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Abstract

Markov Decision Processes provide a mathematical framework for modeling
decision making in situations where outcomes are partly random and partly
under the control of the decision maker. MDPs are used in a variety of areas
including robotics, automated control, planning, economics and manufactur-
ing. For the solving of MDPs various different approaches exists. Value
Iteration is an algorithm which falls under the class of Dynamic Program-
ming methods and can be used to solve MDPs. In recent years Graphics Pro-
cessing Units have been evolving rapidly from being very limited processing
devices with the sole purpose of accelerating certain parts of the graphics
pipeline into fully programmable and powerful parallel processing units. In
the autumn of 2007 NVIDIA introduced CUDA, a hardware and software
architecture for utilizing the GPU for general purpose calculations. In this
thesis we introduce two parallel CUDA based implementations of the Value
Iteration algorithm: Block Divided Iteration and Result Divided Iteration.
We discuss the different approaches each algorithm takes for utilization of
the parallel processing power of the CUDA device. We also present a frame-
work we implemented which enables researchers to easily apply the parallel
algorithms to MDPs within C or C++ applications. Empirical results are also
presented which show a substantial performance improvement achieved by
the parallel algorithms compared to a sequential implementation running on
a CPU.
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Útdráttur

Markov ákvörðunarferlar (e. Markov Decision Processes) skilgreina stærðfræði-
legan ramma fyrir ákvörðunartöku við aðstæður þar sem niðurstaðan er að
hluta til slembikennd og að hluta til undir þeim komin sem tekur ákvörðun-
ina. Notast er við Markov ávörðunarferla á mörgum mismunandi sviðum til
dæmis við stjórnun vélmenna, í sjálfvirkri ákvörðunartöku og skipulagningu,
hagfræði og framleiðslustjórnun. Til eru margar mismunandi aðferðir til þess
að leysa Markov ákvörðunarferla. Gildisítrun (e. Value Iteration) er reiknirit
sem fellur undir flokk kvikra bestunar aðferða (e. Dynamic Programming) og
hægt er að nota til að leysa Markov ákvörðunar ferla. Á undanförnum árum
hafa skjákort verið að þróast frá því að hafa mjög takmarkaða reiknigetu
og þann eina tilgang að auka hraða ákveðins hluta grafík-pípunar yfir í að
vera gríðarlega öflug og að fullu forritanleg kort, sem sérhæfð eru í samh-
liða vinnslu. Haustið 2007 kynnti NVIDIA CUDA, nýjung í bæði vél- og
hugbúnaði sem gerir kleift að nýta skjákort á auðveldan hátt fyrir almenna
útreikninga. Í þessari meistararitgerð kynnum við tvö reiknirit sem byggð eru
á gildisítrun en nýta sér samhliða vinnslu og keyra á CUDA grafíkkortum.
Við ræðum á hvaða mismunandi hátt reikniritin nýta sér möguleika CUDA
kortsins til samhliða vinnslu og kynnum einnig umgjörð (e. Framework),
sem við útfærðum, sem gerir aðilum kleift að beita reikniritunum á auðvel-
dan hátt á Markov ákvörðunarferla innan C eða C++ forrita. Niðurstöður eru
kynntar þar sem sýnt er fram á umtalsverða yfirburði reikniritanna sem að
nýta sér samhliða vinnslu í samanburði við hefðbundna útfærslu sem keyrir
eingöngu á örgjörva tölvunnar.
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Chapter 1

Introduction

Markov Decision Processes provide a mathematical framework for decision making. They
are widely used for the solving of real-world problems of both planning and control as
they are surprisingly capable of capturing the essence of purposeful activity in a variety of
situations. For those reasons they have formed the basis on which many important stud-
ies in the field of learning, planning and optimization have been built upon. As a result
several different techniques have been developed for their solution.

Two algorithms which fall under the category of Dynamic Programming and have been
successfully applied to solving MDPs are Policy Iteration and Value Iteration. These
Dynamic Programming methods perform sweeps through the state space and do a full
backup operation on each state. Each backup updates the value of a single state based
on the values of all possible successor states and the probability of ending up in that
state. Because of the requirement of these dynamic programming methods for doing
complete sweeps of the whole state space they are often considered impractical for very
large problems. But, comparing them to other methods for solving MDPs we notice that
they are actually quite efficient, and that they are guaranteed to find an optimal policy in
polynomial time. They are also actually better suited for handling of large state spaces
than competing methods such as direct search and linear programming (Sutton & Barto,
1998). Another attractive quality of the Dynamic Programming algorithms is that they do
not require the states to be backed-up in any particular order or equally often in order to
converge. Thereby they offer the opportunity for using different approaches to sweeping
the state space.

In recent years graphic processing units have been evolving at a rapid pace from being
very limited processing devices with the sole purpose of accelerating certain parts of the
graphics pipeline into fully programmable and powerful parallel processing units. This
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has made the GPU attractive for problems that can be expressed as data-parallel compu-

tations and has caused a recent trend in computer science referred to as GPGPU (General
Purpose computing on the Graphics Processing Unit) where the graphics processing unit
is used to perform the computations rather than the central processing unit. Until recently,
however it remained difficult to utilize the power of the GPU for non-graphic problems
since the GPU could only be programmed through a graphics APIs which provided a very
limiting access pattern to the GPU’s DRAM. NVIDIA noticed this increasing trend and
introduced CUDA in the autumn of 2007. CUDA (Compute Unified Device Architecture)
is a new hardware and software architecture for performing computations on the GPU
as a data-parallel computing device without the need of going through the graphics API
(“NVIDIA CUDA Programming Guide”, 2008).

The main focus of this thesis is the design and implementation of a GPU-based MDP

Solver framework that utilizes CUDA. The framework allows users to harness the power
of the GPU for more efficiently solving problems which can be formed as MDPs. We
describe a way to formulate problems to fit the framework and algorithms for solving
them on CUDA enabled devices. As the GPU offers parallelism of a much higher de-
gree than previous devices that have commonly been utilized for parallelizing Dynamic
Programming methods, this offers both new challenges and new opportunities.

The thesis is structured as follows: In Chapter 2 we review background work and its rela-
tion to this thesis. Chapter 3 describes how the Value Iteration algorithm can be adjusted
to the CUDA framework and presents our two different proposals for parallel value iter-
ation. Chapter 4 gives an in-depth description of the implementation of the algorithms
in relation to the CUDA programming model and necessary performance considerations.
In Chapter 5 we describe the solver framework which can be used to easily apply these
algorithms to any MDP within C or C++ applications. In Chapter 6 we present our ex-
perimental results and end by giving our conclusion in Chapter 7.



Chapter 2

Background

In this chapter we give a general overview of Markov Decision Processes and the most
common methods used to solve them. We then introduce the fundamentals of parallel
computing and give a brief overview of how to use GPUs for general purpose computation
by utilizing the CUDA programming model.

2.1 Markov Decision Processes

Markov Decision Processes (MDPs) provide a mathematical framework for modeling
decision making in situations where outcomes are partly random and partly under the
control of the decision maker. They originated in the study of stochastic optimal control
in the 1950s and have remained of key importance in that area ever since. Their theory
has continued to develop over the last decades to fit a broader spectrum of problems and
has lead to a wealth of common algorithmic ideas and theoretical analysis. Today MDPs
are used in a variety of areas, including robotics, automated control, planning, economics
and manufacturing.

An MDP consists of an agent and an environment that the agent interacts with. These
interactions happen over a sequence of discrete time steps t; at each time step t the agent
perceives the state of the environment st and selects an action at to perform. The en-
vironment reacts to the action by making a transition to a new state st+1 and returns a
scalar reward rt+1 ∈ <. The agent’s goal is to maximize the total amount of reward it
receives from its interactions with the environment. The dynamics of the environment
are stationary and the state signal must contain all relevant information but is otherwise
unconstrained.
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Figure 2.1: Markov Decision Process

An MDP is generally denoted by a four-tuple (S , A, Pa(., .),Ra(., .)). Where S is the state
space, A is the action space, Pa(s, s′) is a function that determines the probability that
taking action a in state s at time t will lead to state s’ at time t+1, and Ra(s, s′) is a
function that returns the expected immediate reward received after transition to state s’

from state s. An MDP is called finite if the state and action sets are finite. The scope of
this project includes finite MDPs.

For the agent to be able to maximize the reward from its interaction with the environment
it must be able to evaluate the value of a state and implement a mapping from states to
probabilities of selecting each possible action at each time step. This mapping is referred
to as the agent’s policy and is denoted by π, where πt(s, a) is the probability that action
a will be selected at time t if we are in state s at time t. The estimated value of a state is
defined in terms of future rewards that can be expected. Of course the rewards the agent
can expect to receive in the future depend on what actions it will take. Accordingly its
value function is defined with respect to a particular policy. Therefore the value of state s
under policy π, denoted Vπ(S ), is the expected return when starting in s and following π
thereafter and can be defined formally as:

Vπ = Eπ{Rt|st = s} = Eπ{
∑
k=0

γ
krt+k+a‖st = s} (2.1)

where Eπ{} denotes the expected value given that the agent follows policy π and γ is the
discount rate which determines how much we value future reward compared to immediate
reward.

When we solve an MDP we are looking to obtain the optimal policy, which is defined
as the policy with expected return greater than or equal to all other policies for all states.
The optimal policy is denoted as π∗ and there can be more than one optimal policy.
The MDP framework is abstract, flexible, and provides the tools needed for the solution
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of many important real-life problems. The flexibility of the framework allows it not only
to be applied to many different problems but also in many different ways. For example,
the time steps can refer to arbitrary successive stages of decision making and acting. The
actions can be any decisions we want to learn how to make and the state can contain
anything that might be useful in making them.

2.2 Solving Markov Decision Processes

The optimal policy can be computed by applying dynamic programming methods to the
MDP. A key idea of the application of dynamic programming to MDPs is the use of value
functions to organize and structure the search for good policies.

