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Abstract

The aim of General Game Playing (GGP) is to create intelligent agents that
automatically learn how to play many different games at an expert level with-
out any human intervention. One of the main challenges such agents face is
to automatically learn knowledge-based heuristics in real-time, whether for
evaluating game positions or for search guidance.

In this thesis we approach this challenge with Monte-Carlo Tree Search
(MCTS), which in recent years has become a popular and effective search
method in games. For competitive play such an approach requires an effec-
tive search-control mechanism for guiding the simulation playouts. In here
we describe our GGP agent, CADIAPLAYER, and introduce several schemes
for automatically learning search guidance based on both statistical and re-
inforcement learning techniques. Providing GGP agents with the knowledge
relevant to the game at hand in real time is, however, a challenging task. This
thesis furthermore proposes two extensions for MCTS in the context of GGP,
aimed at improving the effectiveness of the simulations in real time based on
in-game statistical feedback. Also we present a way to extend MCTS solvers
to handle simultaneous move games. Finally, we study how various game-
tree properties affect MCTS performance.
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Útdráttur

Markmið Alhliða Leikjaspilunar (General Game Playing, GGP) er að búa til
forrit sem geta á sjálfstæðan hátt lært að spila marga mismunandi leiki og náð
getu sérfræðings án þess að mannshöndin komi þar nærri. Ein aðal áskorunin
við gerð slíkra forrita að geta á sjálfvirkann hátt búið til þekkingu í rauntíma
sem hjálpar til við að meta stöður og leiðbeina leitarrekniritum.

Hér er reynt að nálgast þetta vandmál með leitaraðferð byggðri á hermunum
sem nefnist Monte-Carlo Trjá Leit (Monte-Carlo Tree Search, MCTS). MCTS
hefur á undanförnum árum náð miklum vinsældum vegna góðs árangur í
spilun margs konar leikja. Til að vera keppnishæft þarf forrit sem beitir
MCTS að hafa yfir að ráða öflugum aðferðum til að stýra útspilun hermana
sinna. Það að sjá GGP forriti fyrir þekkingu er hentar þeim leik sem verið
er að spila hverju sinni er mikil áskorun. Við kynnum forrit okkar í Alh-
liða Leikjaspilun, CADIAPLAYER, og ýmsar aðferðir sem við höfum þróað
fyrir það sem læra að stýra leit sjálfvirkt með notkun tölfræði og styrkingar-
náms. Að auki eru kynntar tvær nýjar viðbætur við MCTS í GGP sem nýta
tölfræðilega endurgjöf við spilun leikja á árangursríkan hátt. Einnig er sýnd
viðbót við MCTS sem gerir kleift að leysa leiki þar sem spilarar leika á sama
tíma. Að lokum er kannað hvernig nokkur eigindi leikjatrjáa hafa áhrif á getu
MCTS til að spila leiki.
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Chapter 1

Introduction

This thesis contributes to the study of the Monte-Carlo Tree Search algorithm and the field
of General Game Playing. Even though Monte-Carlo Tree Search sometimes works sur-
prisingly well without any external knowledge, having access to any helpful knowledge
can greatly improve the performance of the algorithm in practice. Applying knowledge
is an especially difficult task in the field of General Game Playing (GGP). GGP sys-
tems must demonstrate skillful play in an wide range of games, some of which they have
never encountered before. Furthermore they must do so in real time from rules that con-
tain no explicit information on what can be considered advantageous knowledge. When
confronted with such scenarios intelligent searching can bridge the gulf between being
clueless and strategically intelligent.

1.1 Game-Tree Search

From the inception of the field of Artificial Intelligence (AI), over half a century ago,
games have played an important role as a testbed and as an inspiration for advancements
in the field. AI researchers have, over the decades, worked on building high-performance
game-playing systems for games of various complexity capable of matching wits with the
strongest humans in the world. After the realization of the first electronic computers it was
not long until people started imagining how thinking could be simulated. This challenge
led to Chess being proposed by Claude Elwood Shannon, “the father of information the-
ory”, as a starting point for unearthing the theory necessary to get us on the path towards
intelligent machines. It would be an understatement to say that people were optimistic in
terms of how close we were to creating computers and algorithms allowing human-like
thought and the Chess problem of making a machine play better than any human ended up
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taking almost 50 years. It was finally accomplished in 1997 with DEEP BLUE (Campbell,
Hoane, Jr., & Hsu, 2002), a computer with highly specialized software and hardware for
playing the game. Even though Chess proved to be a much bigger challenge than expected
it did bring to light a cornucopia of theory for search in games. The MiniMax algorithm
(Neumann & Morgenstern, 1944) is at the foundation of such algorithms, later refined into
more efficient variants such as Alpha-Beta (Knuth & Moore, 1975), NegaScout (Reine-
feld, 1983) and Principal-Variation Search (Marsland, 1983). These algorithms are often
referred to as Traditional Game-Tree Search.

