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Abstract

One of the challenges of General Game Playing (GGP) is to effectively solve
puzzles. Solving puzzles is more similar to planning algorithms than the
search methods used for two- or multi-player games. General problem solv-
ing has been a topic addressed by the planning community for years. In this
thesis we adapt heuristic search methods for automated planning to use in
solving single-agent GGP puzzles.

One of the main differences between planning and GGP is the real-time na-
ture of GGP competitions. The backbone of our puzzle solver is a real-
time variant of the classical A* search algorithm we call Time-Bounded and
Injection-based A* (TBIA*). The TBIA* is a complete algorithm which al-
ways maintains a best known path to follow and updates this path with new
and better paths as they are discovered.

The heuristic TBIA* uses is constructed automatically for each puzzle being
solved, and is based on techniques used in the Heuristic Search Planner sys-
tem. It is composed of two parts: the first is a distance estimate derived from
solving a relaxed problem and the second is a penalty for every unachieved
sub-goal. The heuristic is inadmissible when the penalty is added but typ-
ically more informative. We also present a caching mechanism to enhance
the heuristic performance and a self regulating method we call adaptive k
that balances cache useage.

We show that our method both adds to the flora of GGP puzzles solvable
under real-time settings and outperforms existing simulation-based solution
methods on a number of puzzles.



General Game Playing prautir leystar
med upplystum leitaradferoum
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Utdrattur

Eitt af vidfangsefnum alhlida leikjaspilara er ad fast vid einmenningsleiki
eda prautir. AJ leysa slikar prautir er mjog 6likt pvi ad spila gegn and-
steedingum og 4 meiri samleid med reikniritum fyrir dztlunargerd. I pessari
ritgerd er byggt 4 margra dra rannséknum & almennum 4atlunarreikniritum
og per adferdir heimfardar yfir { heim alhlida leikjaspilara.

Meginmunurinn 4 datlanagerd og alhlida leikjaspilun er ad leikjaspilunin er
had timatakmorkunum par sem leikmenn fa upphafs- og leikklukku. Kjarninn
i lausnaradferd okkar er rauntima utfaersla af A* leitaradferdinni sem vid kol-
lum Time-Bounded and Injection-based A*.

Stodumatid sem vid notum byggir 4 hugmyndum fra Heuristic Search Plan-
ner datlunar hugbtinadinum og er tvipatt. Annars vegar er vegalengdin {
mark a@tlud med pvi ad leysa einfaldada utgéifu af vandamalinu og hins ve-
gar er bett vid refsingu fyrir hvert Guppfyllt lausnarskilyrdi. Vegna pess ad
ein adgerd getur uppfyllt fleiri en eitt lausnarskilyrdi er ekki tryggt ad stodu-
matid okkar sé lagmarkandi en { morgum tilfellum er pad mun ner raun-
veruleikanum sem aftur flytir fyrir leitinni. Par sem stodumatid er timafrekt
kynnum vid uppflettiadferd sem flytir fyrir utreikningi stbdumata. Einnig
hofum vid sjélfstillandi dvordunartoku sem vid kollum adaptive k sem nytir
sér uppflettingar eftir gedum beirra.

Vid synum fram & ad fyrrgreindar adferdir virka vel & fjolda peirra prauta
sem notadar hafa verid { alpjédlegum keppnum og ad vid héfum batt vid
pann fjolda prauta hagt er ad leysa.
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Chapter 1
Introduction

With the development of the computer in 1941 the technology to create intelligent ma-
chines finally became available. In the early days the expectations where high and every-
thing was going to be solved with the newly developed and powerful computing machines.
In 1950 Alan M. Turing introduced the “Turing Test”, that would prove the intelligence
of the machines, and Claude Shannon was analyzing chess playing as a search problem,
in the belief that if the computer could beat a human in chess it surely must be considered

intelligent.

The "Turing Test” stands unbeaten but computers have mastered the art of playing chess.
IBM’s Deep Blue became a household name in 1997 when it beat chess world champion
Garry Kasparov in a six game chess match. Deep Blue as well as today’s game-playing
programs are very specialized with domain specific knowledge embedded into their pro-
gram code. Such programs have therefore no premises to deal with other problem do-
mains. Simply put, if presented with the simple game of Tic Tac Toe, Deep Blue would

not even know where to begin.

A general solver must be able to solve new and unseen problems without human inter-
vention. The planning community has held International Planning Competitions (IPC)
for general planners since 1998. The competitions have been a great success in that they
provide a common testing ground, standardize problem representation and provide a yard
stick for developers to measure progress. In light of the success of these competitions,
the logic research group at Stanford University started the annual General Game Playing
(GGP) competition. In the spirit of general planners, GGP systems are capable of play-
ing many different games without the need for pre-coded domain knowledge. The main
difference between planning and GGP, however, is that GGP is a real-time process where

players have two time constraints and must perform legal actions on a regular basis. The
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times allocated before first action are typically 20-200 seconds and then 10-30 seconds

for every move there after.

CADIA-Player (Finnsson, 2007) is a competitor from Reykjavik University and has par-
ticipated in the GGP competition since 2007. It is the current and two time GGP cham-
pion, winning the 2007 and 2008 competitions. For games with multiple players a Monte
Carlo simulation-based approach called UCT (Kocsis & Szepesvari, 2006) has proved
quite successful. However, the 2007 GGP competition showed that for many single-
player games the simulation-based approach suffers from scarce feedback, i.e. goal scor-

ing states are rare and hard to find.

In this thesis we present the work done to enhance CADIA-Player’s ability to deal with
single-player games prior to the 2008 competition. The main contributions are a new
search method we call Time-Bounded and Injection-based A* (TBIA*), that is inspired
by Time-Bounded A* (Bjornsson, Bulitko, & Sturtevant, 2009) and a heuristic function
that solves a relaxed problem, adapted from the planning community. As the heuristic is
the main bottleneck of our system we propose a caching mechanism for the heuristic and
a self regulating algorithm we call adaptive k that balances the use of the cache according

to its quality.

We start in Chapter 2 by analyzing problem definition languages as well as landmark ideas
that made informed search methods the mainstay of general planners. We then move on to
Chapter 3 where we describe the TBIA* search algorithm we use in our implementation.
Chapter 4 shows how we derive a heuristic for the informed search method as well as
discussing the enhancements we made. We validate our method with empirical results
from several games in Chapter 5 and finally we conclude this paper with a summary and

conclusions in Chapter 6.



Chapter 2
Background

In domain-independent planning the planner does not know the problem a priori and can
thus not rely on domain specific information to solve the problem at hand. Any informa-

tion to guide the solver must be automatically extracted.

The problems are described using a formal language. The first part of this chapter is
devoted to such languages. We start by describing the languages used by the planning
community. First are the STRIPS (Fikes & Nilsson, 1971) and PDDL (Bacchaus, 2001;
McDermott, 1997) languages and then we describe GDL (Love, Genesereth, & Hinrichs,
2006) that is used in GGP.

The second part of this chapter is devoted to the ideas and implementations of planning
systems and how they automatically derive search guidance heuristics from the problem
description. We are particularly interested in state space based planners as they use search
techniques that also apply to GGP. We also briefly describe a few other ideas that have

successfully been applied to derive heuristics.

2.1 Representation of Problem Domains

A high level abstraction of a planning problem is the challenge of discovering a path
from one state to some other more favorable state (goal state) by applying operators (state
transitions) available at each intermediate state traversed on the way toward the favorable
state. A state is defined in first order logic where the smallest unit of knowledge is an
atom. Each state is then comprised of an atom set with either a true or false value. The
set A is the superset of all possible atoms within the problem domain (every possible bit

of knowledge knowable within the domain). The operators of the domain are all possible
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transitions from some one subset of atoms in A to some other subset of atoms in A, i.e.

operators can be split into three categories:

e Prec(o) is the set of atoms required to be true for the operator to be applicable in

the current state.
e Add(o) is the set of atoms and value added to the next state by applying the operator.
e Del(0) is the set of atoms and values removed in the next state.

The need to unify and standardize the problem description was apparent and following is

a brief description and history of the languages used in planning.

2.1.1 STRIPS

The STRIPS planning problem modeling language was derived from one of the oldest
planning systems (Fikes & Nilsson, 1971) and the three key assumptions it made:

1. That the planner has complete information about all relevant aspects of the initial

world state.

2. That the planner has a perfectly correct and deterministic model of the effects of

any action it can take.

3. That no change in the world is ever caused by anything other than the actions made

by the planner.

Even under these harsh restrictions the planning problem is computationally hard. The

problem P is represented as a tuple, P = (A, O, I, G) where:
e A is the set of all possible atoms,

e O is a set of all ground operators where each operator is a tuple (Prec, Add, Del)

where:

— Prec is a set of atoms that must be true in current state for this action to be

applicable,
— Add is a set of atoms that become true by applying the operator,
— Del is a set of atoms that become false by applying the operator.
e | C Ais the subset of atoms representing the initial state,

e (G C Ais the subset of necessary atoms for a state to be a goal state.
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The state-space determined by the problem P is a tuple S = (5, so, S, A(.), f, ¢) where:

1. The states s € S are collections of atoms from A and S is the set of all possible

states.
2. The initial state s is defined by a set of atoms in /.

3. The goal states s € S¢; are all states such that G C s, i.e. if the state s contains all

the atoms in the goal conditions set (G it is a goal state.

4. The action @ € A(s) is the operator o € O such that Prec(o) C s,1i.e. A(s)is a set
of all available actions(specific operator) in the current state s.