2.2.1 Policy Iteration

Policy Iteration is a dynamic programming algorithm that manipulates the policy directly
when used to compute the optimal policy. It starts by evaluating an arbitrary policy, and
then uses the value function of that policy in order to find better policies. This is done by
considering a deviation from our current policy in state s where we want to know whether
or not we should change the policy to deterministically choose an action a different from
the one according to π(s). We can determine if this change in the policy will lead us
to a better policy by selecting a in s and thereafter follow the existing policy π. If we
find out that the value of this new policy is greater then of our existing policy, then we
have successfully improved our policy. This line of thought is natural to extend not only
to consider a change for a single action in a single state but for all actions in all states.
We would then evaluate each action in each state and select the actions that yield the
highest return. This process of making a new policy that improves on an original policy,
by making it greedy or nearly greedy with respect to the value function is called policy
improvement. Once a policy π has been improved using Vπ to yield a better policy π′

we can compute its value function Vπ′ and improve it again to yield an even better policy
π′′ where each policy is guaranteed to be a strict improvement over the previous one.
Because a finite MDP has only a finite number of policies, this process must converge to
an optimal policy and optimal value function in a finite number of iterations. This way of
interleaving policy evaluation with policy improvement is called policy iteration and is a
fundamental algorithm in the study of MDPs.
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2.2.2 Value Iteration

Value iteration is another dynamic programming algorithm that takes a different approach
to obtain the optimal policy. Rather then manipulating the policy directly it obtains the
optimal policy by computing the optimal value function. It does this by going through the
state space and assigning each state the maximum estimated value based on the discounted
value of its neighboring states. This iterative computation is continued until the maximum
change in value for all states in each sweep is smaller then some predefined small positive
number denoted as θ. The smaller the value of θ the higher the precision of the algorithm
is. Value iteration requires each state to be processed only once in each sweep through
the state space and thereby eliminates one of the drawbacks of policy iteration, which is
policy evaluation which may require multiple sweeps through the state space. A formal
description of the algorithm follows:

Algorithm 1 Value Iteration
Pa

ss′ probability function {Returns probability of transistioning to state s’ when action
a is taken in state s}
Ra

ss′ result function. {Returns the immediate reward recieved after transistioning to
state s’ from s with action a}
Initialize V arbitrarily e.g., V(s) = 0, for all s ∈ S +

θ ← a small positive number
repeat

∆← 0
for all s ∈ S do

v← V(s)
V(s)← maxa

∑
s′ P

a
ss′[R

a
ss′ + γV(s′)]

∆← max(∆, |v − V(s)|)
end for

until ∆ < θ
Output a deterministic policy, π, such that
π(s) = argmaxa

∑
s′ P

a
ss′[R

a
ss′ + γV(s′)]

The Value Iteration algorithm is flexible and does not require the value of the states to be
computed in any strict order nor equally often in order to converge as long as all states
are processed during a sweep (Moore & Atkeson, 1993). This gives the flexibility that
the values of states can be computed in any order, using whatever values of other states
that happen to be available; the value of some state can therefore be processed several
times during a single sweep. This flexibility, along with its slow convergence rate, has
been the catalyst for some efforts to speed up its computations (Bertsekas, 1982). Most of
these efforts have been focused on one of two things, either parallelization or prioritizing
of computation in an effort to reduce unnecessary computation (Wingate & Seppi, 2003,
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2004, 2005). In this thesis our research efforts will be focused on the Value Iteration
algorithm. The main reasons are that it is simpler than Policy Iteration, and studies have
shown that in practice it is more robust and converges faster (Sutton & Barto, 1998).

2.2.3 Other Methods

There exists a variety of other agent based methods which can be used for the solving of
MDPs. These methods mostly fall under two classes, Monte Carlo methods and Temporal
Difference Learning methods. MC methods are based on averaging sample returns for the
solving of problems. They differ from Dynamic Programming as they do not require a
complete model of the environment and they do not bootstrap but rather the estimate for
each state is independent. TD Methods, however, combine qualities from both of these
method classes as they do not require a complete model of the environment and also boot-
strap. TD methods are naturally implemented in an on-line and fully incremental fashion.
Two well known TD methods worth mentioning are Q-Learning and Sarsa (Sutton &
Barto, 1998).

2.3 Parallel Algorithms

Parallel computing is defined as a form of computing where multiple calculations are
carried out simultaneously. It is derived from the principle that large problems can of-
ten be divided into smaller ones which can then be solved in parallel. Traditionally, to
solve a problem an algorithm is constructed and implemented as a serial stream of in-
structions. These instructions are then executed one at a time on a central processing
unit on a single computer. With parallel computing, on the other hand, multiple pro-
cessing elements are used concurrently to solve a problem. This is accomplished by
breaking the problem into independent parts and delegating them to the processing el-
ements so that each of them can execute its part of the algorithm simultaneously with
the others. The processing elements can range from a single computer with multiple
processors, to a network of computers or specialized hardware (Wikipedia, 2009).

Understanding data dependencies is fundamental for implementing a parallel algorithm.
No program can run faster than the time it takes to process the longest chain of depen-
dent calculations, since calculations that depend upon prior calculations in the chain must
be executed in order. Most algorithms, however, do not consist of only long chains of
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dependent calculations but have segments of independent calculations which can be par-
allelized. Another fundamental property which parallel algorithms must preserve is se-
quential consistency, which guarantees that the results of the algorithm are same as if its
operations were executed sequentially.

There are several different types of parallelism. The parallelism models that algorithm
designers normally use when designing parallel algorithms are the data-parallel model
and the task-parallel model. Data parallelism is defined as parallelism which is inherent
in program loops. Data parallel programs normally unroll these loops if possible and dis-
tribute the data across computing nodes to be processed in parallel. This model fits well
for systems capable of SIMD execution. SIMD stands for Single Instruction Multiple
Data and means that the system is capable of executing the same instructions on multiple
data elements concurrently. Task parallelism, on the other hand, is characterized by the
ability to execute completely different sets of instructions on either the same or differ-
ent sets of data in parallel. The task parallelism model fits MIMD (Multiple Instruction
Multiple Data) capable systems well, such as computing clusters.

If we look at how parallelization should theoretically affect performance it is not illogical
to assume that we would get a linear speed-up, that doubling the number of processors
will reduce our runtime by half. However, it is not quite that simple since the speedup of
a program using multiple processors in parallel computing is limited by the time needed
for the sequential fraction of the program. Therefore, no matter how many processors we
devote to a parallelized executing of a program, the minimal execution time can not be
less than the time it takes to execute its sequential part. Amdahl’s Law can be used to
predict the maximum possible speedup achievable when a problem is parallelized using
parallel processors in comparison to using only a single serial processor, given that the
problem size remains the same when parallelized (Wikipedia, 2008). It states that if P

is the proportion of a program that can be made parallel, then the serial portion can be
defined as (1-P). If we then define the total time for the serial computation as 1 for any
time unit, we can compute the speedup by dividing the old computation time with the new
computation time that consist of the serial portion plus the parallel portion divided by the
number of parallel processors denoted as N. This gives us the following equation:

1
(1 − P) + P

N

(2.2)

Then we can see that as the number of processors tends to infinity the maximum speedup
tends to

1
(1 − P)

(2.3)
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and the serial portion becomes dominant.

2.4 GPGPU and CUDA

The idea of using computer graphics hardware for general-purpose computation has been
around now for over two decades. However, GPGPU did not really take off until ATI
and NVIDIA introduced programmable shading in their commodity GPUs in 2002. This
enabled programmers to write short programs that were executed for each vertex and pixel
that passed through the rendering pipeline. Researchers were quick to realize that this
was not only useful for graphics programming but that this could also be used for general
purpose calculations. They now had an extra processor to speed up the computation of
their problems and to make it even more attractive the processing power of the GPU has
been increasing at a much faster pace than of the CPU. This caused a swift increase in
research that utilized GPGPU computation.

Graphics processing can be parallelized as each vertex or pixel can most often be pro-
cessed independently of other vertexes or pixels in each step of the graphics pipeline. As
GPU development has mainly been driven by computer games and the quest for better
and faster graphics it has caused the GPU to become specialized for intensive, highly
parallel SIMD computation and is therefore designed such that more transistors are de-
voted to data processing rather than data caching and flow control unlike the CPU. Today
GPUs have multiple cores driven by a high memory bandwidth, offer massive processing
resources, and are especially well-suited to address problems that can be expressed as
data-parallel computations.

The utilization of the processing power of the GPU, however, did not come for free. It
required researchers to pose their problems as graphics rendering tasks and go through the
graphics API, which is very restrictive when it comes to programming. The APIs where
used in such a way that textures were used for input and output and fragment shaders
(program stubs which run for each pixel projected to the screen) were used for processing.
This meant a high learning curve for programmers not already familiar with the graphics
APIs, and the environment was very limiting when it came to debugging. This also greatly
narrowed the range of potential problems that could be solved by using the GPU. GPU
manufacturers, however, noticed these efforts and have now introduced both software and
hardware to greatly simplify the use of GPUs for general purpose computation.

In late 2007 NVIDIA introduced CUDA, a parallel-programming model and software
environment designed to enable developers to overcome the challenge of developing ap-
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plication software that scales transparently over parallel devices of different capabilities.
With CUDA they also introduced a new line of graphics processing units that supported
this environment and with its application these devices were no longer standard GPUs
but became massively parallel stream processors which were now programmable through
standard C.

2.4.1 CUDA Enabled Devices

The GeForce 8 Series were the first graphics cards to supported this architecture, in addi-
tion to NVIDIA’s Tesla line which is a family of products for high performance comput-
ing. The GPUs of the GeForce 8 series have a large number of stream processors ranging
from 16 to 128 depending on make and type. All of the processors of each device are
of the same type with similar memory access speeds, which makes these devices a mas-
sive parallel processor. On the hardware level these Geforce 8 series devices consist of a
collection of multi processors with 8 processors each. Each multiprocessor has its own
shared memory which is common to all the 8 processors inside it. It also has a set of
32-bit registers, texture and constant memory caches. At any given cycle, each processor
in the multiprocessor executes the same instruction on different data, which makes each
multiprocessor a SIMD processor. Communication between multiprocessors is through
the device memory, which is available to all the processors in the multiprocessor. One can
access all the available device memory by using CUDA with no restriction on its represen-
tation, though the access times vary for different types of memory. The CUDA hardware
employs a new hardware architecture called SIMT (Single Instruction Multiple Thread).
It is similar to SIMD, but does not require all the code to follow the same execution path;
instead it enables programmers to write code which specifies the execution and branching
behavior of a single thread. If, during execution some of the threads which are being ex-
ecuted in parallel diverge, the hardware automatically serializes the branch and executes
each branch path independently. This hardware architecture enables programmers to write
thread-level parallel code for independent threads, as well as data-parallel code for coor-
dinated threads. In our research we use a NVIDIA 8800 GTX device which has 768 MB
of RAM and 8 multiprocessors which combine to a total of 128 stream-processors.