After Chess had been conquered, the game Go quickly became the new challenge. This
is a game where programs, even though armed to the teeth with all the algorithms and
lessons learned from Chess, were still no match for human amateurs. But with researchers
now putting added effort into Go, the landscape of game-tree search was about to change.
In 2006, a fundamentally different search method gave Go a much needed boost that has
since then steadily pushed Go programs to a strong enough level to start challenging hu-
man Go professionals. This was the now well-known simulation-based search method
Monte-Carlo Tree Search (Coulom, 2006). Even though Monte-Carlo methods had been
known for some time they were nowhere close to achieving similar level of play as tra-
ditional methods had in Chess. The rise of Monte-Carlo methods in boardgames began
with Abramson using them to estimate game-theoretical values for adversary games with
complete information (Abramson, 1990) paving the way for their application to Go (Brüg-
mann, 1993; Bouzy & Helmstetter, 2003). Simulation-based search then really received a
renewed interest with the introduction of the UCT algorithm (Kocsis & Szepesvári, 2006)
which expanded on the Monte-Carlo simulations making it applicable to game trees. Fur-
thermore UCT was proven to converge to the best action of any state if given enough
samples of game-tree paths.

1.2 The General Game Playing Problem

General Game Playing (GGP) (Genesereth, Love, & Pell, 2005) originated at the Stanford

Logic Group and is an ambitious AI challenge. It revolves around having the game pro-
grams (agents) themselves be self-sufficient when coming up with successful strategies
for never-before-seen puzzles and games. GGP encompasses games which allow:

• Any number of players.

• Simultaneous moves, turn-taking, or combination thereof.

• Any scoring system, be it zero-sum or not, greedy or cooperative.
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The reasoning behind a challenge such as GGP is the controversy of calling a program
intelligent when it mostly bases its success on the game-specific knowledge bestowed
upon it by its creator. By forcing the agent to be prepared for such a vast set of problems
it is futile to provide it with too game-specific information. In the best case any such
knowledge must still be matched and most likely adapted to the problem at hand which
pushes the agent to show intelligence of a higher level than just playing blindly from
pre-programmed knowledge.

GGP uses a first-order logic language named Game Description Language (GDL) to de-
scribe games. It describes all games that fit the aforementioned criteria but has two con-
straints though: the games must be deterministic and having perfect information.

Ever since 2005 there has been an annual international GGP competition at either the
Association for the Advancement of Artificial Intelligence (AAAI) or International Joint

Conference on Artificial Intelligence (IJCAI) conferences. In 2011, the first German Open

GGP Competition (GO-GGP) was held in context with the 34th German Conference on

Artificial Intelligence (KI 2011).

For interested researchers, GGP includes many AI subfields and challenges such as:

• Knowledge representation, discovery and transfer.

• Real-time and game-tree search.

• Path planning, adversary- and multi-player games.

• Reinforcement- and machine learning.

Recently a new separate GGP challenge has been put forth with the introduction of GDL-
II (Thielscher, 2010; Schiffel & Thielscher, 2011) which allows non-determinism and
imperfect information, but that is beyond the scope of this thesis.

1.3 CADIAPLAYER

CADIAPLAYER is our GGP agent, which has competed in all international GGP compe-
titions since 2007. It used MCTS from the start and was the first GGP agent to do so.
CADIAPLAYER won the competition in 2007 and 2008 and came second in 2011. The
success CADIAPLAYER enjoyed had a big impact on the GGP community and nowadays
almost all GGP agents use MCTS as their search mechanism.
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In this thesis CADIAPLAYER will be our main testbed for studying and evaluating our
algorithmic enhancements. It is publicly available at the CADIAPLAYER web site1.

1.4 Contributions

The contributions of this thesis can be summarized as follows:

Building a Simulation-Based GGP Player : We show all relevant implementation details
of CADIAPLAYER (Finnsson, 2007; Finnsson & Björnsson, 2008; Björnsson & Finnsson,
2009) necessary to build a GGP agent. CADIAPLAYER is also downloadable via the
Internet on the webpages of the Center for Analysis and Development of Intelligent Agents

(CADIA) at Reykjavík University.