5. The transition function f maps states s to states s’ = s — Del(a) + Add(a) for
a € A(s).

6. The action costs c(a) are assumed to be 1.

STRIPS uses grounded atom sets, i.e. no formulae, for initialization, goal conditions
and preconditions of operators. This simple STRIPS language is still used, often for
demonstration purposes or as a stepping stone to the more complicated representations.
In 1988 a richer modeling language was introduced, Action Description Language (ADL)
(Pednault, 1989). In ADL actions are allowed to have more complicated preconditions
(essentially first-order formulae involving negation, disjunction and qualification) and ef-

fects that may depend on the state in which the action is taken.

2.1.2 Planning Domain Definition Language

With the first international planning competition (IPC-1) the problem description lan-
guages were standardized and called Planning Domain Definition Languages or PDDL
(Bacchaus, 2001; McDermott, 1997). In Figure 2.1 we can see parts of the definition
for sliding tile puzzles as well as one instantiation of the 3x3 version called 8-puzzle.
The aim of standardizing the languages was to simplify and encourage problem sharing
among researchers, making comparison of results easer and making the competition at
AIPS-98 possible. There have been several alterations made to the PDDL standard since
IPC-1. PDDL 2.1 (Long & Fox, 2003) used at IPC-2 in 2003 was the most significant
change and the latest version, PDDL 3.0, was used at IPC-6 in 2008. The most significant

changes are:

1. PDDL inherited features from the Action Description Language (ADL) where first
order formulae are allowed as preconditions for actions as well as action effects

depending on the state they are taken in.
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Definition file:
(define (domain strips — sliding — tile)
(: requirements : strips)
(: predicates
(tile ?z) (position 7x)
(at 7t 72 7y) (blank 7x 7y)
(inc ?p Tpp) (dec ?p ?pp))
(: action move — up
: parameters (7t Tpx Tpy Tby)
: precondition (and
(tile 7t) (position Tpx) (position Tpy) (position 7by)
(dec ?by Tpy) (blank Tpx Tby) (at 7t Tpx Tpy))
:ef fect (and (not (blank ?px 7by)) (not (at 7t Tpx Tpy))
(blank?pxz?py) (at 7t Tpx 7by)))

Puzzle file:

(define (problem hardl)
(: domain strips — sliding — tile)
(: objects t1 12 t3 t4 t5 16 t7 t8 pl p2 p3)
(:inat

(tile t1) ... (tile t8)

(position pl) (position p2) (position p3)

(tnc pl p2) (inc p2 p3) (dec p3 p2) (dec p2 pl)
(blank pl pl) (at t1 p2 pl) (at t2 p3 pl) (at t3 pl p2)
(at t4 p2 p2) (at t5 p3 p2) (at t6 pl p3) (at t7 p2 p3)
(at t8 p3 p3))

(: goal
(and (at t8 pl pl) (at t7 p2 pl) (at t6 p3 pl)
(at t4 p2 p2) (at t1 p3 p2)
(at t2 p1 p3) (at t5 p2 p3) (at t3 p3 p3)))

)

Figure 2.1: Parts of the PDDL description for 8-puzzle
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2. The use of real-valued functions in the world model, and actions whose precon-
ditions include inequalities between expressions involving those functions. This
makes the world model essentially infinite, and therefore it is possible to specify
undecidable problems in PDDL 2.1 (Helmert, 2003).

3. The possibility to specify the duration of actions for temporal planning and schedul-

ing.
4. The possibility to specify different kinds of plan metrics for optimal planning.

5. Derived predicates, predicates that are not affected by any of the actions available
to the planner. Same as "axioms" in original PDDL but never previously used in

competition.

6. Timed initial literals which are a syntactically very simple way of expressing a
certain restricted form of exogenous events: facts that will become TRUE or FALSE
at time points that are unknown to the planner in advance, independently of the

actions the planner chooses to execute.
7. Soft goals, or valid goals that a valid plan does not have to necessarily achieve.

8. State trajectory constraints, which are constraints on the structure of the plans and
can be either hard or soft. Hard trajectory constraints can be used to express control
knowledge or restrictions on the valid plans in a planning domain and soft trajectory
constraints can be used to express preference that affect the plan quality, without

restricting the set of valid plans.

2.1.3 Game Description Language

GGP uses the Game Description Language (GDL) (Love et al., 2006) as the standard to
describe the rules of a game. GDL is variant of Datalog which is a query and rule language
similar to Prolog and the description files use the Knowledge Interchange Format (KIF).
GDL allows for single or multi-agent games and the games can be adversary and/or co-
operative in any combination. Multiple goal conditions are allowed ranging in value
from 0-100 and multi agent games are not necessarily zero-sum games. The two main
restrictions on GDLs expressiveness are that game descriptions have to be deterministic
and provide complete information. There are 8 keywords that cover the state machine
model of any GDL game: role, init, true, does, next, legal, goal, and terminal. Following

are descriptions of the relations and a brief example.
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(role player)

(init (cell 11 A))

(init (cell 12D))

(init (step 0))

(<= (legal player (move ?x 7y))
(true (cell Tu 7y b))
(or (succ 7x Tu) (pred 7z Tu)))

(<= (next (cell 7z 7y b))
(does player (move 7z 7y)))

(succ 12)

(succ 2 3)

(<= (goal player 100)
inorder)

(<= (goal player0)
not inorder)

(<= (terminal inorder))

Figure 2.2: Parts of a simplified GDL for 8-Puzzle

In Figure 2.2 we have a few selected lines from the 8-puzzle GDL file. A game description
starts with the declaration of the roles of the game, this is done with the role keyword and
once declared the roles of the game can not change. The second step is defining the initial
state. This is done using the init keyword that takes a formula or atom as input and asserts
them as facts in the initial state. The frue keyword works in a similar way but validates if

the given atom or formulae hold in the current state.

To define actions the legal keyword is used. Legal takes a role as parameter and its so-
lutions are the legal actions for that role in the current state. As can bee seen in Figure
2.2 a legal defines the action move for the role player and move takes two parameters 7z
and 7y. Any atom beginning with “?” is a variable in KIF and will be replaced with
any valid value available from the current state. The second line of the legal definition,
(true (cell ?7u 7y b)), enforces a precondition required for the move action to be available,
namely that the adjacent cell contains the value ’b” indicating it is blank. Once the agent
has chosen an action to perform it is wrapped up with the role name in a does relation and
asserted into the state. Note that in a multi role game actions are performed simultane-
ously for each player every turn. In turn taking games, such as Chess, the turn taking is

simulated by forcing players to choose a no-op action every other turn.

The state transitions are done via relations defined by the next keyword. As is shown in

Figure 2.2 the example next relation has a precondition of does player (move ?x ?7y) so
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it adds atoms to the new state as a result of a move action being performed. The new atom
is the fact that some cell 7z 7y moved from should contain the blank tile in the next state.
Unlike PDDL it is not just the effects of actions that are propagated but every atom that
should still hold has to be propagated to the new state by some next relation. Some facts
such as the does and any delete effects of the action chosen are simply not propagated.
In essence this means that the state transition in GDL requires much more work as it is
not only dependant on the additive effect of a action but also the size of the state. How
the state transitions are performed is one of the biggest differences between PDDL and
GDL.

The goal relations take two parameters, role and score, where the score can be any value
from 0-100. There can be one or more atom and/or formulae defining the precondition
for that goal to hold for the given role. In the simplified 8-puzzle GDL example both
goal condition have a formulae referencing a function inorder that is not include in the
example. The inorder function is simply a list of true relations placing tiles in the correct

cells similar to the inif list in the example.

The game will continue until a terminal relation is satisfied, defined using terminal and

some set of atoms.

Notice that in GDL goal-, terminal-, initial- and legal relations allow first order formulae

including negations.

GDL does not support real-valued functions other than for goal values and hence the use
of the succ relation in the example in Figure 2.2, third line of the legal relation. The succ

relation is basically defining increment by one.

For the complete specification of GDL see ”General Game Playing: Game description

language specification”(Love et al., 2006).

2.2 Search and Planning

At the time of IPC-1 in 1998 the state-of-the-art planners where based on Graphplan
(Blum & Furst, 1995). Graphplan systems build graphs where states are nodes and actions
are edges. To prune this graph the method keeps track of contradicting atoms, mutex
relations, and prunes states accordingly. There was one entry in IPC-1 that was based on
heuristic search, Heuristic Search Planner (HSP) (Bonet & Geffner, 2001), and did well
enough to change the field. IPC-2 was held in 2000 and by then the heuristic planners
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dramatically outperformed the other approaches with regard to runtime. This caused the

trend towards heuristic planners to increase still.

2.2.1 Heuristic Search Planner, HSP and HSPr

The first search based planner was Heuristic Search Planner (Bonet & Geffner, 2001)
(HSP or HSP1) which participated in the International Planning Competition, IPC-1, in
1998. HSP was a non-optimal planner that applied informed search methods to solve the
planning problems. Informed search methods are better than brute force search only if
they have a good heuristic to guide the search. What makes a heuristic good is its ability
to evaluate the current state. In other words it can provide, with less effort than doing the
search, an estimate of how far a given state is from a goal state. There are two definitions

that we need to keep in mind.
e Informativeness is how close the heuristic estimate is to the true value.
e Admissibility is when there is never an overestimate of the true value.

If the problem is solvable at all, an admissible heuristic and a complete search method
guarantee the discovery of a optimal solution. In HSP the algorithm was not optimal be-
cause the greedy search method was not complete and the heuristic was not admissible.
However, the heuristic was quite informative which made the system find relatively good
solutions quite fast. The distinction between optimal and approximate solutions is impor-
tant as they often fall into different complexity classes (optimality may be much harder).
In the planning community, emphasis on optimality is not always an issue. It can be more
important to find a valid solution fast rather than having a optimal solution that took much

longer to acquire. HSPs implementation can be summarized by:
e [t works on the STRIPS problem description language.

e The search is progression based and has to compute the heuristic value in every

state.

e The heuristics h(s) is derived as an approximation of the optimal cost function of a

“relaxed” problem P in which the delete lists of operators are ignored.