2.4.2 CUDA Programming Model

Through the CUDA model the programmer sees the CUDA device as a co-processor
to the main CPU capable of executing a collection of threads in parallel. The CUDA
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model abstracts these threads into a two-level hierarchy. First we have blocks which are
a collection of threads that are all assigned to the same multiprocessor and are therefore
able to share access to the processors’ on-chip memory and their execution can also be
synchronized by defining synchronization points in the code. Multiple blocks can be
assigned to a single multi-processor and their execution is then time-shared. All threads
of all the blocks that are assigned to a single multiprocessor divide its resources equally
amongst themselves. The CUDA model also defines a warp as a collection of threads that
can run simultaneously on a multiprocessor. The warp size is fixed and depends on the
device; on the GeForce 8 series it is 32. If the number of threads is greater than the warp
size, they are time-shared internally on the multiprocessor. A grid is the collection of all
the thread blocks that are executed on the device at once.

The programmer is able to control the number of threads executed on the device by defin-
ing the number of threads within a block and the number of blocks within a grid. Each
thread within the grid executes the same set of instructions referred to as a kernel. Each
thread and block within the grid is assigned a unique identifier that can be used to assign
different data to each thread or block.

Figure 2.2: Division of a grid into blocks and threads. (Image from NVIDIA’s CUDA
Programming Guide)

When a kernel is executed on the device it has only access to the memory space of the
device which is separated into on-chip memory and DRAM. The DRAM is divided into
three different types of memory: global memory, constant memory and texture memory.
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Each grid has read and write access to the global memory but only read access to the
constant and texture memory. The global, constant and texture memory spaces can be
read from or written to by the host and they are persistent across kernel launches by
the same application. The on-chip memory space is reserved for registers and shared
memory. The shared memory can be accessed from threads within the same block and is
much faster than global memory access. Efficient use of shared memory is a key element
to accelerating applications. These additions are exposed to the programmer as a set of
extensions to the C language, and therefore should impose a relatively low learning curve
for programmers familiar with standard programming languages such as C.

Figure 2.3: CUDA different types of device memory. (Image from NVIDIA’s CUDA
Programming Guide)

Through this abstraction the framework provides fine-grained data parallelism and thread
parallelism nested within coarse-grained data parallelism and task parallelism. This guides
the programmer to partition the problem into coarse sub-problems that can be solved inde-
pendently in parallel, and then into finer pieces that can be solved cooperatively in parallel
(“NVIDIA CUDA Programming Guide”, 2008).
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2.5 Summary

In this chapter we introduced the mathematical framework provided by MDPs for the
modeling of decision problems. We then gave a brief discussion on how dynamic pro-
gramming methods can be used for solving MDPs, and introduced two such algorithms:
Policy Iteration and Value Iteration. Next we introduced the principles of parallel com-
puting and how to estimate the potential speedup gained by parallelization. Finally we
introduced the concept of using GPUs for General Purpose Computation, gave a descrip-
tion of the various resources of CUDA enabled devices and finally introduced the CUDA
programming model. In the next chapter we present different ways of parallelizing the
Value Iteration algorithm for execution on CUDA devices.



Chapter 3

Methods

In this chapter we analyze how well the Value Iteration algorithm is suited to the computa-
tional platform provided by CUDA, and what our potential gain in speed is if we success-
fully parallelize it. We then propose two different approaches to parallelizing the Value
Iteration algorithm for the CUDA framework and suggest two performance enhancements
inspired by prior efforts.

3.1 Solving MDPs With the GPU

The solving of MDPs by computing the value function maps well to the CUDA architec-
ture. Many attempts to enhance the performance of the basic Value Iteration algorithm
take advantage of the fact that it does not require the states to be processed in any partic-
ular order nor equally often to converge. This has most often resulted in algorithms that
utilize some kind of partitioning of the state space and/or parallelizing of the computation
to gain speedups. This can be achieved in two ways. By partitioning the state space, it can
be divided between different computational resources, and secondly those computational
resources can then be focused on certain parts of the state space where more passes are
required for convergence. Research on asynchronous dynamic programming shows that
it does not affect the convergence property of the algorithm though the backup of a state
uses values of states that are not necessarily up to date as long as in the end the value of
all states are backed up. This creates a certain data independence feature in the algorithm
which makes it an ideal candidate for parallelization. These two features, partitioning and
parallelization, fit nicely with the computational model supplied by CUDA.
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The issue of allocating states to partitions is not treated in this work since it is outside
the scope of this research. For domains with obvious and symmetric state relations, such
as GridWorld, adequate partitioning can be constructed by simply grouping together con-
nected states. However, for more general and complex MDPs, where the state relation is
not as obvious, partitions could be generated by some existing k-way minimum-cut graph
partitioning algorithms.

There has already been a fair amount of research focused on parallelizing calculations
of the value iteration algorithm. These efforts have mostly focused on formulating the
theory and if implemented they have been done on either specialized shared memory
multi-CPU systems or cluster systems. Both of these types systems are limited in the
parallelization they can offer since shared memory multi-CPU systems are expensive and
additions to increase parallelism can cost thousands of dollars, while cluster systems incur
a high communication cost since they do not have shared memory. This communication
cost increases considerably with each computational resource addition so the threshold
where the communication cost outweighs the benefit in performance is low. Both of these
systems offer parallelism from four to a couple of dozen processes working on a problem
at once. The parallelism offered by today’s modern GPUs is quite different from these
standard parallelization platforms, with the number of processors ranging from 112-240,
with each capable of running several light-weight threads at once, these devices offer the
opportunity of having thousands of threads working on a single problem in parallel. This
higher degree of parallelism offers both new challenges and opportunities.

3.1.1 Analyzing Value Iteration for Parallelization

Though the Value Iteration algorithm is not complex, it offers at least two different possi-
bilities for parallelization. If we go step-wise through the definition of the Value Iteration
algorithm ( see Algorithm 1, on page 6) with parallelization in mind the first thing that we
notice is that the algorithm is defined per state. This gives us the possibility of paralleliz-
ing the entire algorithm on a state-wise level, excluding the convergence check. We also
notice that the most essential part of the algorithm, the state value calculations, are a max-
imization over the action values of a state and that an action value is composed from the
summarization of all possible successor states for that action. Both of these offer further
possibilities for parallelization. The only part of the algorithm which is not inherently
independent is the convergence check, which is dependent on the overall change in state
value of each state. According to this analysis we can see that a large part of the algorithm
can be altered and implemented in a parallel manner.
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3.2 Proposed Methods

We propose two parallel algorithms that take into consideration the CUDA computational
model and the parallelization possibilities of Value Iteration. Subsequently we suggest
two additions which possibly could enhance performance.

3.2.1 Block Divided Iteration

Block Divided Iteration (BDI) is our proposal for a parallel version of the Value Iteration
algorithm with a state-wise parallelization. The principal components of the parallel al-
gorithm are the same as of the sequential one except that it has been adjusted to fit the
computational model supplied by CUDA. It works by partitioning the state space into
blocks which are equal in size and count to the execution blocks launched on the CUDA
device. Within each block a thread is assigned a single state and is made responsible for
the calculations of that state. A prerequisite of the algorithm is that before it is executed it
requires calculations to be made that tell whether the successor states of the states actions
reside within the same block.

Algorithm 2 shows a formal description of the algorithm. If we go stepwise through that
description then the first two lines describe the two types of memory we use to store our
state values. Line 3 describes our memory access function, it uses values from shared
memory if they reside within the block, else values from global memory are used. Line 4
contains the convergence check which is executed on the host and the following lines are
executed until the algorithm converges. From line 5 the execution has moved on from the
host to the device and the remainder of the algorithm through line 19 is executed by each
thread in parallel. In line 6 we have each thread loading its corresponding state value from
global memory to shared memory, since good usage of the shared memory is critical for
efficient execution. Next we do a thread synchronization to ensure that each thread in the
block has loaded his state value into memory before we start the actual computation. Next
we store the old value of the state and start our iterative computation of the state’s value.
In line 9 we start to execute a predetermined number of iterations on the state’s value.
Then we assign 0 to the state’s ∆s value which indicates how much its value changed
during each iteration. This is different from the original algorithm as we now have a ∆

value for each state in the state space. In lines 11 to 13 we iterate through each state’s all
possible actions and successor states and calculate the state’s value accordingly. For each
successor state s′ however a check is made to determine if the value of s′ resides within
the block or whether it is necessary to go to global memory since communication between
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Algorithm 2 Block Divided Iteration
1: Vg(s) {State space residing in global memory}
2: Vs(s) {State space residing in shared memory}

3: VInBlock(s) =

{
Vs(s) if s is within the block
Vg(s) if s is not within the block

4: while ∆ > θ do {Converge check is done on host}
5: for all s ∈ S in parallel do {Executed on device in parallel}
6: Vs(s)← Vg(s) {Copy state values from global memory to shared memory}
7: Synchronize threads
8: v← Vs(s)
9: for iterations < number of episodes per convergence check do

10: ∆s ← 0
11: for all a ∈ A⇒ ss′ do
12: Vs(s)← maxa

∑
s′ P

a
ss′[R

a
ss′ + γVInBlock(s′)]

13: end for
14: ∆s ← max(∆s, |v − Vs(s)|)
15: Vs(s)← v
16: Synchronize threads
17: end for
18: Vg(s) = Vs(s)
19: end for
20: for all ∆s of s ∈ S in parallel do
21: ∆← max(∆s)
22: end for
23: Copy ∆ to host
24: end while

blocks is not possible. Since it is more expensive to fetch values from the global memory
some thought must be put into minimizing inter block dependencies when partitioning
the state space. Next, in line 14 and 15, we assign the state its new ∆ and state value and
then do a synchronization to ensure that each thread in the block has completed a single
sweep over its values before we continue. After all the sweeps have completed we copy
the state’s value back from shared memory to global memory since it is not persistent
between kernel launches. In lines 20 to 22 we do a parallel max over the ∆ values to
determine the maximum ∆ value. We then finally copy the ∆ value to host memory for
the converge check.

3.2.2 Result Divided Iteration

The Result Divided Iteration (RDI) algorithm parallelizes the value iteration algorithm
differently from the BDI algorithm. It focuses on efficient parallelization of all subtasks
of the value iteration process. It incorporates all the steps of the sequential algorithm



18 GPU-Based Markov Decision Process Solver

except that each step is now distributed between as many threads as possible. This kind
of parallelization of all subtasks is only possible because of the massive parallelization
ability of CUDA devices.

