. Some of the companies

have introduced a special role for this, 1 person is responsible for fixing defects in a certain

period of time, to counteract this problem.

PROD-5 refers to experts within the team, that are interrupted by less knowledgable

team members. This clearly shows a disadvantage of experts evolving within a developer

team. PROD-5 also states that it is necessary to find a balance between knowledgable peo-

ple that know how to tackle problems within a complex system and distributing knowl-

edge among the whole team. This can be seen as a process, where knowledge should be

built up and the distribution of knowledge should go hand in hand. Hence, this type of

waste exhibits Minor Severity, because the respondents are aware of it and try to deal

with it. However, there is still room for improvement left.

5.7 Delays

There are several reasons for delays and those are quite different for the examined

groups. The BESPOKE-Software group mainly declares impediments from the outer en-

vironment as the main reason for delays, whereas the OFF-THE-SHELF-Software group

sees the interruptions due to defect fixing as the main factor. This is reflected by the work

52 Insights into Waste in Agile Software Development

of Poppendieck and Poppendieck (2007). They state that developer have to make deci-

sions every 15 minutes and are only able to do so, when the most relevant information is

present at the time. This difference may be attributed to the lower level of communication

with the outer environment. The second group simply is not relying on the customers as

much.

Poor design in the beginning leads to a higher degree of complexity within system.

This clearly contradicts with the Lean Software Development principle of “Build Quality

In” as explained in section 2.2.2. BESP-2 faces this problem and is well aware of, but

he finds it difficult to change the system and simplify it. Whereas BESP-3 counteracts

this problem with a zero-bug policy, where the root cause for a defect is identified and the

system is kept clean and simple. In other words, fighting the decease is better than treating

the symptoms. This is only possible when the team is able to control the complexity of the

software. Some of the respondents have the problem of a high complexity which clearly

leads to delays within the development process. Defects, the communication with the

customer and the complexity are delaying the process. Hence, the missing perception or

negligence of it leads to a Major Severity within the development process.

5.8 Defects

Most of the respondents maintain a backlog of defects, which is considered to be Par-

tially Done Work, because those defects increase the inventory. One of the key principles

in Lean Software Development though, is to minimize the inventory in order to eliminate

waste, compare with section 2.2. An effect of this inventory became very noticeable for

these companies, because the management and eradication of these defects took a lot of

time and distracted the team members in the course of the development process. Some of

the interviewees found a solution by introducing a specific role that temporarily handles

all the defects.

Michael Simader 53

This role is reassigned to another team member after some time, because this work tends

to be bothersome and tedious. This raises the overall motivation within the team. Yet, the

root cause for the defects can not be solved with this measurement. Hence, this type of

waste exhibits Minor Severity, because the respondents are aware of defects and try to

tackle this problem.

5.9 Continuous Improvement

Continuous improvement takes place in an informal manner. The respondents utilize

stand-up meetings and retrospectives, however they did not report about a formalized

structure for improvements. This indicates the lack of awareness or even denial for prob-

lems within the development process. BESP-2 even stated, that they do not use retrospec-

tives anymore, because the employees lost the motivation for it and it had not changed

anything. Yet, he also reported about major problems when it comes to a mutual under-

standing of the requirements. Whereas BESP-3 even introduced improvement tasks along

with the daily task fulfillment. Hence, there is a different opinion about the importance of

continuous improvement among the interviewees.

Making improvements measurable requires defined metrics to compare the state in the

beginning and end. The respondents mostly have no metrics defined. This again indicates

a certain lack of awareness for improvements. For those who have established metrics uti-

lize them only on a high level, such as task traversing time. They also pointed out that the

definition of metrics is very difficult and to appraise numbers might be tricky as well. It is

necessary to find the right balance between formality and informality, because too formal

processes might impede the openness and agility within a development team, whereas an

informal approach might make it hinder the efforts to eliminate waste effectively.

54 Insights into Waste in Agile Software Development

The improvement process should follow the lean principle “Optimize the whole”, as

described in 2.2.7, because it is not beneficiary to optimize only single chunks and cut out

on the holistic view. This involves the management to act as well as the team-members.

The efforts undertaken by the interviewees are commonly restricted to single aspects of

the whole. Solely one respondent explained the continuous improvement process as an

integral component of the companies business.

5.10 Difference between BESPOKE and OFF-THE-SHELF

Vendors

As the work of Poppendieck and Poppendieck (2007) has shown there should be dif-

ferences between the two interviewed groups in the perception of value for the customer.

They argued that BESPOKE software vendors tend to utilize project management struc-

tures within their organizations, whereas OFF-THE-SHELF software vendors rather fol-

low a product management approach. Within product development oriented organization

value might be market-share or profitability. Whereas, project management organizations

value the ability to meet costs, schedule and scope commitment constraints. These two

different views of value within the development process were proposed by Poppendieck

and Poppendieck (2007) and were not shared by the studied groups. The BESPOKE-

group in particular is more focussed on delivering value fast in incremental stages rather

than meeting time and cost constraints. This enables the development teams to react on

changing conditions and adaptability becomes more important than time constraints of

fixed requirements. This attitude towards value within the development process is sup-

ported by the agile thinking.