The relaxation works as follows. The first step is to give every proposition p a value v(p)
of either zero if it is part of the initial state or infinite otherwise. Then the approximate

search tree is grown as follows; for every operator op available in the current state s, add
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all propositions in the operators add lists, Add(op), with value of
v(p) = min [v(p), 1 + v(Prec(op))]

where Prec(op) is a list of propositions that made the operator possible!. This process
halts when the values of propositions, v(p), do not change. In essence what happens is
that each step merges another level of the search tree onto the growing super state. When
this process halts, the v(p) value assigned to each proposition is a lower bound estimate on
the cost of achieving it from the initial state. Either all propositions required for the goal
conditions have been estimated by a value less then infinite or the problem is not solvable
from the current state. By assuming that goals are fully dependent, a heuristic guaranteed
to be admissible can be derived by using the highest valued proposition required to satisfy

the goal condition,
h(s) = max [v(p)]

pCG
where G is the set of goal propositions. This estimate, however, may be far lower than
the true value, i.e., uninformative. If the heuristic is uninformative the search will most
certainly need to explore more states and the search progress will be slow, this is also
known as thrashing. For this reason HSP chooses to assume that the sub-goals are inde-
pendent, i.e., achieving them has no positive interactions, thus making it safe to sum up

all the estimated values of the goal condition,

his) = v(p)

pCG

where G is the set of goal propositions. This heuristic estimate is much more informative.
But as the assumption of sub-goal independence is not true in general, this estimate is not

admissible.

The main bottleneck in HSP is the frequent heuristic calculations (taking more than 80%
of the time). To counter this problem HSP used a form of hill-climbing search method
that needs fewer heuristic derivations but often finds poor solutions. Another version,
HSP2, uses a weighted A* (WA*) where high weight value results in faster search but
poor solutions. In the IPC-1 competition HSP did surprisingly well, solving 20% more
problems than the GraphPlan and SAT based planners (both optimal approaches) but for
many of the problems HSP had poor solutions (Hoffman, 2005).

HSPr is a variation of HSP that removes the need to recompute the proposition costs v(p)

for every state. This is achieved by computing these costs once from the initial state

1 If there are more then one precondition, the one with the highest estimate should be used.
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and then performing a regression (backward) search from the goal to the start state. The

heuristic estimate h(s) for a given state s is computed from sg as

pCs

The main premise for this process is defining the regression space that is used for the re-

gression search. The regression space is an analogy to the progression space? where:
e the states s are sets of propositions (atoms) from A, the set of all propositions,
e the initial state s is the goal G,
e the goal states s € S are the states for which s C [ holds,

e the set of actions A(s) applicable in s are operators op € O that are relevant and
consistent; namely, for which Add(op) N's # 0 and Del(op) N's = 0,

e the state s = f(a, s) that follows the application of a € A(s) is such that s’ =
s — Add(a) + Prec(a).

A solution in the regression space is the inverse of the solution in the progression space,
but the forward and backward search spaces are not symmetric. The state s = {p, ¢,r} in
the regression space stands for the set of states s where {p, ¢, 7} C s in the progression
space. The proposition estimates v(p) are then calculated as before using the regression
space. The advantage is that once this is done, the values can be stored in memory and
looked up as there is no need to recalculate them. With the lower cost of obtaining the
heuristic estimate a more systematic search algorithm is feasible giving better solutions.
The regression search, however, can generate states that violate basic invariants of the
domain, i.e., there can be some state s, in the regression space which has no superset
sp. To prevent spending effort on such cases HSPr identifies proposition pairs that are
unreachable from the initial state (a temporal mutex) and prunes such states from the

search.

2.2.2 Other Planning Systems

Some of the strongest planners at the time of HSPs debut were based on GraphPlan (Blum
& Furst, 1995; Kambhampati, Parker, & Lambrecht, 1997). Instead of applying search on
the problem domain itself GraphPlan creates a “unioned planning-graph” of the forward

state-space search tree. The graph is a directed acyclic graph (DAG) where each node

2 See section 2.1.1 about STRIPS for better reference.
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(super state) is a compact disjunctive representation of all states on each level of the
search tree and edges are operators that map propositions from one node to the next. To
prevent exponential blowup of edges in the graph, actions are now validated against the
super state, the algorithm keeps track of all 2-sized proposition subsets that do not belong
to legal states. Solution extraction is then performed with a recursive backtracking search
from the last node to the initial node, looking for a partial solution path. At IPC-2 in
2000 the ideas of GraphPlan made a comeback in the Fast Forward (FF) Planning system
(Hoffman & Nebel, 2001) by winning the award for “distinguished performance planning
system”. FF used GraphPlan as its heuristic by having it solve relaxed puzzles and useing
the derived solutions length as a lower-bound estimate to the true solution length. Using
GraphPlan as the heuristic is feasible as the relaxed puzzle does not contain any of the
expensive mutex relations of the original problem and a solution can be extracted in a
single backtracking sweep. GraphPlan’s main advantage over HSP is that it does not lose
information over proposition dependency within a state as it is not storing an estimate for

the propositions individually.

If two propositions are known to be mutually exclusive their estimates can be added with-
out compromising admissibility. The h™ heuristic family (Haslum & Geffner, 2000) uses
this by calculating the dependance for all m-sized propositions tuples to provide a more
informative heuristic. However, any tuple size over 3 is so computationally expensive that
it is considered infeasable. An advanced variant of h” called Boosting (Haslum, 2006)
devotes parts of the search to calculate larger tuples for certain propositions, that is the
system uses h? as its heuristic but for states where the heuristic values are low the system

boosts the propositions to h? to get a better estimate.

2.3 Summary

The problem of solving a puzzle boils down to one of converting a set of propositions, the
initial state, to some other set of propositions, the goal state. The rules are defined using a
formal language and consist of the initial state, operators and goal conditions. Operators
change one state to the next and are often defined as a tuple, op = (Prec, Add, Del). The
state transition process in GGP is different from planning in that every proposition has to
be propagated to a new state with a next relation and thus the Del effects of operators are

explicitly defined.

In a progression space search, like HSP and FF use, the heuristic must perform the re-

laxation process every time. This is a time consuming process and quickly becomes the
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main bottleneck of such systems. By defining the regression space, as was done for HSPr,
and storing proposition estimates from a single relaxation, a much faster heuristic can be
devised. However, defining the regression space without an explicit definition of the neg-

ative effects of operators is hard.

One last consideration is that GDL, unlike PDDL, allows negations in the goal conditions.
A relaxation process that ignores the negative effects of operators will not work for such
puzzles. In a puzzle where the initial state is a large set of propositions and the goal is to

have them all negated, ignoring the negative effects of a puzzle will not help at all.



Chapter 3

The Search

In this chapter we describe the single-agent search algorithm we use to solve GGP puzzles.
There are several search algorithms that can be used for the problem at hand. Unlike HSP
we use a complete algorithm that guarantees an optimal solution given an admissible
heuristic and sufficient time. The two most popular such search algorithms are A* and
Iterative Deepening A* (IDA*). A* works like a breath-first search (BFS) whereas IDA*
behaves more like a depth-first search (DFS). The choice between A* and IDA* is one of
compromising between memory and CPU overhead. A* requires memory for open- and
closed lists but only expands a node once if the heuristic is consistent. IDA* only keeps

track of its current path from the start so it must re-expand nodes in its search effort.

The search algorithm we use, Time-Bounded and Injection-based A*, is based on a real-
time variant of A*, called Time-Bounded A* (Bjornsson et al., 2009). As the name im-
plies TBA* works in a real-time environment which is essential for solving GGP games.
The main difference between our TBIA* variant and TBA* is a preference towards re-
discovering good paths over back-tracking, and the heuristic injections used to increase
the chances of such rediscoveries. This adaptation makes the algorithm better suited for

solving GGP puzzles.

3.1 Time-Bounded A*

Real-time search algorithms are bounded by the computing resources they use for each
action step by interleaving planning and execution. Most state-of-the-art real-time search
methods use pre-computed pattern databases or state-space abstractions that rely on do-
main dependent knowledge. The Time-Bounded A* (TBA¥*) is a variant of the A* al-
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Algorithm 1 Time-Bounded A*

1: solutionFound «— false
2: solutionFoundAndI'raced — false
3: donel'race «— true
4: loc « start
5: while loc # goal do
6:  if not solution Found then
7: solutionFound «— A*(lists, start, goal, P, Ng)
8:  endif
9: if not solutionFoundAndTraced then
10: if donel'race then
11: pathNew «— lists.most PromisingState()
12: end if
13: doneTrace « trace Back(pathNew,loc, Nr)
14: if donel'race then
15: pathFollow «— pathNew
16: if pathFollow.back() = goal then
17: solution FoundAndTraced «— true
18: end if
19: end if
20:  endif
21: if pathFollow.contains(loc) then
22: loc <« pathFollow.popFront()
23:  else
24: if loc # start then
25: loc «— lists.stepBack(loc)
26: else
27: loc «— loc_last
28: end if
29:  endif
30: loc_last + loc
31:  move agent to loc

32: end while

gorithm that provides real-time response without the need for precalculated databases or
heuristic updates (Bjornsson et al., 2009). In Algorithm 1 the pseudo-code for TBA* is

shown.

Much like A* the TBA* algorithm uses an open- and closed list, where the open list
represents the fringe of the search and the closed list contains the nodes that have al-
ready been traversed. The algorithm uses A* as its searching method but with a slight
alteration. Unlike A* search, TBA* interrupts its planning after a fixed number of node
expansions and chooses the most promising candidate from the open list (the node that
would get expanded next) and starts to trace the path back toward the initial state. TBA*
also keeps two paths, pathNew and path Follow, where pathFollow is the path it is cur-
rently following and pathNew is the best path found so far. The agent keeps following
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the pathFollow while it traces a new path back. The back tracing halts early if it crosses
the agents current location (and updates path F'ollow), otherwise the path is traced all the
way back to the initial state. The agent then starts to backtrack towards the initial state
until it crosses path N ew and updates its path F'ollow. The agent will sooner or later step

onto the the path to follow, in the worst case this happens in the initial state.