Algorithm 3 Result Divided Iteration
1: Vg(s) {State space residing in global memory}
2: while ∆ > θ do {Converge check is done on host}
3: for all s, a⇒ s′ where s and s′ ∈ S and a ∈ A in parallel do
4: Qs′(s, a)← Pa

ss′[R
a
ss′ + γV(s′)] { Calculate value for all possible results }

5: end for
6: for all Qs′(s, a) where s and s′ ∈ S and a ∈ A in parallel do
7: Q(s, a) =

∑
Qs′(s, a)

8: end for
9: for all s ∈ S in parallel do

10: v← V(s)
11: V(s)← max(Q(s, a))
12: ∆s ← (|v − V(s)|)
13: end for
14: for all ∆s of s ∈ S in parallel do
15: ∆← max(∆s)
16: end for
17: end while

Instead of having a thread for each state in the state space like in the Block Value Iteration
algorithm we now have a thread for each possible successor state for each action in every
state. That thread batch calculates the result value for each possible successor state, this
can been seen in lines 3 to 5. In lines 6 to 8 another batch of threads is launched which
is equal to the total number of actions for every state and that batch summarizes all of
the result values into state action values for each state action combination. Then the third
batch of threads is launched in lines 9 to 13. This batch is equal to the state space in size
and calculates the maximum of each action value for each state and assigns that maximum
to the state value. Finally in lines 14 to 16 a parallel max is performed to determine the
maximum delta value for the convergence check.

The RDI algorithm offers a much more fine grained parallelism than the BDI algorithm.
The dynamics of the MDP which is to be solved also has no influence on how the MDP
is divided for parallelization. For the BDI algorithm, on the other hand, domains with
a low number of states and very high number of actions would not fit very well as it
would result in very few threads being launched and would require each thread to do a lot
of computation which would not map well to the fine grained parallelism of the CUDA
model. The fine grained parallelism of the RDI algorithm, however, limits considerably
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the amount of computation performed by each thread and is therefor unable to gain much
from shared memory use.

3.3 Performance Enhancements

In this section we introduce two simple changes to the BDI algorithm in an effort to
improve its performance. These enhancements are of a different nature as one is based
on better usage of the various kinds of memory available to us on CUDA device’s while
the other is based on prior research efforts for focusing computations where they are most
needed.

3.3.1 Buffering Enhancement

Since the Value Iteration algorithm does allow the value of states to be computed from
values which are available at each time and still converge correctly it allows us to intro-
duce a small addition to the BDI algorithm in the effort to reduce global memory access.
The change involves that now each thread caches in shared memory the values that reside
outside its block, but are needed for the computation of its value. For the computation of
each value it will no longer need to go to global memory but will rather use the value of
this shared memory cache which is faster.

3.3.2 Prioritizing Enhancement

The prioritizing enhancement is another small addition to the standard BDI algorithm that
is focused on reducing unnecessary computation. With this enhancement each thread is
not assigned a single state but rather a predetermined number of states, somewhere in the
range of two to five states. In each pass the state with the highest need for computation is
selected within each thread and its value computed. For controlling the state selection we
use a simple heuristic that factors in the number of times a state has been selected and its
overall change in value the last time it was updated.

∆s + Uc ∗
1

U pdateCount
(3.1)
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Equation 3.1 shows how the eligibility of state for update is computed. Uc is an update
constant. UpdateCount is the number of times the state has been updated during this
sweep. This enhancement can be used whether buffering is used or not.

3.4 Summary

In this chapter we have shown how the CUDA framework can be applied to the solving
of MDPs through value iteration. We presented an analysis of the Value Iteration algo-
rithm with respect to parallelization. From that analysis we derived and presented two
fundamentally different parallel versions of the value iteration algorithm, Block Divided
Iteration and Result Divided Iteration. Additionally, two possible performance improve-
ments were introduced for the BDI algorithm. In the next chapter we look in more detail
into the implementation of these algorithms for CUDA.



Chapter 4

Implementation

Although programming of the GPU for general purpose computation has been simplified
by the introduction of CUDA it is far from trivial to implement algorithms that efficiently
utilize its computing power. Many algorithms can be converted without much effort to run
on CUDA, but if we strive to utilize the full potential of the CUDA device for achieving
high performance, several things must be considered. In this chapter we give an overview
of the topics which are necessary to consider when implementing code for execution on
CUDA devices. We then discuss how each topic influenced the implementation of our
algorithms.

4.1 Arithmetic Intensity and Shared Memory

The first thing to consider is arithmetic intensity, which is the ratio of computation to
bandwidth. The greater arithmetic intensity our algorithm has the more likely it is to
gain from being executed on a CUDA device. CUDA devices also have very fast on-chip
memory called shared memory which can be can be accessed from threads within the
same block, usage of this memory can make a big different in the speedup achieved from
moving algorithms to CUDA devices.

4.1.1 Considerations

To get the most from our CUDA device we want to optimize our algorithm so that we do
as much computation per memory access as possible. Some instructions are also more
costly than others, such as integer divisions and modulo operations. The use of these low
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throughput instructions should be minimized and replaced with bitwise operations where
possible. Any flow control instructions can significantly impact the effective instruction
throughput by causing threads of the same warp to diverge. If this happens, the different
executions paths must be serialized, increasing the total number of instructions executed
for this warp. Unrolling loops, where possible, reduces conditional statements in the code
and can greatly increase the performance of the code.

Efficient usage of the device’s different types of memory is crucial. Issuing a memory
operation (read/write) takes 4 clock cycles, but when accessing global or local memory
there are additional 400-600 clock cycles of memory latency. On the other hand, much
of the global memory latency can be hidden by the thread scheduler if there are suffi-
cient independent arithmetic instructions that can be issued while waiting for the global
memory access to complete. Since global memory is of a much higher latency and lower
bandwidth than shared memory, global memory accesses should be minimized and shared
memory utilized where possible.

The shared memory is divided into equally sized memory modules that can be accessed
simultaneously to achieve its high memory bandwidth. That enables any memory read
or write requests for n addresses that fall into equally many distinct memory banks to
be serviced simultaneously. If, however, two addresses of a memory request fall in the
same memory bank, there is a bank conflict and the access must be serialized. To get
maximum performance, it is therefore important to understand how memory addresses
map to memory banks in order to schedule the memory requests so as to minimize bank
conflicts. Figure 4.1 compares different types of access patterns to shared memory and
shows whether they cause banking conflicts or not.

Figure 4.1: Shared memory access patterns
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4.1.2 Effect on our Implementation

In our implementation of the Block Value Iteration algorithm we considered having each
thread load all the state transition information of its actions into shared memory. Each
thread would then be able to calculate its value without going to global memory, if the
value of all its preceding states remained within its block. This comes at the cost of added
shared memory usage per thread, which further limits the number of thread blocks avail-
able to run on each processor. The most limiting factor of this method, however, is that it
makes the shared memory usage of each block dependent on the dynamics of the MDP.
As the number of actions and possible outcomes per action impacts the shared memory
required by each thread, and if the number of actions or possible outcomes per actions
is increased the shared memory requirement can quickly becomes greater than the capa-
bilities of the device. The same dilemma is encountered with the implementation of the
buffering enhancement for the BDI algorithm. We therefore found it more important that
the amount of shared memory allocated per thread would not be dependent on the dynam-
ics of the MDP to be solved. The state and delta values for each state are stored in shared
memory since the dynamics of the MDP do not affect their memory requirements.

4.2 Global Memory Access Pattern

Since accessing the global memory is expensive and not cached, it is important to follow
the right access pattern to get the maximum memory bandwidth.

4.2.1 Considerations

To efficiently access the global memory it firstly requires data-structures to be aligned to
8 or 16 bytes, since the device is capable of reading 32-bit, 64-bit, or 128-bit words from
global memory into a register in a single instruction. Properly aligning data-structures can
make a big difference when loading large amounts of data from global memory. Secondly,
access to global memory by all 16 threads of a half-warp is coalesced into one or two
memory transactions only if it satisfies three conditions.

• All threads are accessing a 32-bit, 64-bit, or a 128-bit word.

• All the 16 words lie in the same segment which is of size equal to the memory
transaction size.

• The threads must be accessing the words in a sequence.
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If a half-warp does not fulfill these requirements, a separate memory transaction is issued
for each thread and throughput is significantly reduced.

An intuitive way to define data-structures for the definition of an MDP would be to define
a struct for the definition of a state, and another struct that resides within the state struct
that represented each possible transition for each action. The complete state space could
then by contained in an array of state structs. An example of this kind of struct definition
can be seen in Listing 4.1.

1 t y p e d e f s t r u c t S t a t e
2 {
3 i n t s t a t e I d ;
4 f l o a t d e l t a ;
5 f l o a t v a l u e ;
6 S t a t e T r a n s i s t i o n T r a n s i s t i o n s [ ] ;
7 } S t a t e ;
8

9 t y p e d e f s t r u c t S t a t e T r a n s i s t i o n
10 {
11 f l o a t p r o b a b i l i t y ;
12 f l o a t r eward ;
13 i n t r e s u l t S t a t e I D ;
14 } S t a t e T r a n s i s t i o n ;

Listing 4.1: Naive struct definitions

Although this representation is easy to understand and work with, it will result in a highly
inefficient memory access pattern. The size of the StateTransistion struct is 12 bytes and
so is the State struct, including additional 12 bytes for each StateTransistion it contains.
This does not conform yo the 8 or 16 bytes alignment requirement of data-structures
for coalesced reading and will result in a so-called misaligned read (see Figure 4.2). In
addition the data for each state will become aligned together in memory which makes
it impossible for us to make the kth thread in a half-warp access the kth element in the
block being read. Therefore all global memory access with these data-structures will be
uncoalesced and a separate read instruction issued for each variable.

Figure 4.2: Access pattern for array of structs data structures. As the datastructures are
only 12 bytes and not aligned to 16 bytes it will result in a mis-aligned read
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In order to achieve coalesced memory transactions we must transform this representation
to satisfy the three conditions stated earlier. If we will be having a single thread reading
each state it is straight forward to coalesce the reading of state information by changing
the state space representation from an array of structs representation to a struct of arrays
representation. That is done by defining an array for each variable that a state contains,
such a representation can be seen in Listing 4.2. The same can be done for the state
transitions, but to achieve coalescing there we need to load the state transition data into
the array in such a way that we do not get misaligned memory reads, that however can
be very challenging as the alignment of data into memory is dependent on the number of
actions and successor states of the MDP.