Michael Simader 55

5.11 Is relentless elimination of Waste a good approach?

According to Ohno (1988) the highest goal to pursue is “the absolute elimination of

waste”. It seems as though that the “absolute elimination” of waste can cause waste in

itself. Following this approach relentlessly, might mean that the focus drifts from deliver-

ing value to diminishing inefficiencies within the development process. Maybe the Pareto

principle, or commonly known as the 80/20 rule, applies here effectively. Addressing the

biggest issues (the top 20%) first, can lead to a removal of 80% of the waste. More impor-

tantly, it takes a lot of effort to eliminate the remaining 20% of the waste. The 80/20 scale

is not fixed. It should solely indicate that little effort can have a big effects and focussing

on the wrong issues might lead to tremendous effort.

56

57

Chapter 6

Conclusion

Icelandic IT-professionals are well aware of waste in their organizations. When it

comes to waste they are confronted with many different problems. It seems though as

if they can cope with these problems well and they do not interfere with their ability to

deliver fast. Yet, there are some types of waste that impede the development processes.

These issues are mainly attributed to communication problems or maintenance.

Most of the respondents maintain defect backlogs. Per definition, this raises the in-

ventory, and hence is considered as partially done work. These defects are prioritized

according to their severity. This leads to interruption within the development process.

Some companies have introduced a special role to diminish these effects. A member of

the development team handles these defects for a limited amount of time before this role

is passed on to another person, because of its tedious character. However, the inventory is

not reduced by this method, but delays occur much less.

The following statement summarizes the main obstacles within the development pro-

cess the best.

“It is difficult to be agile in a non-agile environment.”

58 Insights into Waste in Agile Software Development

Even though agile processes were applied (mostly Scrum), the customers and other stake-

holders from the external environment are not used to collaborate in this agile environ-

ment. This is mainly attributed to the disparity in the understanding of collaboration and

communication between vendor and customer. Agile teams need a close collaboration

and feedback from the customer in order to adapt to changing situations and deliver value

fast. It seemed that customers are still more used to the traditional processes, e.g. water-

fall model, where a different degree of communication is needed throughout the process.

The customer needs to be educated to collaborate in an agile environment. This lack of

communication was the main factor for delays and extra features. The negligence of this

issue leads might lead to major waste within the development process.

Strong ties and the communication structure within the development teams eliminate

several types of waste in the very beginning. For instance, preservation of knowledge was

not an issue at all for the investigated companies, although they did not state they would

use any other tools than wiki-pages or low-level documentation. The open and respectful

face-to-face communication was widely the best method to share knowledge.

The application of Scrum as the development process was beneficial in many cases.

For instance, handoffs and the number of tasks are limited by the nature of Scrum. Ad-

ditionally many companies utilize Kanban to visualize the work in progress. This builds

awareness of current tasks and their lead time. These teams are more likely to be able to

deliver fast, which is concurrent with the agile principles.

59

Bibliography

Anderson, D. J. (2012). Lean software development. Available from
http://msdn.microsoft.com/en-us/library/vstudio/hh533841.aspx

Beck, K., Beedle, M., Bennekum, A. van, Cockburn, A., Cunningham, W., Fowler,
M., et al. (2001). Agile manifesto. Retrieved March 22, 2013, from
http://agilemanifesto.org

Denne, M., & Cleland-Huang, J. (2004). Software by numbers - low-risk, hight-return

development (Vol. 1). Sun Microsystems, Inc.
Highsmith, J. (2009). Agile project management: Creating innovative products (Vol. 2).

Pearson Education.
Icelandic chamber of commerce. (2013). Retrieved 15.05.2013, from

http://www.vi.is

Kniberg, M., Henrik Skarin. (2010). Kanban and scrum - making the most of both.
C4Media Inc.

Larusdottir, M. K. (2009). User involvement in icelandic software industry. Uppsala,
Sweeden: Interact 2009.

Leffingwell, D. (2011). Agile software requirements: Lean requirements practices for

teams (Vol. 2). Pearson Education.
Middleton, P., Flaxel, A., & Cookson, A. (2005). Lean software management case

study: Timberline inc. In H. Baumeister, M. Marchesi, & M. Holcombe (Eds.), Ex-

treme programming and agile processes in software engineering (Vol. 3556, p. 1-9).
Springer Berlin Heidelberg.

Ohno, T. (1988). Toyota production system: Beyond lage scale production. Productivity
Press.

Poppendieck, M., & Poppendieck, T. (2007). Implementing lean software development:

From concept to cash (the addison-wesley signature series) (3rd ed.). Addison-
Wesley Professional.

Schwaber, K. (2004). Agile project manage with scrum. Microsoft Press.

60 Insights into Waste in Agile Software Development

Shingo, S. (1982). Study of toyoda production system from an industrial engineering

viewpoint. Productivity Press.
Silverman, D., & Rapley, T. (2011). Qualitative research (Vol. 3). SAGE Publications

Ltd.
Statistics iceland office. (2013). Retrieved 15.05.2013, from

http://www.statice.is

Sutherland, J., & Schwaber, K. (1997). Business object design and implementation :

Oopsla ’95 workshop proceedings,16 october 1995, austin, texas. London New
York: Springer.

Williams, L. (2012). What agile teams think of agile principles. Communication of the

ACM, 55(4).

School of Computer Science
Reykjavík University
Menntavegi 1
101 Reykjavík, Iceland
Tel. +354 599 6200
Fax +354 599 6201
www.reykjavikuniversity.is
ISSN 1670-8539