One special case is if the agent runs out of actions in its path F'ollow while waiting for a
better path to be traced back. In this case it will just start to backtrack toward the initial

state.

3.2 Issues with TBA* and GGP

Although TBA* is effective for many real-time domains, there are a few issues that arise

when applying it to GGP puzzles:
e GGP moves are often irreversible,
e GGP only guarantees the goal is reachable from the initial state,
e GGP allows multiple value goals (0-100).

The first issue is that TBA* relies heavily on the agent backtracking as a means of com-
bining the path Follow and a better path N ew. This is not possible in many GGP puzzles
as the actions the agent performs are simply irreversible, such as the jump action in the
game of Peg. Once the jump is performed a peg is removed from the board and thus the
move cannot be undone. Instead of backtracking, we choose to have the agent search his
way onto the new and better path. As we will see, this has double benefits as it works
for irreversible puzzles as well as finding shortcuts onto the new path in the reversible

ones.

Second, GGP only guarantees that the goal is reachable from the initial state, i.e. ex-
ploring the state space may lead to unsolvable puzzles. This is obvious in the case of an
irreversible puzzles but this also applies to reversible puzzles where a step counter is used
to determine the goal value awarded. For example, the 8-puzzle is a reversible game but
there is a 60 step limit imposed in the goal condition. Assuming a state where the agent
needs 18 steps to reach the goal; the puzzle is still solvable if the state is encountered
before time step 43 but unsolvable otherwise. What this means is that in GGP the agent

cannot make back and forth moves just to buy time for computations.
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Algorithm 2 Time-Bounded and Injection-based A*
1: solved < false
2: loc « start
3: goalFollow «+ 0
4: while not puzzle.solved(loc) do

5: Astar(lists, puzzle, timebound, heuristic, loc)
6: goalNew «— lists.most PromisingState()
7: // Is the destination of pathNew better than pathFollows
8: if goalNew > goal Follow then
9: // Build pathNew and update pathFollow if possible
10: pathNew «— traceBack(lists, goal New)
11: if crosses(pathNew, pathFollow) then
12: pathFollow < updatePath(pathFollow, pathN ew)
13: else if goal New > injectionT hreshold then
14: // Good but unusable pathNew
15: heuristic.inject Low HeuristicV alues(pathNew)
16: lists.reset()
17: end if
18: end if
19: // Proximity to Horizon check
20: if path Follw.size < 2 or puzzle.irreversible() then
21: lists.reset()
22: end if
23: loc = pathFollow.popFront()
24: move agent to loc

25: end while

Last, due to GGP allowing multiple goal values, the selection of the most promising node
has an added criterion of going for the highest goal available if the optimal solution has

not been found.

3.3 Time-Bounded and Injection-based A*

We adapted the TBA* algorithm to be better able to handle GGP puzzles. Pseudo-code
of the new algorithm, TBIA*, is shown as Algorithm 2. The search is interrupted at a
fixed time interval, timebound. If the puzzle is not solved in the first time slice the most
promising node is selected, see line 6. Due to GGP allowing multiple goal values we use

the following three rules in the process of selecting the most promising node:
e an optimal goal has been observed,

e a goal has been observed,
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e no goal has been observed.

If an optimal goal has been observed, i.e., one which has a value of 100, the puzzle is
solved so the optimal path is stored and followed from then on. If a suboptimal goal
has been found we choose to follow that path, but we keep looking for a better one. If,
however, no goal has been observed we, like the original TBA*, choose the next node
from the open list as the most promising candidate. The logic for this is that to the agent’s

best knowledge, this is the most promising path available to it.

In subsequent time steps the agent will use pathFollow while still looking for a better
path. When a new path, pathNew, is discovered there are two questions to answer: is
pathNew better than our current pathFollow, i.e. does it lead to a higher goal value,
and is this new path usable, i.e., does it cross our current pathF'ollow or are they parallel
paths from the starting position (see lines 6-12). When the agent has discovered a new

path, one of three conditions holds:
o [f the new path is not better it is simply discarded.

o If the new path is better and it shares a common state with our current path, path Follow

and path N ew are merged into a new pathFollow, see line 12.

e If the new path is better but the two do not cross, the open and closed lists are reset

but path Follow does not change.

By resetting the lists the search will start with the subsequent state as its new initial state,
i.e. state loc moved to at the end of this time step will become the new start (root) for
the search in the next time step. Thus the pathNew discovered in the next time step is
guaranteed to be usable as it originates from the current location. Note that the state we
call start is root of the current search effort and after resetting it is no longer the same

state as the initial state of the puzzle.

The agent does not reset the path F'ollow and it will continue to follow this path, unless a
better usable one is found. This means that the agent is still guaranteed to obtain whatever

goal it had already observed.

After the agent has reset its lists it is important to rediscover good paths quickly. We
therefore inject low heuristic values for the states of any unusable but better path New
(see line 15). The value injected will depend on the goal value of the path discovered. This
will increase the odds of the agent finding an usable goal scoring path as it will ensure
that the search will quickly re-expand the path again as soon as the first low value node is
encountered. The agent will rediscover a usable part of the old injected path leading it to

the goal with minimum effort. This will work for both irreversible and reversible puzzles
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Figure 3.1: TBIA* search space and effects of using resetting

as an alternative path from the current location to the unusable path may exist and for
reversible puzzles the worst case is that there is no shortcut possible and the agent must

search its way to the start to get on to the better path.

In Figure 3.1, we illustrate how resetting the lists works when a non-usable better path
is discovered. The circles represent the search space covered in each time step, the lines
are the paths and the X is the agent’s current location. In time step 1 the path P1 is
the most promising and becomes pathF'ollow. In time step 2 the path P2 is the most
promising and happens to extend the current path Follow, so they are joined to a new and
extended pathFollow. In time step 3 an unusable better path P3 is discovered at which
point TBIA* resets the search effort and injects low heuristics values for the states on P3
but keeps moving along pathFollow. In time step 4 we see the old search space as dotted
circles and the new search space as solid. The discovered usable path P4 is a shortcut onto
the previously discovered unusable path P3. The spike in the search space is the result
of the search running down the injected path toward the goal with minimal effort. The
discovered path P4 (path New) is guaranteed to be usable as the current location of the
agent is the root of the search. The pathF'ollow is updated, or essentially replaced with
pathNew, and the puzzle has been solved. If, however, the goal is not an optimal one,

the agent will continue to try to discover a better goal with continued search.

In reversible puzzles with deep solutions the agent can run into trouble as it approaches

the fringe of the search. With every time step the fringe of the search expands less and
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less with regard to solution depth. If the initial path is almost used up and the agent
has not discovered a better usable path it may be better to reset the lists and focus the
search on the surrounding area as it will have to fall back on making random actions if
the path ends. Another validation for applying resetting more frequently is that in GGP
competition puzzles the allowed steps are often limited so focusing the search after a few
steps increases the odds of finding a better solution as it may not be feasible to perform

many backtracking moves to get onto the solution path.

If the puzzle at hand is irreversible the lists of TBIA* should be reset frequently (even as
often as after each step) as there are no guarantees that the agent can make the crossing to
any better parallel path. Much of the search effort is thus spent on expanding potentially
unreachable states. In our experimentations and in the 2008 GGP competition the agent

reset the lists after each step if the puzzle was discovered to be irreversible.

3.4 Summary

The TBA* algorithm forms the base of our new real-time algorithm, TBIA*. The algo-
rithm handles multi-valued goals and irreversible moves, needed for solving GGP puzzles.
We have the agent re-search his way onto previously unusable, but good, paths instead of
back-tracking. To increase the odds of rediscoveries a low heuristic value is injected for

the states on such paths.

At the heart of any informed search method there must by an informative heuristic. How

we derive such a heuristic for GGP puzzles is the topic of the next chapter.



Chapter 4
Deriving a Heuristic

The purpose of a heuristic function is to provide an estimate of how far a given state s
is from a state goal, where the puzzle is solved. To derive this estimate the heuristic
function solves a relaxed problem and uses the length of the relaxed solution as a lower-
bound estimate as to the true length of a solution to the original problem. This is all good
and well if one knows how to make a *good’ relaxation of the problem. A good relaxation
must be easier to solve than the original problem, but still remain informative. If the
lower-bound estimates are too low, or uninformative, the search makes slow progress as
it can not prune off undesirable branches in the search tree. This is commonly referred to

as thrashing.

4.1 The Relaxation Process in Theory

The relaxation process that we use for GGP is similar to HSP’s (Haslum & Geffner, 2000),

and is based on ignoring:
e the restriction of applying one action per time step,
e the negative effects of actions.