1 t y p e d e f s t r u c t S t a t e S p a c e
2 {
3 f l o a t s t a t e V a l u e s [NUM_STATES ] ;
4 f l o a t d e l t a V a l u e s [NUM_STATES ] ;
5 }
6

7 t y p e d e f s t r u c t T r a n s i s t i o n s
8 {
9 f l o a t 2 p r o b a b i l i t y A n d R e w a r d [NUM_STATES * NUM_ACTIONS * NUM_DIVERGENCE ] ;
10 i n t r e s u l t S t a t e [NUM_STATES * NUM_ACTIONS * NUM_DIVERGENCE ] ;
11 }

Listing 4.2: Optimized Structs

Figure 4.3: Access pattern for optimized state data

By defining the state data this way we should be able to get coalesced reads/writes for the
state and delta values. Each thread now accesses a single float of 4-bytes which are all
aligned in a sequence, this can be seen in Figure 4.3.

This definition of the transition data causes the probability value to be read in a single
8-byte read by each thread, and a 4-byte read for the result state id. All of these reads can
be coalesced if the transition data is loaded so the memory reads of the threads can be in
sequence and the dynamics of the MDP does not cause the alignment to break any of the
requirements for coalescing, this can be seen in Figure 4.4.
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Figure 4.4: Access pattern for optimized transition data

4.2.2 Effects on our Implementation

In our algorithms we are dependent on values which must reside in global memory for the
state value calculations since we store the dynamics of the MDP in global memory. The
problem with that is that each memory read from global memory has very high latency
and since it has no cache and our algorithm does not have high enough arithmetic intensity
it is not be able to hide all the delay. Our solution is to utilize texture memory for storing
the dynamics of the MDP instead of global memory. Texture memory resides in the same
memory space as global memory but differs in a few important ways. Texture memory
can only be written to by the host, which is not a problem for us since the dynamics of
the MDP are unchanged during the computation. Texture memory has a cache which is
optimized for two dimensional locality. In our implementation we use a 3D texture where
the X and Y coordinates are used to identify the state, while the Z coordinate indexes
each possible successor state. Since each thread will be accessing the same values in the
texture memory when iteratively computing the values of the state we can expect a high
hit rate in the cache and a noticeable increase in performance. The state and delta values,
which are loaded into shared memory at each kernel launch and back to global memory
at the end of its execution, are aligned in memory in such a way that coalesced reading
and writing from and to global memory is ensured.

4.3 Grid and Block Dimensions for Efficient Execution

When determining the number of threads per block and the number of blocks per grid
several things must be considered and the dimensions should be chosen to maximize the
utilization of the available computing resources.
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4.3.1 Considerations

When determining the size of blocks and threads to be launched, it is important to keep
in mind that there should be at least as many blocks as there are multiprocessors on the
device. Running only a single block per multiprocessor, however, will force the multipro-
cessor to idle during thread synchronization and also during device memory reads if there
are not enough threads per block to cover the load latency. Ideally there should be at least
two or more blocks per multiprocessor but the amount of shared memory available to a
single multiprocessor limits the number of possible blocks per processor. The number of
threads per block should be chosen as a multiple of the warp size to avoid wasting com-
puting resources with under-populated warps. Allocating more threads per block is better
for efficient time slicing, but the more threads there are per block the fewer registers are
available for each thread. Since this balance can be hard to achieve, NVIDIA supplies
the CUDA Occupancy Calculator with the CUDA Standard development kit. The CUDA
Occupancy Calculator is a Microsoft Excel spreadsheet which allows you to input your
kernel’s register count, shared memory usage, and number of threads per block, it then
outputs the total occupancy of each multiprocessor and enables you to determine what are
the limiting factors of your kernel.

4.3.2 Effects on our implementation

We used the CUDA Occupancy Calculator to determine the optimal block size for the
execution of our algorithms. The BDI algorithm was assigned a block size of 124 threads
which resulted in a maximum of 67% occupancy per multiprocessor while the RSI algo-
rithm was assigned a block size of 256 threads which resulted in a 100% occupancy per
multiprocessor.

4.4 Summary

In this chapter we presented the most important issues to keep in mind when implementing
algorithms for execution on CUDA devices, and discussed how this affected the imple-
mentation choices of our algorithms. Next we introduce a framework which enables us to
easily apply these algorithms on MDPs within C or C++ applications.



Chapter 5

GPU Based MDP Solver Framework

Value Iteration is an efficient and robust algorithm which can be applied to a wide range
of decision-making problems. However, the curse of dimensionality can cause its com-
putational costs to quickly become overbearing for many learning systems. One of the
main benefits of using the GPU for doing general purpose calculations is not only that it
can potentially speed up your algorithms but also that now you have an extra independent
processor which allows the processing power of the CPU to be utilized for something else.
This can be of great benefit for techniques which rely on accurate value function estimates
to make other decisions. In this chapter we describe our implemented framework which
is a general framework for utilizing CUDA devices for solving of finite MDPs.

5.1 Framework Structure

The framework is implemented in C, is simple to use, and can be easily extended. The
framework can be divided into three parts relative to their distance from the CUDA device.
First we have the MDP Solver Interface which lies the furthest from the CUDA device
and is a collection of function declarations which enables users to utilize the GPU solver
from any C or C++ program without writing any CUDA specific code. The second part
lies between the interface exposed to the user and the code executing on the device. This
part contains the implementation of the functions exposed via the interface, handling of
memory allocation for both the host and the device, launching of the device kernels and
other service tasks. This part also includes some utility functions which are not exposed
to the user but can be handy when debugging or extending the framework. The third
part of the framework includes the collection of the various algorithms that have been
implemented to run on the CUDA device.
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Figure 5.1: Frameworks structure

5.2 The MDP Solver Interface

The interface provided by the solver will be the main point of interest for most users. It
enables them to easily solve MDPs within C or C++ application with very few lines of
code. The functions of the framework can be categorized as follows:

• Initialization of device: The framework contains two functions for initializing and
uninitializing the CUDA device.

1 / / CUDA I n i t i a l i z a t i o n f u n c t i o n
2 e x t e r n "C" boo l I n i t i a l i z e C U D A ( ) ;
3

4 / / CUDA De− I n i t i a l i z e f u n c t i o n
5 e x t e r n "C" vo id DeIn i t i a l i zeCUDA ( ) ;

Listing 5.1: Initialization of device

• Initialization of domain and constants: The framework contains functions for ini-
tializing the domain and constants required for the algorithms both on the host and
device.

1 / / I n i t i a l i z e t h e d i m e n s i o n s o f t h e MDP and t h e n e c e s s a r y memory
2 / / Parame ter s :
3 / / s t a t e C o u n t − number o f s t a t e s i n t h e MDP
4 / / a c t i o n C o u n t − maximum number o f a c t i o n s per s t a t e i n t h e MDP
5 / / d i v e r g e n c e C o u n t − maximum number o f s u c c e s s o r s t a t e s per a c t i o n i n t h e MDP
6 e x t e r n "C" vo id I n i t a l i z e D o m a i n O n H o s t ( i n t s t a t e C o u n t ,
7 i n t a c t i o n C o u n t ,
8 i n t d i v e r g e n c e C o u n t ) ;
9

10 / / S e t s t h e c o n s t a n t s o f t h e a l g o r i t h m
11 / / Parame ter s :
12 / / gamma − a l g o r i t h m d i s c o u n t r a t e
13 / / c o n v T h r e a s h o l d − t h e c o n v e r g e n c e t h r e a s h o l d
14 e x t e r n "C" vo id S e t V a l u e I t e r a t i o n C o n s t a n t s ( f l o a t gamma ,
15 f l o a t c o n v T h r e a s h o l d ) ;
16

17 / / CUDA I n i t i a l i z e Domain on t h e GPU
18 / / Parame ter s :
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19 / / u s e T e x t u r e s − i f t r u e MDP dynamics are lo ad ed i n t e x t u r e memory
20 e x t e r n "C" vo id In i t i a l i zeDomainOnGPU ( boo l u s e T e x t u r e s ) ;

Listing 5.2: Initialization of domain and constants

• Application of algorithm: The framework contains functions for applying any of the
implemented algorithms on the domain for either a predefined number of iterations
or until it is solved.

1 / / Do a p r e d e f i n e d number o f i t e r a t i o n s
2 / / Parame ter s :
3 / / n u m b e r O f I t e r a t i o n s − number o f i t e r a t i o n s t o be per fo rmed
4 / / a l g o r i t h m T y p e − c o n s t a n t which d e t e r m i n e s t h e a l g o r i t h m t o be used
5 e x t e r n "C" vo id I t e r a t eOnDomai n ( i n t n u m b e r O f I t e r a t i o n s , i n t a l g o r i t h m T y p e ) ;
6

7 / / Does c o m p u t a t i o n s on t h e domain u n t i l i t i s s o l v e d
8 / / Parame ter s :
9 / / a l g o r i t h m T y p e − c o n s t a n t which d e t e r m i n e s t h e a l g o r i t h m t o be used
10 e x t e r n "C" vo id SolveDomain ( i n t a l g o r i t h m T y p e ) ;

Listing 5.3: Applying algorithms

• Data Access: The framework contains functions which enable access to all of the
arrays of the MDP representation.

1 / / G e t t e r f u n c t i o n s f o r p o i n t e r s
2 e x t e r n "C" f l o a t * g e t S t a t e V a l u e s P o i n t e r ( ) ;
3 e x t e r n "C" f l o a t * g e t S t a t e D e l t a s P o i n t e r ( ) ;
4 e x t e r n "C" f l o a t 2 * g e t P r o b a b i l i t y A n d R e w a r d P o i n t e r ( ) ;
5 e x t e r n "C" i n t 2 * g e t R e s u l t S t a t e s P o i n t e r ( ) ;

Listing 5.4: Data Access

The application of the framework is rather straight-forward and is probably best explained
with a code example. Listing 5.5 shows a simple code example that demonstrates the us-
age of the framework. In lines 8 to 12 an MDPReader is declared and initialized with
constants that describe the dimensions of the MDP that is to be read from file. The MD-
PReader is a utility class that is supplied with the framework and can read files containing
MDP descriptions which have the syntax which is described in Appendix A. In line 14
the CUDA device is initialized. Line 16 through 18 contains the initialization of the do-
main on the host and then the MDPReader is used to load the domain from file into host
memory in lines 20 to 23. To load the domain from file the MDPReader is supplied the
file name, a pointer to the arrays which the MDP is to be loaded into and a constant which
describes the file format that is to be read. In line 25 the constants for the value iteration
algorithm are set and in line 27 the domain is initialized on the CUDA device and takes in
a parameter that determines whether the dynamics of the domain are loaded into texture
memory rather than global memory. In line 29 the MDP is then solved with the algorithm



Ársæll Þór Jóhannsson 31

determined by the parameter. In line 31 the state values of the solved domain are then set
as a parameter into a print function which prints the results on screen. Finally the CUDA
device is then uninitialized in line 33.

1

2 # i n c l u d e " MDP_Framework . h "
3 # i n c l u d e " MDPReader . h "
4

5 / * * Example o f t h e usage o f t h e GPU Based MDP S o l v e r Framework * * /
6 / / The f o l l o w i n g c o n s t a n t s are used i n t h e example
7 / / ENV_STATE_COUNT = number o f s t a t e s i n t h e MDP
8 / / ENV_MAX_NUM_ACTIONS = maximum number o f a c t i o n s per s t a t e
9 / / ENV_MAX_DIVERGENCE = maximum number o f s u c c e s s o r s t a t e s per a c t i o n
10 / / DOMAIN_FILE = pa th t o t h e f i l e c o n t a i n i n g t h e MDP d e s c r i p t i o n
11 / / mdpReader . TEXT = t h e f i l e t h a t i s read i s i n t e x t format , mdpReader .XML
12 / / i s used f o r XML f i l e s
13 / / BLOCKVALUE_ITERATION = The BDI a l g o r i t h m i s t o be used f o r s o l v i n g t h e domain ,
14 / / RESULT_ITERATION can be used f o r t h e RDI a l g o r i t h m .
15

16 i n t main ( i n t a rgc , c h a r ** a rgv )
17 {
18 MDPReader mdpReader ;
19 mdpReader . I n i t i a l i z e R e a d e r (ENV_STATE_COUNT,
20 ENV_MAX_NUM_ACTIONS,
21 ENV_MAX_DIVERGENCE ) ;
22

23 I n i t i a l i z e C U D A ( ) ;
24

25 I n i t a l i z e D o m a i n O n H o s t (ENV_STATE_COUNT, ENV_MAX_NUM_ACTIONS,
26 ENV_MAX_DIVERGENCE ) ;
27

28 mdpReader . LoadDomain (DOMAIN_FILE , g e t S t a t e V a l u e s P o i n t e r ( ) ,
29 g e t P r o b a b i l i t y A n d R e w a r d P o i n t e r ( ) ,
30 g e t R e s u l t S t a t e s P o i n t e r ( ) , mdpReader . TEXT ) ;
31

32 S e t V a l u e I t e r a t i o n C o n s t a n t s (GAMMA, CONVERGENCE_THRESHOLD ) ;
33

34 In i t i a l i zeDomainOnGPU ( f a l s e ) ;
35

36 SolveDomain (BLOCKVALUE_ITERATION ) ;
37

38 printMDPValues ( g e t S t a t e V a l u e s P o i n t e r ( ) ) ;
39

40 DeIn i t i a l i zeCUDA ( ) ;
41

42 r e t u r n 0 ;
43 }

Listing 5.5: Example usage of the CUDA enabled MDP Solver framework
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5.2.1 Representation of an MDP within the Framework

Within the framework the representation of the MDP is kept as compact as possible in an
effort to efficiently utilize the memory of the CUDA device. The four-tuple representation
of the MDP, see Section 2.1, is broken into four different arrays:

• StateValues:
Array of floating point numbers containing the value of each state. The size of the
array is equal to the number of states.

• DeltaValues:
Array of floating point numbers containing the delta value of each state. The size
of the array is equal to the number of states.

• ProbabilityAndRewards:
Array of two floating point numbers (float2) which contains the probability of each
successor state and the resulting reward. The size of the array is equal to the number
of all possible successor states of all states.

• ResultStates:
Array of two integer number (int2) which contains the identifier of a corresponding
successor state and whether or not it is within the computational block. The size of
the array is equal to the number of all possible successor states of all states.

MDPs must be stored this way in memory to be solved with the framework. The MD-
PReader that is supplied with the framework can be used to load MDP descriptions from
file into memory so they can be solved directly by the framework.

5.2.2 Additional Tools

To accommodate the framework a file reader was implemented for the loading of files
containing MDP descriptions. The file reader can process both descriptions of MDPs in
XML format and text format. A custom syntax for both of these formats was developed
and it can be seen in Appendix A. An MDP generator was also implemented for the testing
of the framework and algorithms.
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5.3 Summary

In this chapter we presented the GPU Based MDP Solver Framework. We gave an
overview of how it is structured, how it requires the data to be structured, and gave an
brief code example of its usage. Next we present the results of our empirical evalua-
tion.



Chapter 6

Empirical Evaluation

In this chapter we present the results of our empirical evaluation. The first section de-
scribes the Experimental setup used for the evaluation of the algorithms. The second
section gives the results of a performance comparison of the parallel GPU-based methods
described in Chapter 3 and a sequential CPU-based implementation of the Value Iteration
algorithm. The third section describes the effect of localization on the performance of the
parallel algorithms. Then we analyze the result in an effort to better understand what are
the main factors influencing the performance of the algorithms.

6.1 Experimental Setup

To measure the performance of the algorithms, several MDPs of different dimensions
and complexities were generated. All of the MDPs have the characteristics of a Grid-
world based domain, such as a high locality and a low number of actions, which is a
feature common to many reinforcement learning domains. High locality is also an inher-
ent feature of MDPs created by discretization of domains with real value features such
as Mountain car (Sutton & Barto, 1998). The reward states of the MDPs were generated
randomly and contain a randomly generated reward within the predetermined range of 2
to 20. There are three types of domain dynamics for each differently sized MDP:

• Deterministic: each action has a single possible successor state.

• Two possible outcomes: each action has two possible successor states, one with
90% possibility of occuring and the other one 10%.

• Four possible outcomes: four possible successor states per action where one state
has a 70% chance of occuring while the others have a 10% possibility each.
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Table 6.1: Characteristics of the MDPs used for performance evaluation

Domain Name Number
of States

Actions
per State

Successors
per Action

Reward
States

Computational
Cost

GW-64x64x1 4,096 4 1 5 16,384
GW-256x256x1 65,536 4 1 65 262,144
GW-512x512x1 262,144 4 1 260 1,048,576
GW-1024x1024x1 1,048,576 4 1 1,024 4,194,304
GW-64x64x2 4,096 4 2 5 32,768
GW-256x256x2 65,536 4 2 65 524,288
GW-512x512x2 262,144 4 2 260 2,097,152
GW-1024x1024x2 1,048,576 4 2 1,024 8,388,608
GW-64x64x4 4,096 4 4 5 65,536
GW-256x256x4 65,536 4 4 65 1,048,576
GW-512x512x4 262,144 4 4 260 4,194,304
GW-1024x1024x4 1,048,576 4 4 1,024 16,777,216

The dynamics of the non-deterministic versions of the MDPs are inspired by the Wetfloor
domain (Bonet & Geffner, 2006). For the evaluation of the results we also define for
the MDPs the concept of computational cost which is the number of states multiplied by
the number of actions per state multiplied by the number of possible successor states per
action. Our largest MDPs have state dimensions of 1024x1024 states. We were unable
to use a larger dimension of 2048x2048 as the memory requirements of an MDP of those
dimensions with four possible successor states per action exceeded the available memory
on the device. Table 6.1 summarizes the properties of the test domains.

Each algorithm was executed until it converged and timed twelve times for each MDP
listed in Table 6.1. The best and the worst times were then eliminated from the results
and the remaining results averaged to obtain the execution time. As a baseline for the
performance measurements, a sequential Value Iteration algorithm was implemented and
executed on a CPU.

All the algorithms were executed with the same parameter values. All the algorithms had
a γ value of 0.9 and a θ value of 0.0001. The GPU algorithms also had their sweep count
parameter set to 8. The BDI algorithm uses a block size of 16x8 for a total of 124 threads
per block, while the RDI algorithm uses a block size of 256x1 for a total of 256 threads
per block.

The timing and execution of the CUDA code was conducted on a PC running Windows
XP with 2 GBs of RAM, a 2.4 GHZ Pentium IV Processor and a single NVIDIA GeForce
8800 GTX GPU with 768 MB of RAM, and 8 multiprocessors which combine to a total
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of 128 stream processors. For the CPU implementation a PC was used with 3.5 GBs of
RAM, a 2.4 GHz Intel Core 2 Duo Pentium processor and running Windows XP. The
CUDA applications were implemented using CUDA 2.1, C and C++, while the CPU
implementation was written in C++.

6.2 Speedup

Performance is an important issue when it comes to solving MDPs, as their size can
quickly grow very large. In this section we present the results of our algorithms’ perfor-
mance in comparison to a sequential implementation executed on a CPU.

For the performance measurements the algorithms were evaluated using the twelve MDPs
shown in Table 6.1. For each algorithm the execution time and the number of iterations
required for convergence was measured. Figure 6.1 shows the execution time, in millisec-
onds, of the three algorithms. The test domains are ordered by computational cost on the
x-axis. The Figure clearly shows that the parallel algorithms outperform the sequential
implementation and that the performance gap between the algorithms quickly increases
as the computational cost of the domains grows.

In Figure 6.2 the execution time is shown on a logarithmic scale to give us a clearer
picture of how it develops in relation to the computational cost. The gap between the
sequential method and the BDI algorithm is considerable from the beginning and slowly
widens as the computational cost increases. For the RDI algorithm the execution time is
slightly worse in the beginning than that of the sequential method. As the computational
cost grows, however, we see a significant improvement in execution time for the RDI
algorithm and the gap between it and the sequential method quickly widens. For the
more costly MDPs the RDI algorithm has almost closed the gap between it and the BDI
algorithm.