By ignoring the restriction of choosing a single action at each time step the relaxation
process is rewarded with a much wider perspective in that it quickly accumulates facts, but
this is at the cost of knowing the exact solution path as there is no longer any way to know
which of the actions were necessary for satisfying the goal condition. This is acceptable
as the relaxation process is not looking for the solution path, but rather estimating how
far the current state is from a goal. This modification alone will not simplify the problem

as the additive effects of one action may be countered by negative effects of another. The
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Algorithm 3 Heuristic function
Require: The goal set GG, current state s, integer Steps and integer Unsatis fiedGoals
1: // Penalty calculated

Unsatis fiedGoals < 0
for all p € G do

if p € s then

UnsatisfiedGoals < Unsatis fiedGoals + 1

end if

end for

R e A A T

// Distance calculated
Steps «— 0

—_
—_ O

© Ssuper < S
: while G Z 54, do
Acurr — A(Ssuper)
foralla € A, do
Ssuper < Ssuper U Add(a)
end for
Steps «— Steps + 1
: end while
: return Unsatis fiedGoals + Steps

e e e
N A A

second modification needed is to ignore all the negative effects of actions, i.e. any undoing
or removal of propositions, and let the propositions accumulate into a super state until a
goal is satisfied. This relaxation process is illustrated in Algorithm 3. How the wider
perspective works can bee seen in line 14 of the algorithm, where the super state is grown
by adding to the state s,,., all positive effects Add(a) of all the actions available a €
A in the current time step, until the super state contains all the necessary propositions
to satisfy a goal condition. The derived time step counter, named Steps, is how many
steps are necessary to reach a goal. As we ignore the negative effects of actions we
lose any negative interaction that might occur when multiple actions are performed in the
same step. The derived estimate is thus a lower-bound on the true length of the necessary

sequence of actions to take the agent from the estimated state to a valid goal state.

max

it as the

In the heuristic we use a maximization over all the proposition estimates, g
Steps measures the relaxation steps required for the hardest proposition. Remember
that HSP assumes full independence between propositions and uses g and adds all the
propositions to calculate the state estimate. We do not assume full independence between
proposition but we do want to take into account how well the agent is doing with regard
to how many goal propositions it has already achieved. A penalty of 1 is added for every
goal proposition not satisfied resulting in possibly overestimating the true distance. How-

ever, this overestimate is upper-bounded by how many goal propositions, exceeding one,
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can be achieved by a single action. If all propositions require at least a one action to be
achieved there can be no overestimate. As our agent has limited time when competing
in GGP and it is important to find goal scoring paths quickly, we are willing to sacrifice

admissibility for a more informative heuristic.

The goal conditions in GGP are usually represented as formulae in the game descriptions.
To be able to apply the additional penalty for unsatisfied goal propositions the set of goal
propositions GG needs to be derived. This is done the first time the relaxation process
finds a goal! in the relaxed super state s,,,.-. To find the goal propositions a brute-force
algorithm is used: for each p € s, remove p and check for goal. If goal still holds
move on, else add p to the state again and move on. At the end of this process only the
required propositions to satisfy the goal remain. The goal set G is stored and used to

calculate the penalty for consequent state estimations.

We are certainly oversimplifying here as GGP allows for multiple goal conditions and this
is only one of many possible goals. But it is the closest goal according to the relaxation,
and the one the relaxation process estimate is based upon. Another way to look at this is
that this is the best we can hope for. Remember that the full search is not using relaxation
so if the heuristic is wrong it just means that the heuristic is uninformative or in the
worst case misleading. The estimates are most probably lower-bound approximations to
the true distance. Underestimating will cause thrashing and hence slower search but not

affect solution quality.

The relaxation process is time consuming as there is much work involved to generate the
states, state transitions and all the available moves at every expansion step. A way to deal
with this is to store individual propositions and their value estimate in memory. As was
explained in the discussion about HSPr, if a proposition estimate can be derived over how
far it is from the goal it only needs to be computed once. This topic will be discussed in

more detail later in this chapter.

4.2 The Relaxation Process in Practice

Unfortunately, like so many other things, the relaxation process does not work as well in
practice as it does in theory. As an example of the practical difficulties in applying the
relaxation process we use the 8-puzzle. In Figure 4.1 we show the first few relaxation

steps of the puzzle. The double-lined grid separates the 9 squares of the puzzle and the

! Note that only the maximum score of 100 is considered a goal here even though GDL allows for
multiple goal values (0-100).
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Example Relaxation
First 3 steps for 8-puzzle

2 1 1 3 2 112031 3
4
B B B B B
3 1 3
5 4 5 4 4 6
B B B
6 6
8 7 8 7 B
Step 1 Step 2
1 2 [3[1]2[3|1]2 3
4 5 4 4 6
B B B 2[1[B 7[8[B
11213]1 3 543 4|56
5 45|64 6 8|76 1123
B B B Start Goal
1 3
4 6 Added at this step
] 7 B B ERetained from previous step

Step 3

Figure 4.1: First three steps of relaxing 8-puzzle according to the theory

single-lined grid indicates which tiles are present in each square. In the top left corner we
see what the super state looks like at step one, with non-colored squares being the initial
state and the colored squares are the propositions added by the available actions. For
example, in step 1 the blank square (B) can be moved either left or down switching places
with 1 and 3, respectively. One way to look at what happens in the relaxation process is
that the tiles of the puzzle get stacked in each square, so more numbers indicate a bigger
stack. The initial state given in the example results in a seven step relaxation process at
the end of which every tile is in every square. This is because the negative effects, i.e.
removing propositions from the current state, are not performed. The tiles with a colored
background indicate the propositions introduced to each square in the current relaxation
step. The goal is not reached until the tile 7 is propagated to the top left corner and as

said before this happens in the seventh relaxation step. The heuristic estimate according

max
S

to ¢g7"** is thus 7 for that is the value assigned to the atom (cell 1 2 7) as well as the step

count for the relaxation process.

In practice the relaxation of 8-puzzle only requires five steps. The author of the puzzle’s
GDL description correctly assumes that there can only be one blank tile in any given state
and as a result the next relation that propagates moved tiles to the next state will do so for
any square containing the blank tile in the same row or column. To clarify this we can see
in Figure 4.2 the second step of the relaxation process in practice. Notice how the tiles 2
and 6 have been propagated to the top right corner square because it still contains a blank
tile from the initial state and we never remove any tiles. This causes the tiles to spread
too quickly and the process has reached the goal condition in only five steps instead of

seven. If the next relation were altered to only propagate tiles to the neighboring squares
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Relaxation in practice

2 1 23] 1 EE
B B B
1 3
5 4 4 6
B B
Incorrect propagation
6 Added at this step
8 7 B Retained from previous step
Step 2

Figure 4.2: The second step of Relaxation in practice

this would not happen. The author’s assumption of only one blank tile does not hold in

our relaxed rules and as a result we have a less informative heuristic.

How the author of a puzzle chooses to formulate its description will significantly impact
the informativeness of relaxation or even make it impossible. A simple example would be
to make a non-terminal state a precondition for all actions. If the relaxation’s super state
satisfies a terminal condition before a goal condition there will be no action to further

progress the super state and the relaxation process must give up.

Negations violate the second modification of ignoring delete effects. Any negated pre-
condition for a necessary action or in goal conditions will result in relaxation failure. In
puzzles where the goal condition can not be satisfied in a relaxation of the initial state
or we choose not to derive the goal set (we only allow the derivation of a goal set when
the super state is sufficiently small or it would take too much time), we may still want to

provide some informed estimate. We use the following rule:

Count if goalV alue is 100
E(s) =
100 — goalValue(s) — Count  otherwise

where FE(s) is the derived estimate for state s. The following rule is derived from the
assumption that we want to keep looking for a full score goal as long as possible and if

we find one we want go get to it in the least steps possible.

Then there are puzzles where the ideas of relaxation just do not capture the complexity of
the puzzle, such as the Lightson puzzle (see Section 5.4 in Chapter 5), where the relaxation
always derives a time step counter of 1 as every action in the puzzle is available from the

initial state.

In many puzzles the GDL representation includes a step counter within the puzzle. A step
counter poses a problem for the heuristic as it is often part of the goal condition, or even

the only goal condition. In cases where the goal value is determined, at least in part, by
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the state of a step counter the relaxation process may satisfy other goal conditions before
the step counter, i.e., solve the problem in less then the required solutions steps. This
should not be possible, but as the relaxation process has changed the rules by performing

multiple actions at every time step, it can.

4.3 Proposition Caching

As with the original HSP planner the relaxation process of the heuristic is the main bot-
tleneck of the search effort. This due to progression space search having to perform
relaxation of every state. HSP’s solution was a different variant they called HSPr were the
relaxation estimates where derived only once in the regression space, starting from the
goal conditions and then as propositions are added their distance is stored in a table for
future lookup. This process halts when all the propositions required for the initial state
have been estimated. The search is then performed in the progression space as before but
now the heuristic is derived quickly from the stored proposition estimates in the lookup
table.

In GGP it is not possible to define the regression space and thus a single regression relax-
ations is not possible. This is due to how the state transition is performed in GGP, where
the next predicate derives the next state and this is hard to reverse. However, we can ap-
proximate the derived lookup table by storing distance values for individual propositions

as they are discovered.

4.3.1 The Caching Mechanism

The aim of the caching mechanism is to store, in a fast lookup table, the distance of
all propositions to a goal. Whenever we perform a successful relaxation of some state
s the relaxation step counter Step indicates how far the hardest of its propositions is
from a goal, Step = max(p € s). Unfortunately we do not know which of the state’s
propositions this applies to. We can assume that they were all the hardest proposition, until
proven otherwise, and store each proposition with the relaxation step count value. Then

for every successful relaxation that is performed we use the following update rule:
Initialize E(p) to oo 4.1)

For eachp € sperform: E(p) = Min(Step, E(p)). 4.2)
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Algorithm 4 Heuristic function with Cache

Require: The goal set (G, current state s, integer Steps, integer Unsatis fiedGoals and

e e e e e
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cache set &/

Steps «— 0

Unsatis fiedGoals «— 0
CacheMiss < False
// Penalty calculated

... Same as before

: // Check if all propositions have cached values
: forall p € sdo

if p € E then
Steps «— Max|Steps, E(p)]
else
Steps «— 0
CacheMiss <+ True
Breake loop
end if

- end for
. if CacheMiss then

// Distance calculated
... Same as before
// Update the cache
for all p € sdo
if Steps < FE(p) then
E(p) « Steps
end if
end for
end if
return UnsatisfiedGoals + Steps

where E(p) is the stored proposition estimate and Step is the step count value derived

from the relaxation process.