Figure 6.3 has the domains ordered by computational cost on the x-axis and number of
iterations required for convergence on the y-axis. There we see that the parallel methods
require a greater number of iterations to converge. For all algorithms there seems to
be a relationship between the dimensions of the domain and the number of iterations
needed. For the sequential and the RDI algorithm there is a slight increase in the number
of iterations needed as the dimensions grow, but the number of iterations needed reduces
as the number of successor states grows. The change in number of iterations is more
subtle in the RDI algorithm than the sequential one. Contrary to the other two algorithms
the number of iterations needed for the BDI algorithm to converge grows as the number of
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Figure 6.1: Comparison of solving time of MDPs
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Figure 6.2: Comparison of solving time of MDPs with logarithmic time scale

successor states increases and its change in number of iterations between MDPs is much
larger. It is, however, important to keep in mind that the location and the reward of the
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reward states are random between domains of different dimensions and their dynamics
could also have some influence on the number of iterations needed.
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Figure 6.3: Comparison of convergence rate
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Table 6.2: Speedup of parallel algorithms in relation to sequential algorithm

MDP B.D.I R.D.I

Name Comp. Cost Conv. Sweep Conv. Sweep
GW-64x64x1 16,384 4.7x 9.0x 0.8x 1.3x
GW-64x64x2 32,768 5.0x 10.4x 1.2x 2.0x
GW-64x64x4 65,536 5.0x 11.5x 1.8x 2.8x
GW-256x256x1 262,144 12.7x 17.0x 4.5x 5.2x
GW-256x256x2 524,288 14.2x 28.1x 6.6x 8.3x
GW-512x512x1 1,048,576 14.3x 18.6x 5.7x 6.1x
GW-256x256x4 1,048,576 10.8x 31.6x 7.8x 10.8x
GW-512x512x2 2,097,152 13.3x 28.8x 7.5x 8.9x
GW-1024x1024x1 4,194,304 13.9x 18.3x 6.0x 6.2x
GW-512x512x4 4,194,304 17.5x 50.5x 13.4x 17.9x
GW-1024x1024x2 8,388,608 10.0x 29.2x 8.0x 9.3x
GW-1024x1024x4 16,777,216 18.4 51.8x 14.5x 19.1x

If we take a look at the time it takes the algorithms to do a single sweep through the state
space it is no surprise that the parallel algorithms also outperform the sequential one in
this area. The computational cost of the MDPs grows by a factor of 512 from the simplest
to the most costly MDP. The sweep time of the sequential method, however, grows by a
factor of approximately 868 from the MDP with the least computational cost to the MDP
with the greatest computational cost. If we look at the parallel methods, on the other hand,
the sweep time of the BDI algorithm grows only by a factor of approximately 268 and the
RDI algorithm by a factor of approximately 125. This can be clearly seen in Figure 6.4,
which has the domains ordered by computational cost on the x-axis and execution time in
milliseconds with logarithmic scaling on the y-axis. As the graph has logarithmic scaling
we can see how the execution time gap widens between the sequential and the parallel
methods while it narrows between the BDI and RDI algorithms.

Table 6.2 and Figure 6.5 shows the speed up for both convergence and sweep time for
both parallel algorithms in relation to the sequential algorithm. In the figure we have the
domains ordered by computational cost on the x-axis and the speedup relative to the se-
quential implementation on the y-axis. The BDI algorithm shows the better performance
by reducing the execution time on average by a factor of 11.7 while the RDI algorithm
only manages an average speedup of 6.5. It is also noticeable that the time it takes the
algorithms to do a single sweep through the state space greatly reduces in relation to the
sequential algorithm as the computational cost of the MDPs increases. For the RDI al-
gorithm, the speedup of the convergence and sweep time is relatively consistent. For the
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Figure 6.5: Achieved speedup in comparison to the sequential implementation

BDI algorithm, however, the convergence speedup does not increase nearly as rapidly as
the sweep time.

6.3 Effects of Localization on Performance

If the algorithms are to be applicable to a wide range of MDPs of different characteristics
it is important that their performance is consistent and that they are not dependent on some
special characteristics of MDPs for acceptable performance. To determine how locality
of the domains affects the performance of the algorithms we used a deterministic MDP
with 65,536 states and four actions. We then modified the domain in such a way that a
predetermined percentage of the successor states were changed to a random state within
the state space. By introducing these actions the locality of the MDP is affected. We used
the same domain with five different percentages of random successor states: 5%, 10%,
15%, 30%, and 50%.

In Figure 6.6 the results from the locality experiment is shown, is has the percentage
of random actions within the MDP on the x-axis and the number of iterations required
for convergence on the y-axis. For all of the algorithms, the locality seems to have an
insignificant effect on the number of iterations required for the algorithms to converge.
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Figure 6.6: Comparison of number of iterations required for MDPs of different locality

The number of iterations vary slightly for the sequential and the BDI algorithm, while the
RDI algorithm converges with the same number of iterations for each domain.

It is not surprising that the locality of the domains has little effect on the sequential and
the RDI algorithm as they compute the value of each state from values of successor states
obtained from the current or the previous sweep. It is interesting, however, to see that the
locality seems to have little effect on the number of iterations the BDI algorithms requires
to converge, though a large part of the states will be backed up with values which can be
several sweeps old, since values of successor states which reside outside each block are
loaded from global memory and the global memory is only synchronized with the shared
memory at a predetermined interval defined by the sweep count parameter. We can there-
fore assume that the slow propagation of values because of the block division is having a
more profound effects on the convergence rate of BDI than domain locality.

6.4 Analysis of Results

As can be seen from the results, both parallel algorithms perform considerably better than
the sequential one when it comes to the time it takes for them to converge. Their speedup,
however, is not as significant as one might expect considering how well this approach of
solving MDPs maps to CUDA and the computational power of modern GPUs. In the case
of our parallel algorithms there are several factors influencing the overall speedup.
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If we look at the speedup gain for a single sweep through the state space we notice that
for the BDI algorithm the sweep time speedup grows rapidly as the computational cost
increases and achieves an average speedup of 25.5; the same goes for the RDI algorithm
which achieves an average speedup of 8.2. The main cause of this can be seen if we
divide the sweep time by the computational cost as shown in Figure 6.7. For the sequen-
tial algorithm the time per computational cost unit increases with additional computing
cost, while for the BDI and the RDI algorithm it decreases and almost levels out as the
computational cost grows. The difference in time between the two parallel algorithms can
be traced back to their different nature and usage of computational resources. The BDI
algorithm makes use of shared memory and only performs the convergence check on a
predetermined interval. The RDI algorithm, on the other hand, is unable to make use of
shared memory and does a convergence check on each sweep.

If we input the register and shared memory usage and the dimensions of the block size into
the occupancy calculator supplied by NVIDIA we get that for our particular configura-
tions we should be getting a 67% occupancy for the BDI algorithm and 100% occupancy
for the RDI algorithm. As this is contrary to what we are seeing in the sweep speedup,
where the RDI algorithm is only achieving less than half of what the BDI algorithm is
achieving, it strongly suggests that our RDI algorithm is bound by memory latency and
that the kernel does not have enough arithmetic instructions to hide the latency.
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Figure 6.7: Comparison between methods of time per computational cost unit
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The speedup of the sweep time is, however, not fully passed on to the convergence time
speedup as the parallel algorithms require a greater number of sweeps through the state
space in order to converge. In case of the RDI algorithm the additional sweeps required
for it to converge are caused by a disadvantage of the parallelization, since if we compute
the value of a collection of states in parallel which values are dependent on each other,
those computations will all be based on values from the previous sweeps, while in the
case of the sequential method the new value of those states will be based on values from
this sweep as well as the previous one. This causes the RDI algorithm to follow a similar
pattern as the sequential algorithm in the number of iterations needed. The BDI algorithm,
however, seems to follow a different path when in comes to the number of iterations
required. As could been seen in Figure 6.4 the number of iterations needed seems to be
related to the dimensions of the MDP, or probably, to be more accurate, related to the
number of blocks; the number of blocks increases with growing dimensions since their
size is constant. The more blocks we have the more iterations are needed for convergence.
The cause of this can be clearly seen if we think about a large grid world domain with
only two reward states with high rewards at opposite corners. For the BDI algorithm the
value of the shared memory is only synchronized with the global memory at an interval
defined by the sweep count parameter, which means that the values of those corner states
are only propagated between blocks at an interval equal to the sweep count parameter. In
the case of the parameter configuration of our experiment it will thus take 8 sweeps for
the value to propagate between blocks. Consequently, this influences the convergence rate
for MDPs which are divided into many blocks and have states with high reward values
which influence the value of states within multiple blocks.

6.5 Summary

In this chapter we evaluated the performance of the algorithms in practice. Both of the
parallel algorithms show considerable improvement in convergence time over the sequen-
tial method. Both of the parallel algorithms seem to be better fit for the solving of larger
MDPs as their relative speedup increases with additional computational cost. If we only
look at MDPs with greater computational cost than 2 million, the average speedup grows
from 11.7 to 14.6 for the BDI algorithm and from 6.5 to 9.9 for the RDI algorithm. The
parallelization does come at the cost of a slower convergence rate, which has a more pro-
found effect on BDI than RDI and is the main cause for not achieving a more significant
speedup. We also evaluated the effects of localization on the convergence rate of the
algorithms, and found it to be insignificant.



Chapter 7

Conclusion

MDPs play a significant role in a wide variety of fields such as robotics, automated con-
trol, and planning. The ability to solve them quickly and efficiently is thus important.
In this thesis we have presented a framework for solving MDPs on CUDA devices and
introduced two parallel implementations of the Value Iteration algorithm: Block Divided
Iteration and Result Divided Iteration. The framework enables researchers to easily utilize
their CUDA device for the solving of MDPs from within in C or C++ applications.

The method of applying Value Iteration for the solving of MDPs lends it self well to
the CUDA architecture as it consists mainly of independent calculations which can be
parallelized. We take two different approaches to the mapping of the Value Iteration
algorithm to the CUDA programming model. The first approaches results in the BDI
algorithm which is focused on parallelization on a state level, while the latter results in the
RSI algorithm and involves a much more fine grained parallelization of subtasks.

We used the framework to solve several different MDPs and evaluated the performance
of the two parallel algorithms in comparison to a baseline implementation running on a
single CPU. Our results showed that the parallel algorithms run significantly faster, al-
though they required a greater number of iterations to converge. More specifically the
RDI algorithm achieved an average speedup of 8.2 in comparison to the baseline to per-
form a single sweep over the state space while the BDI algorithm achieved a speedup of
25.5. This speedup, however, is not fully carried into the speedup of convergence time
and is reduced to a factor of 6.5 for the RDI algorithm and 11.7 for the BDI, because of
the slower convergence rate.

Two factors were identified which have an effect on the overall performance of the algo-
rithms. The most limiting factor for the RDI algorithm is that the arithmetic intensity of
each thread is too low and the device is therefore unable to hide all the memory latency
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of accessing the global memory. The BDI algorithm, however, suffers from slow propa-
gation of values through the state space as a result of the division of the state space into
relatively small blocks compared to the overall size of the domain. This causes the BDI
algorithm to require a greater number of iterations to converge, which adversely affects
its convergence time.

The most limiting factor of our approach is the requirement of the MDPs to be explic-
itly represented, but this is necessary for the framework to be able to solve any MDP
without the need for any additional code to be written. As a result of this limitation, the
largest MDPs we used for our experiments had state dimensions of 1024x1024 for a total
of 1,048,576 states, four actions, and four successor states per action. As we moved to
a larger MDP with state dimensions of 2048x2048, for a total of 4,194,304 states with
four actions and four successor states, we were unable to load the domain onto the device
as its memory requirements exceeded the device’s available memory. This is one of the
drawbacks of using the GPU compared to the CPU, as all memory usage must be moni-
tored and handled by the programmer. In our case this could be solved by implementing
functionality into the framework which executes on the host and partitions MDPs, whose
size is above a certain threshold, into smaller partitions. Those smaller partitions would
then be assigned to the CUDA device for execution.

For future work there are several additional evaluations and improvements that are of
interest. The MDPs we used for our evaluation all have similar characteristics. To be able
to better evaluate the methods and understand their behavior we need to apply them to a
wider range of MDPs and preferably from various problem domains. In relation to a wider
variety of MDPs it would be interesting to analyze in more detail the effects of different
block sizes and parameter settings on the performance of the algorithms. It could also be
interesting to see how a hybrid between the BDI and the RDI algorithm would perform
where each action would be assigned to a thread. It would offer the opportunity to use
shared memory but be more fine grained than the BDI algorithm.

Within the field of AI there is an increasing demand for faster ways to solve a variety
of problems, for some of which CUDA might just be the right answer. CUDA is still
relatively new and is evolving at a rapid pace and with each new release the computational
abilities of the devices grow and it becomes easier to harness their computational power.
In this thesis we addressed only one of these challenges and were able to achieve good
speedup. We therefore look forward to applying our knowledge of CUDA gained from
this project to other problems within the field.

It is becoming increasingly more difficult to increase the performance of modern CPUs
by placing more and more transistors per square inch, but that has been one of the main
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driving forces for the increase in computational capability of CPUs over the last decades.
Instead we are seeing CPUs with multiple cores capable of parallel processing. As a
response to recent developments in GPU computing and advances of the CPU towards
parallel processing, an open standard called OpenCL has been introduced. OpenCL is
a framework for writing programs, that can take advantage of both task-based and data-
based parallelism executing across heterogeneous platforms consisting of CPUs, GPUs,
and other processors. With OpenCL a vendor independent standard has been introduce,
which is an important step since it enables users to write code for parallel execution
independent of execution device. In our opinion parallel processing will without a doubt
play an important role in the future development of computing.
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Appendix A

MDP Input File Formats

This appendix contains the format for the input files supported by the MDPReader, which
is a reader for files containing MDP descriptions implemented for this project. The MD-
PReader supports two kinds of input formats: XML and plain text. Both of the formats
have similar structure and differ mainly in syntax. The XML format however imposes a
much larger overhead and is therefore less practical for large MDPs. The syntax for the
XML representation is self-explanatory and is best described by an example. The syntax
for the plain text format is as follows. Each state starts with the letter S, following the S
are three colon-separated numbers which describe the state’s id, initial value, and number
of actions available in that state. Following in the lines below each S are the descrip-
tion for the state’s actions. Each action begins with the letter A and is followed by two
colon-separated numbers which describe the id of the action and the number of possible
divergences for that action. In the lines below each action there is a D followed by three
colon-separated numbers for the description of each possible divergence for that action.
The colon separated number of the divergence describes the id of the successor state, the
probability of the divergence and finally the resulting reward.

A.1 XML Format example

1 <?xml v e r s i o n =" 1 . 0 " e n c o d i n g=" u t f −8" ?>

2 <MDP domain=" Gr id World " a u t h o r=" A r s a e l l J o h a n n s s o n ">

3 < D e s c r i p t i o n >

4 A s t a n d a r d 64 x64 Gr id World Domain 4096 s t a t e s
5 </ D e s c r i p t i o n >

6 <Act ions >

7 <Ac t i on i d=" 0 " d e s c r i p t i o n ="Move up " / >

8 <Ac t i on i d=" 1 " d e s c r i p t i o n ="Move r i g h t " / >

9 <Ac t i on i d=" 2 " d e s c r i p t i o n ="Move down " / >
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10 <Ac t i on i d=" 3 " d e s c r i p t i o n ="Move l e f t " / >

11 </ Act ions >

12 < S t a t e s >

13 < S t a t e i d=" 0 ">

14 < A v a i l a b l e A c t i o n s >

15 <Ac t i on i d=" 0 ">

16 < R e s u l t i n g S t a t e i d=" 0 "
17 p r o b a b i l i t y =" 1 "
18 a c t i o n R e w a r d=" 0 " / >

19 </ Act ion >

20 <Ac t i on i d=" 1 ">

21 < R e s u l t i n g S t a t e i d=" 1 "
22 p r o b a b i l i t y =" 1 "
23 a c t i o n R e w a r d=" 0 " / >

24 </ Act ion >

25 <Ac t i on i d=" 2 ">

26 < R e s u l t i n g S t a t e i d=" 64 "
27 p r o b a b i l i t y =" 1 "
28 a c t i o n R e w a r d=" 0 " / >

29 </ Act ion >

30 <Ac t i on i d=" 3 ">

31 < R e s u l t i n g S t a t e i d=" 0 "
32 p r o b a b i l i t y =" 1 "
33 a c t i o n R e w a r d=" 0 " / >

34 </ Act ion >

35 </ A v a i l a b l e A c t i o n s >

36 </ S t a t e >

37 . . .
38 . . .
39 . . .
40 < S t a t e i d=" 4095 ">

41 < A v a i l a b l e A c t i o n s >

42 <Ac t i on i d=" 0 ">

43 < R e s u l t i n g S t a t e i d=" 4094 "
44 p r o b a b i l i t y =" 1 "
45 a c t i o n R e w a r d=" 0 " / >

46 </ Act ion >

47 <Ac t i on i d=" 1 ">

48 < R e s u l t i n g S t a t e i d=" 4095 "
49 p r o b a b i l i t y =" 1 "
50 a c t i o n R e w a r d=" 0 " / >

51 </ Act ion >

52 <Ac t i on i d=" 2 ">

53 < R e s u l t i n g S t a t e i d=" 4095 "
54 p r o b a b i l i t y =" 1 "
55 a c t i o n R e w a r d=" 0 " / >

56 </ Act ion >

57 <Ac t i on i d=" 3 ">

58 < R e s u l t i n g S t a t e i d=" 4095 "
59 p r o b a b i l i t y =" 1 "
60 a c t i o n R e w a r d=" 0 " / >

61 </ Act ion >

62 </ A v a i l a b l e A c t i o n s >

63 </ S t a t e >

64 </ S t a t e s >

65 </MDP>
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Listing A.1: Example of MDP representation in XML format

A.2 Plain Text Example

1 S : 0 : 0 : 4
2 A: 0 : 1
3 D: 0 : 1 : 0
4 A: 1 : 1
5 D: 6 4 : 1 : 0
6 A: 2 : 1
7 D: 1 : 1 : 0
8 A: 3 : 1
9 D: 0 : 1 : 0
10 S : 1 : 0 : 4
11 A: 0 : 1
12 D: 0 : 1 : 0
13 A: 1 : 1
14 D: 6 5 : 1 : 0
15 A: 2 : 1
16 D: 2 : 1 : 0
17 A: 3 : 1
18 D: 1 : 1 : 0
19 . . .
20 . . .
21 . . .
22 S : 4 0 9 5 : 0 : 4
23 A: 0 : 1
24 D: 4 0 9 4 : 1 : 0
25 A: 1 : 1
26 D: 4 0 9 5 : 1 : 0
27 A: 2 : 1
28 D: 4 0 9 5 : 1 : 0
29 A: 3 : 1
30 D: 4 0 3 1 : 1 : 0

Listing A.2: Example of MDP representation in plain text format



Appendix B

Sequential Implementation

This appendix shows the implementation of the baseline sequential Value Iteration algo-
rithm. The implementation uses the same memory representation for the MDPs as the
parallel algorithms, therefor, float2 and int2 structs are used for storing the transition dy-
namics of the MDPs.

1 w h i l e ( d e l t a >= CONVERGENCE_THRESHOLD)
2 {
3 d e l t a = 0 . 0 f ;
4 f o r ( i n t s t a t e I n d e x = 0 ; s t a t e I n d e x < ENV_STATECOUNT; s t a t e I n d e x ++)
5 {
6 maxValue = −99999.0 f ;
7 o l d V a l u e = MDP_State_Values [ s t a t e I n d e x ] ;
8 f o r ( i n t a c t i o n I n d e x = 0 ; a c t i o n I n d e x < a c t i o n C o u n t ; a c t i o n I n d e x ++)
9 {
10 d i v V a l u e = 0 ;
11 newValue = 0 ;
12 f o r ( i n t d i v I n d e x = 0 ; d i v I n d e x < d ivCoun t ; d i v I n d e x ++)
13 {
14 i n t c u r r e n t I n d e x = s t a t e I n d e x +

15 ( ( a c t i o n I n d e x * ENV_DIVERGENCE + d i v I n d e x ) *
16 ENV_STATECOUNT ) ;
17

18 d i v V a l u e = MDP_Probabi l i tyAndReward [ c u r r e n t I n d e x ] . x *
19 ( MDP_Probabi l i tyAndReward [ c u r r e n t I n d e x ] . y + GAMMA *
20 MDP_State_Values [ MDP_Resu l tS t a t e Id s [ c u r r e n t I n d e x ] . x ] ) ;
21

22 newValue += d i v V a l u e ;
23 }
24 maxValue = max ( newValue , maxValue ) ;
25 }
26 d e l t a = max ( d e l t a , abs ( o l d V a l u e − maxValue ) ) ;
27 MDP_State_Values [ s t a t e I n d e x ] = maxValue ;
28 }
29 }

Listing B.1: Implementation of the algorithm used as a baseline
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