If any proposition in the state to be estimated does not have a cache value a relaxation

process is invoked. Note that we only update the values for the original state propositions

and not the propositions generated in the relaxation super nodes. Storing values for the

propositions of the super node would almost certainly reduce the number of relaxations

required but after the first expansion, due to the relaxation method, most of the added

propositions would actually not be leading us towards the goal (as we add all the available

actions but only few of them are helping). This could lead to a gross underestimate of

non-helping propositions. For example, all information about dead-end states could be

lost.
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Cache :

“alues at Time {B.C.D}
Proposition 1 2 3 4
A T3 2 2 //
B 3 2 2 2
C Ma 2 2 2 (A B, D} {AB} {C.D.B} —5—p(F.0
D 3 2 2 2
E MAA M 2 2
Actions : {A, D, E}
1 A-xC
2 B-=E At time t =1 we relax the state {A, B, D} and get a Step value of 3
3 CD-x A At time t = 2 we relax the state {B, C, D} and get a Step value of 2
4 DE->B At time t = 3 we relax the state {A, D, E} and get a Step value of 2
5 CE-»F At time t = 4 we relax the state {A B} and get a Cache Hit of value 2
But a full relaxation would give us a value of 3
Goal={F}

Figure 4.3: Proposition dependency is lost with the cache hit of state {A, B}

The stored proposition estimates will converge to their true distance if enough relaxations
are performed, but how many is enough? This depends on how propositions are added
and removed as the puzzle progresses and hence is very domain dependant. Too few
relaxations can result in overestimation of states and can degrade the solution quality.
Low estimates result in more thrashing and hence slower search progress. The speed-up
of state cache hits versus relaxing them is very significant and some puzzle are only viable

to solve when cache is used.

Although convergence cannot be guaranteed we can increase the probability by making
relaxations more frequent. For example, by introducing a threshold £ such that after some
fixed amount of cache hits a relaxation is always performed. This enforcement is thus a

compromise between speed and heuristic quality.

One of the drawbacks of the proposed caching mechanism is that it suffers from lost
information about proposition dependencies as the propositions only provide information
about the state where they had the lowest possible value. This is best illustrated with
an example, see Figure 4.3. Assuming a puzzle where propositions A and B are in the
initial state and each is a necessary precondition to satisfy actions leading to the goal. A
relaxation of a state { A, B, D} results in an time step count of 3 and hence A, B and D are
stored in the cache with estimates of 3. By applying action 1, A achieves C, the next state
{B, C, D} will relax with a step count of 2 and hence the estimates B and D are updated
to a value of 2 at time 2. If we then apply action 2, B achieves D, and will relax the state
{A, C, D} we again get a step count of 2 and update the estimate of A to 2. At this point,
after time 3, both the proposition estimate for A and B have been updated to a value of
2 and now when the state {A, B} is estimated it will get a cache hit with with a value of
2 as Max[E(A), E(B)] = 2. Now if we were to relax the state, the true estimate should
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be 3, just as it was for the state {A, B, D}. The independent estimates for propositions A
and B have converged to the correct value 2 but the information that if both A and B are
part of a state their joint estimate should be 3 is lost. Underestimating does not affect the
solution quality but it will result in the search thrashing, as it needs to expand more nodes

to find a solution.

4.3.2 Adaptive Caching

As discussed above, the caching implementation uses a variable £ that indicates how
many cache-hits it will allow before forcing a relaxation. This count is reset to zero
every time a relaxation is performed, forced or not. £ is used to increase convergence of
estimates and prevent overestimates. Instead of using a fixed %, one can adapt it during
the solution process. We propose such a variant and choose to call it adaptive k. The
adaptive k performs an additional check at the end of relaxations where it compares the
relaxation value derived and the cached value if it was available. Depending on the result
the threshold £ is increased or decreased making relaxation more or less frequent. This is
an attempt to get the best of both caching and always relaxing, controlled by the observed
quality of the cached values. How much to increase and decrease the threshold value
remains an open problem. In the results presented here the threshold starts with a value
of £k = 4 and is incremented by 4 for ever time the values match. If they do not match,
however, k is decremented by 25%. This makes the mechanism fall back on relaxing

frequently for domains where caching is not providing accurate estimates.

4.4 Summary

The heuristic estimates how far a given state is from a goal state by combining two es-
timates. The first is the distance estimate derived from solving a relaxed puzzle and the
second is a penalty that is added for each goal proposition which is not satisfied. As a sin-
gle action can achieve more than one proposition the resulting estimate is non-admissible,

but the combined value is more informative than only using the first part.

How the description of the puzzle is stated has significant impact on the relaxation pro-
cess. Many puzzles have little or no information embedded in their goal conditions and if
they also are unsuitable for relaxation the heuristic can be uninformative. However, this
process provides more information about a problems complexity than no process at all

and for many puzzles, where the relaxation process is well suited, it performs quite well.
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Even when the relaxation process does not find a goal it can provide some information
about how many relaxations steps are performed before a terminal state is reached. The
problem is then to interpret this result, i.e., should the agent avoid such paths, assuming
they are dead-ends, or pursue them in the hope that they are terminal goal states that the

relaxation cannot interpret correctly.



Chapter 5
Empirical Results

In this chapter we present our results from solving several puzzles. We will see examples

of different behaviors and difficulties the agent must face.

5.1 Setup

The computer used to obtain the results is a MacBook with a Intel Core 2 Duo 2.2Ghz
CPU with 4MB L2 cache and 2.5GB DDR2 667Mhz RAM. The results are from two
variations of testing, an unbounded time variant and a real-time variant using competition
like settings. With the unbounded time variant we establish how much time, in seconds,
is required to solve the puzzle from the initial position. As this is often time consuming,
the results are only based a single solution. In a competition the agent has a start and a
play clock and after each play clock an action must be performed. As a baseline for all
puzzles we use 10 seconds for both clocks. For the harder puzzles we also use longer start
clocks as was done in the GGP competitions of 2006 and 2007. The time allocated for the
start clock can thus vary from 10 seconds to 180 seconds. We should note that the first
action of the agent is not performed until the start clock plus the first play clock are up.
We will call this the time before first action in our discussion of the different puzzles. All

real-time results are the average of running each algorithm 10 times.
We are testing TBIA* with four variants of the caching threshold &:
e k = 0, relaxation is always performed
e k = 40, a maximum of 40 cache-hits allowed in a row before relaxing

e k = 200, a maximum of 200 cache-hits allowed in a row before relaxing
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Table 5.1: 8-puzzle results with no time limit
Optimal solution length: 14
Threshold | Seconds | Closed I. | Open 1. | Cache hits | Relax. | Moves | Score

k=0 10.0 127 101 0 231 14 100
k =40 2.5 173 123 252 52 14 100
k =200 2.5 173 123 253 51 14 100
Adaptive k 2.8 173 123 245 59 14 100
UCT 10200.0 n/a n/a n/a n/a 60 0

Optimal solution length: 18
Threshold | Seconds | Closed 1. | Open I. | Cache hits | Relax. | Moves | Score

E=0 206.7 2029 1407 0 3567 18 100
k=40 13.4 2111 1316 3421 149 18 100
k =200 9.8 2096 1310 3461 85 18 100
Adaptive £ 12.9 2099 1320 3419 140 18 100

Optimal solution length: 30
Threshold | Seconds | Closed I. | Open 1. | Cache hits | Relax. | Moves | Score

k=0 8074.0 85915 | 29878 0] 136322 30 100
k=40 464.2 | 104841 | 26590 154434 4024 30 100
kE = 200 209.8 77691 | 24775 119204 67 30 100
Adaptive k£ | 2240.5 76580 | 25614 83973 | 35170 30 100

e Adaptive k, where the quality of cache estimates controls the threshold.

We also compare the performance to the simulation based algorithm used in CADIA-
Player (Finnsson, 2007). The simulation algorithm uses a Monte Carlo rollout with upper
confidence for trees (UCT) (Kocsis & Szepesvari, 2006) and is hence referred to as UCT.
To keep things fair the UCT results are obtained with the same processing power as TBIA*
on a single CPU. In competition CADIA-Player can use multiple machines for its random
rollouts. It should be noted that UCT is first and foremost designed for multi-role advisory
games although some enhancements have been made to deal with single agent games as

well.

5.2 8-puzzle

The 8-puzzle is a 3x3 sliding-tile puzzle where the objective is to have all the tiles in some
particular order. The puzzle is reversible and there are three goals defined in the GDL. A
score of 100 is awarded for an optimal solution, and a score of 99 is awarded for a solution
in less than 60 actions. Finally, a score of 0 is given for 60 actions without a solution. The

complexity of the puzzle can be set by different starting positions.
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Table 5.2: 8-puzzle results with time bounds

Optimal solution length: 30
Threshold | S.C. | P.C. | Cache hits | Relax. | Moves | Score
k=0 10| 10 0| 11707.2 59.2 | 29.7
k=40 10| 10| 150329.6 | 4830.7 452 | 89.1
k = 200 10| 10| 240197.2 | 2126.8 432 | 99.0
Adaptive k 10 10 75480.1 | 7461.7 48.2 | 89.1
UCT 10| 10 n/a n/a 60.0 0.0

In Table 5.1 we see results from using three starting positions with optimal solution length
14, 18 and 30 actions. As the UCT algorithm could not solve the simplest of the puzzles

it was not run on the two harder instances.

Note that with the start and play clocks set to 10 seconds the time before first action is
20 seconds and as we see in Table 5.1 all the caching variants of TBIA* except k = 0
require less time to solve the two simpler instances. What this means is that there will be
no real-time search and thus no need to test these variants in competition mode for those
instances. Only the £ = ( variant cannot solve the instance with solution length 18 within
the time before first action and when run in so it was run in the competition settings it

could not solve the puzzle.

The caching mechanism works well in the 8-puzzle and the more cache hits we allow the
quicker a solution is found. The speed increase of using caching more than makes up for
any thrashing it may cause. The representation of the problem works very well for how
the caching works. A state in the 8-puzzle is represented as a list of the positions of all 8
tiles on the board and the goal is to have all tiles in some defined goal position, in our case
in alphabetical order. Given that a tile, lets say A, is currently in the bottom right corner,
cell(1 3 A), the agent needs to perform a minimum of 4 moves to get it to its correct place
in the top left corner, cell(3 1 A). As this is the largest Manhattan distance possible on
a 3x3 board this value is derived with good accuracy and no change in any other state
proposition will ever make it otherwise. The remaining propositions in this state are also
assigned an estimate of 4. That results in possible overestimates until the values converge
to their correct Manhattan distance.

A detailed study of cached vs. relaxation estimates for all 303 calls to the heuristic in the
8-puzzle of solution length 14 shows that in 69.3% cases the two values are the same. In
14.9% cases the cache over estimates and in 15.8% cases it underestimates. The highest
cache over-estimate was only 2 higher, and the lowest under-estimate was 3 lower then

the derived relaxation value. The sum of all 303 estimates for relaxation is 3332 and the
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Table 5.3: Analysis of Cache vs. no Cache

Evaluations No Cache = Cache | No Cache < Cache | No Cache > Cache
Match ratio 69.31% 14.85% 15.84%
Maximum difference 0 2 3

cache hit sum is only 7 higher or 3325. The cache vs. no cache results are summed up in
Table 5.3.

5.3 Peg

Peg is an irreversible game where pegs are removed as another peg jumps over them. In
the beginning there are 32 pegs on the board, arranged in an cross-like arrangement with
the center hole being the only one empty. The game terminates when there are no moves
available and the goal value is calculated depending on how many pegs remain on the
board. A score of 100 is awarded for 1 peg in the center hole and 99 is awarded for 1 peg
in any other position. For each peg exceeding 1 the score is decremented by 10, i.e., for 2

pegs remaining the score is 90, for 3 it is 80, etc.

Due to the nature of the game, with high branching factor and a depth of 32 moves, it
has a large state space. Solving Peg on the start clock takes a long time, no matter what
the k& threshold is set to. Instead we only use competition settings. Note that due to Peg
being an irreversible game, once an action has been selected and performed, all the other
actions and subsequent states are discarded from the open list as there is no guarantee that
the agent can ever get to them. What this means in practice is that the TBIA* resets its
open- and closed list, as well as the proposition cache, after every action performed. One
of the advantages is that the search gets focused on its current neighborhood and incorrect

cache values obtained from some other branch of the game tree are discarded.

In this puzzle the caching variants have the problem of the independent proposition esti-
mates converging to low values, causing the combined information to be lost. This leads
to dead-ends looking promising and the search is thrashing. It is also informative to note
that this issue with the convergence can get worse when the the start clock is longer as
the heuristics converges to lower values before the agent is forced to commit to the first
action. The problem in Peg is that low scoring branches will get estimated as feasible and

the search will spend time looking in low scoring parts of the game tree.
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Table 5.4: Peg results with time bounds
Threshold | S.C. | PC. | Cache hits | Relax. | Moves | Score

k=0 10| 10 0] 847.1 285 | 75.0
k=40 10| 10 3590.2 | 621.1 289 | 79.0
kE = 200 10| 10 4432.4 | 485.6 29.0 | 80.0
Adaptive k 10| 10 736.0 | 752.2 284 | 76.0
UCT 10| 10 n/a n/a 30.0 | 90.0
k=0 180 | 10 0| 1391.8 30.0 | 90.0
k=40 180 | 10 16208.5 | 1508.9 299 | 89.0

k =200 180 | 10 25716.5 | 635.8 282 T1.7
Adaptive £ | 180 | 10 5035.5 | 1576.0 30.0 | 90.0
UCT 180 | 10 n/a n/a 30.0 | 90.0

5.4 Lightson

Lightson is a game where the objective is to press buttons to turn on a sequence of lights.
The original problem has 4 lights in a 2x2 grid, and defined as cell(x y [0..4]) where
0 is off and 1-4 means light is on. For example, if the button for cell 1 1 is pressed a
proposition cell(1 1 4) is added to the state. The last value, 4, will then decrease with
every action made, so the correct buttons must be pressed in sequence although the order
does not matter. The Lightson2x2 is a set of 4 original problems in a 2x2 grid, giving a
total of 4x4 buttons. To solve the Lightson2x2 puzzle only one of the original problems
needs to be solved. The Lightson4x4 is a set of 16 original problems or a grid of 8x8
buttons. In this puzzle a full score of 100 is awarded for any solution in 10 actions or

less.

The Lightson puzzle has some interesting properties. First there is the problem of the
increased branching factor caused by having to solve any of the sub-puzzles. As we do
not discover the problem’s independence of each other, the search must expand all the
available actions. If we recall how the relaxation works, by allowing the relaxation phase
to apply all available actions, the step count derived from relaxation will be uninformative
as it is always 1. Not only does the relaxation solve one of the combined lightson puzzles,
but it solved all of them and with every light indicated as on by the value of 4. What
this means is that the cache value for all propositions will converge to a value estimate of
1, as there was only one relaxation step and all actions were available, and thus the first
part of our heuristic is not informative. The second part of the heuristic is also affected
as we reward only cell propositions where the last parameter has a value of 4, that is
only the most recently light turned on. When the agent presses the second button the first

proposition will have degraded to a value of 3.
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Table 5.5: Lightson results without time limits

Lightson2x2, optimal solution length: 4
Threshold | Time Closed 1. | Openl. | Cache hits | Relax. | Moves | Score
k=0 9.2 89 1320 0 1409 4 100
k =40 29.6 1325 19428 20615 569 4 100
k =200 273 1325 19428 21026 158 4 100
Adaptive k 3.1 137 2040 2088 89 4 100

Lightson4x4, optimal solution length: 4 ‘
Threshold | Time Closed I. | Open 1. | Cache hits | Relax. | Score

E=0 937.4 328 20595 0| 20929 4 100
k=40 10680.0 20314 | 1276036 | 1267375 | 32650 4 100
k = 200 9713.0 20314 | 1276036 | 1293319 6706 4 100
Adaptive k£ | 9425.0 20314 | 1276036 | 1298976 1049 4 100

Table 5.6: Lightson4x4 results with time bounds

Threshold | S.C. | P.C. | Cache hits | Relax. | Move | Score
k=20 10 10 0.0 | 25526 | 10.0 0.0
k =40 10 10 5759.6 | 608.0 7.0 | 100.0

= 200 10 10 5338.9 | 342.7 5.7 | 100.0
Adaptive k 10 10 6341.2 | 450.8 6.4 | 100.0
UCT 10 10 n/a n/a 8.6 | 60.0
k=0 30 10 0| 25389 84| 70.0
k=40 30 10 8260.6 | 608.0 7.0 | 100.0
k =200 30 10 9340.3 | 402.8 5.0 | 100.0
Adaptive k 30 10 81244 | 357.6 5.6 | 100.0
UCT 30 10 n/a n/a 9.1 300

In Table 5.6 are results from competition settings. There are two time settings used, the
default 10 second start and play clock and a 30 second start clock and 10 second play

clock.

Given the competition times of 10 second start and play clocks the £ = 0 version suffers
due to how few nodes it expands. The first action, after 20 seconds, is based on only 9
node expansions. Subsequently the £ = ( variant was not able to solve the puzzle in any
of the 10 runs. The £ = 40, k£ = 200 as well as the adaptive k variants manage to get
full scores, but not by finding the optimal solution length of 4 actions. If the start clock is
increased to 30 seconds, play clock still at 10, the £ = 0 can solve the puzzle most of the

time and the £ = 200 is getting close to the optimal solution length.

We cannot state that any of the variants is better than the others as the main issue of this
puzzle lies with the quality of the heuristic. The heuristic derived by relaxation is poor in

this puzzle, and it shows clearly how the GDL description can have a big effect on how
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informative the heuristic will be. We are neither able to capture a step count estimate, as
we do all the actions on a single step, nor the goal propositions due to the relaxed state
containing only cell values with the last variable of value 4, a state that can not be reached
in the search. Nonetheless we are doing better than the UCT simulation-based counterpart

due to our systematic search effort and the short solution depth of only 4 steps.

5.5 Coins2

Coins2 is a puzzle about stacking a row of coins. The agent starts with 20 coins and
is allowed to stack coin z on to coin y if both  and y are not already part of a stack
and there are two coins between them. A score of 0 is awarded if some coin remains
unstacked, and a score of 100 if the agent performs 10 actions, and hence has stacked all
the coins. However, due to a flaw in the game description a goal can be reached in only 9

actions, leaving 2 coins unstacked.

The results are shown in Tables 5.7 and 5.8. The advantages of caching is quite large. As
expected, the caching variants need less time, but note that they also explore fewer states,
i.e., k = 200 is "too good’. By adding relaxations and cache-hits for the £ = 200 variant
we see that only 3867 states were explored while the £ = 0 variant explored 1198335
states. As they are using the same search method and not performing real-time actions
the difference must be the derived heuristic values. Now how can it be that £ = 200 is
deriving a more informative heuristic? What happens is that it takes some time for the
proposition’s estimates to converge to their correct value. The less frequent relaxations
result in slower convergence and until the values converge the overestimated states are
working as a pruning method favoring recently observed states, i.e. states where new
propositions have forced a relaxation and propositions have moved closer to their correct
estimates. As there are several ways to solve this puzzle the branch that just happens to
get more focus will eventually lead to a solution. Note that the order of the stacking is
not relevant to the solution, so many of the propositions will converge to an estimate of
1 much like what we observed in the Lightson puzzle. Once the cache estimate values
converge, the caching is actually worse off then the £ = 0 mechanism as it will have cache
hits for many of the dead-end paths the £ = 0 will pick up on. As the cache estimates
converge to low values and the cache misses dead-ends, the relaxations and cache hits

will rarely agree and the adaptive k will behave much like the k£ = 0.

Note that the 180 seconds is more than the £ = 200 requires to solve the puzzle before the

first action is taken. It is also interesting to observe that the £ = 40 mechanism gets a full
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Table 5.7: Coins2 results without time limit

Optimal solution length: 9
Threshold | Seconds | Closed I. | Open I. | Cache hits | Relax. | Moves | Score
E=0 10201.0 | 515608 | 210115 0| 1198335 9 100
k=40 2646.0 | 181685 | 401843 774383 84508 9 100
k = 200 41.7 444 2756 3717 150 9 100
Adaptive £ | 7511.0 | 480769 | 541618 924215 | 657328 9 100
UCT 2045.7 n/a n/a n/a n/a 9 100

Table 5.8: Coins2 results with time bounds

Threshold | S.C. | P.C. | Cache hits | Relax. | Moves | Score
k=20 10 10 0 2703 7 0
k =40 10 10 5471 529 9 100
k=200 10 10 2807 239 9 100
Adaptive k 10 10 1822 1291 7 0
UCT 10 10 n/a n/a 9 100
k=20 180 10 0] 22251 9 100
k =40 180 10 52706 6860 8 0
k=200 180 10 3717 150 9 100
Adaptive £ | 180 10 17994 | 17014 9 100
UCT 180 10 n/a n/a 9 100

score with 10 second start clock but fails to solve the puzzle given the 180 second start
clock. This shows clearly how the behavior of the caching mechanism changes once the
proposition estimates have converged and it starts to miss the dead-ends. It can be seen
in the results for adaptive k that the threshold remains quite low as just over half of the

calls to the heuristic are cache hits.

5.6 Other Puzzles

Incredible is a blocks world puzzle where the goal is to build two towers and leave the
gold in a certain place. The cache has the same problems as with Coins2 where it is
prone to use cache hits on dead-end paths. The £ = 200 however makes up for the extra
work by much faster search, and solves the puzzle in the shortest time, 225.7 seconds. In

competition settings all the mechanisms get a full score.

Lightsout is a puzzle that was used in the 2008 preliminary GGP competitions. None
of the competitors was able to solve the puzzle. The puzzle has a solution depth of 10
actions and is similar to Lightson, just this time the goal is to turn off all the lights. This

goal conditions is enforced by negating a light on check, and hence cannot be relaxed. To
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be able to use this puzzle the negation was removed from the goal condition and replaced
by an exhaustive list of propositions, (celll 1 off), (cell 1 2 off) etc. In all fairness it should
be pointed out that checking this list of conditions is much easier for our prover compared
to instantiating a (cell x y on) and hence the whole search process benefits from thins
change. After this change the puzzle is easy to solve, 83.2 seconds by £ = 0 and only
14.2 seconds by £ = 200. When run in competition settings with 10 second start and play
clocks the £ = 0 did not solve the puzzle but all the other three already solved it before

the first action was taken.

Eulersquares is a complicated puzzle where the objective is to color a partitioned area
with three colors without two neighboring subsections having the same color. The game
terminates after 30 actions and the score is determined by how many subsection pairs have
been colored, ranging from 100 for all 9 pairs to 11 for 2 pairs. In competition settings,
10 second start and play clocks, all the variants solved the puzzle but adaptive k solved

it in 25 actions while the others solved it in 30.

Chinesecheckers is a single player version of the Chinese checkers game. It is not a
legal GDL as the goal can diminish during play. In the current rules for GGP, once a
agent has observed a state with some goal it can not get less from subsequent states. We
include it here because it is relaxable and can still give information as to what mechanism
works best. The winner in this puzzle is £ = 40 with a solution in 27.2 seconds, and all
three caching mechanisms solving the puzzle in less then half the time it took £ = 0. In
competitive settings, 10 second start- and play clock, the adaptive k was the only one to

find a solution in 11 steps with £ = 0 and &£ = 200 on step behind or in 12 steps.

Asteroids is a puzzle where the agent must navigate a spacecraft to a planet. There are
two modifications to this puzzle, two puzzles in a row called Asteroids_serial and a two
puzzles solved in parallel called Asteroids_parallel. Overall the £ = 200 mechanism
works best in the Asteroids puzzles even thought the caching mechanisms are running

into some trouble.

In addition to these we have tested nine other puzzles where the relaxation process works.
In all nine the caching variants solve the puzzles within within 2 seconds and are thus too

simple to provide a productive evaluation of the effectiveness of our methods.

5.7 Summary

The search speed gained with the caching mechanisms is obviously helping in many of

the games tested and some of them: 8-puzzle, Lightsout (non-negated), Asteroids and
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asteroids_serial, are only solvable with caching. Performing relaxations every time is just
too slow and there is often little knowledge behind the first action taken. The risk is that
the agent will need to backtrack to undo the first move or in the worst case it may have

thrown away its chance of obtaining a full score.

The cache however has certain problems, such as converging to low value estimates
quickly, missing dead-end paths due to cache hits and overestimating states if conver-
gence is too slow. As we saw in the Coins2 puzzle there are cases where slow convergence
helps, as it focuses the search effort. However, this kind of effect can not be counted on

as it might as well be focusing the search on a poor part of the game tree.

The adaptive k mechanism is a promising idea that warrants further research. It compro-
mises between relaxations and caching based on the quality of the cache hits. adaptive k
can however not handle puzzles where the cache and relaxation agree frequently, but the
few times they do not agree are the crucial states leading to solutions. Cache hits will

have become frequent and the odds on relaxing the crucial states thus low.

In real-time the agent must commit to some branch of the search tree after the time before
the first action, i.e. when it performs its first move. Committing to a branch of the search
tree narrows the search effort, especially if the puzzle is irreversible. Often this first move
is speculative and in the worst case the agent may forfeit the chance of achieving a full
score. Solving puzzles, such as Peg, that have sub-goals that guide the agent toward
higher scores is often easier in real-time. Other puzzles have misleading sub-goals and
are thus harder to solve in such settings. Our implementation favors the known over
the unknown and chooses the highest score observed over hoping for optimality with no

guarantees.



Chapter 6
Conclusions

The goal of this project was to analyze and address issues that our GGP agent had with
single-role puzzles. Many single-role puzzles are unsuitable for the sampling-based UCT
method due to the fact that informative feedback is scarce. By building upon the work
done for general purpose planners we implemented a system that derives a heuristic by
solving a simplified version of the original puzzle and uses that solution as an estimate of

the true solution length.

Like the Progression based relaxations, we must by default solve the relaxed puzzle every
time a heuristic is derived. As this is the most time consuming part of the process we
proposed and implemented a method based on a lookup cache similar to HSPr. However,
because of how hard it is to define the Regression Space for game descriptions in GDL,
we cannot implement the full one pass lookup that is used by HSPr, but instead we use an

approximation.

When an unestimated proposition is encountered a relaxation is performed and the propo-
sition cache is updated so that the lowest derived estimate for each proposition is stored
in the cache. However, if every proposition in a state has a cached value the state can be
estimated from cache without performing the relaxation process. Several relaxations are
required for the cached values to converge to their true distance value and until that hap-
pens the heuristic is not guaranteed to be admissible. To ensure convergence we enforce
relaxations even when a cached value is available for every proposition in the state. The
threshold we call £ determines how many cache hits are allowed in a row before enforcing
a relaxation. We also tested an algorithm where the frequency of forced relaxations was
adaptive in that it was incremented or decremented based on whether the cached estimate

and the relaxation estimate agreed or not.
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As the relaxation process is the inhibiting factor in the search progress we would like to do
as few relaxations as possible and allow many cache hits as long as the informativeness
is not compromised. The adaptive k threshold is a promising idea but it does run into
problems with puzzles where cache hits and relaxation estimates agree frequently but
then overestimate a few crucial states that will lead to a solution. The overestimated good
states will not get expanded due to their overestimate and are essentially lost on the open
list causing the search to thrash around for a long time before finally expanding them.

However, for many puzzles the caching variants perform quite well.

Unlike the planning competitions, where the planner tries to come up with a good plan
as quickly as possible, the GGP competitions require the agent to perform actions in real-
time, that is, once the play clock is up the agent must perform a legal action. What this
means is that a GGP agent cannot automatically assume all actions to be reversible or that
they can be undone. In some puzzles the agent can forgo an optimal score by failing to
choose the correct first action. Hence the assumption that can safely be made by planners,
that the puzzle is solvable from any state, only holds for the initial state in GGP. Once
the agent has set out on its journey, no matter how much time is allocated, there is no

guarantee it can achieve an optimal score.

Because of the importance of choosing the correct action right from the start we choose to
apply a complete search algorithm. Our algorithm is called Time-Bounded and Injection-
based A* (TBIA*) and is based on Time-Bounded A* (TBA*). TBA* enhances the classi-
cal A* algorithm to work in real-time by interleaving planning and execution. In addition
it maintains two paths, the best path at each time step called pathNew and a path to the
best achievable goal called pathFollow. The agent will traverse along pathFollow until a
better path has been discovered. The main difference between TBA* and TBAI* lies in
how pathFollow is updated. In TBAI*, when new preferred path is found, instead of back-
tracking like TBA* does, we prefer to reset the search effort and have the agent search its
way onto better paths. This way puzzles with irreversible moves can be handled. To fa-
cilitate the rediscovery of previously unusable paths at a later time we inject low heuristic

values to the states of unusable but good paths.

We have shown that the methods described above can solve puzzles that can be considered
unsolvable by the simulation based methods, such as the 8-puzzle. We have also shown
that the performance of our methods depends heavily on how the puzzle description is
formulated. The main drawback of the current implementation is a lack of flexibility

towards dealing with such diversity.
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