Learning Simulation Control in GGP : Four original techniques for learning search-
control are presented and evaluated in the context of GGP. Our simulation control tech-
niques Move-Average Sampling Technique (MAST) (Finnsson, 2007; Finnsson & Björns-
son, 2008; Björnsson & Finnsson, 2009; Finnsson & Björnsson, 2009, 2010, 2011a),
Tree-Only MAST (TO-MAST) (Finnsson & Björnsson, 2009, 2010, 2011a) and Predicate-

Average Sampling Technique (PAST) (Finnsson & Björnsson, 2009, 2010, 2011a) all aim
at biasing simulation playout towards actions and states that show high statistical corre-
lation with winning when they occur in simulation paths. Features-to-Action Sampling

Technique (FAST) (Finnsson & Björnsson, 2010, 2011a) uses template matching to iden-
tify common board game features, currently detecting two such: piece types and cells
(squares). We use TD(λ) (Sutton, 1988) to learn the relative importance of the detected
features, e.g. the values of the different type of pieces or the value of placing a piece on a
particular cell.

We also evaluate the effectiveness of Rapid Action Value Estimation (RAVE) (Gelly & Sil-
ver, 2007) algorithm in GGP, an effective search-control technique popularized in MCTS-
based Go programs.

Generalized MCTS Extensions for GGP : We generalize two known search enhance-
ments such that they do not require any a priori knowledge, thus making them applicable
to GGP. The first, Early Cutoffs, terminates simulations prematurely that are unlikely
to be useful. The second one, Unexplored Action Urgency, uses speculative meta-level
knowledge to be more exploitative (Finnsson, 2012).

1 http://cadia.ru.is/wiki/public:cadiaplayer:main
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Simultaneous Moves Solver : This work is done in collaboration with Abdallah Saffidine
and Michael Buro on accomplishing Alpha-Beta like pruning for games with simultane-
ous moves. As such games can be expressed in GGP we extend this pruning technique
into a MCTS solver for CADIAPLAYER. This algorithm has the nice property of reduc-
ing to Score Bounded MCTS (Cazenave & Saffidine, 2011) in turn-taking games, which
makes it at least as powerful as established MCTS solvers with the added bonus of han-
dling simultaneous games (Saffidine et al., 2012).

Examination of Game-Tree Properties and MCTS : High-level properties that are com-
monly found in game trees to a varying degree are identified and their effect on the perfor-
mance of MCTS is measured. As a testbed we use simple custom made games that both
highlight and allow us to vary the properties of interest. This work provides insight into
how MCTS behaves when faced with these different game properties. In particular, we
investigate the balance between the tree’s height and width, the importance of constant
game progression towards a meaningful terminal state, and finally how a MCTS weak-
ness we name Optimistic Moves can adversely affect simulation performance (Finnsson
& Björnsson, 2011b).

1.5 Overview

The thesis is structured as follows. In Chapter 2 gives the necessary background for the
work. GGP is explained in detail along with the GDL language it uses and the GGP com-
petition setup and agent communication protocol are explained. Furthermore it describes
MCTS, its structure, development and main extensions. Successful applications of the
algorithm are highlighted and discussed. CADIAPLAYER is the subject of Chapter 3. The
agent is described in detail down to the design and implementation level in an effort to
help with and shed light on what it takes to build a GGP agent.

Chapter 4 explains and empirically evaluates our four contributions to simulation control
of MCTS, as well as RAVE, in GGP. In Chapter 5 we focus on the Early Cutoffs and Un-

explored Action Urgency MCTS extensions and how they can be adapted to the generality
and absence of knowledge inherent to GGP.

Chapter 6 discusses the new pruning algorithm for adversary zero-sum games with simul-
taneous moves. This was joint work with Abdallah Saffidine and Michael Buro. In this
thesis we approach this algorithm from the perspective of utilizing it as an MCTS solver
and show how to extend it into CADIAPLAYER and evaluate it.
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For Chapter 7 we turn our attention towards the three aforementioned game-tree properties
and measure how they affect the performance of MCTS.

In Chapter 8 we discuss work done for both GGP and MCTS that is related to the con-
tributions this thesis presents and finally we conclude in Chapter 9 where we summarize
and suggest future work.
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Chapter 2

Background

This chapter gives background information on the context of the thesis research. We first
discuss the field of General Game Playing followed by explaining the Monte-Carlo Tree

Search method for game-tree searching.

2.1 General Game Playing

Games have always been crucial to AI research as a benchmark for achieving systems
capable of human-level intelligence and strategizing (Campbell et al., 2002; Schaeffer,
1997; Buro, 1999). The importance of having such an objective measure of the progress
of intelligent systems cannot be overestimated, but nonetheless, this approach has led to
some adverse developments. For example, the focus of the research has to some extent
been driven by the quest for techniques that lead to immediate improvements to the game-
playing system at hand, with less attention paid to more general concepts of human-like
intelligence like acquisition, transfer, and use of knowledge. The success of game-playing
systems has thus in part been because of years of relentless knowledge-engineering efforts
on behalf of the program developers, manually adding game-specific knowledge to their
programs. The aim of general game playing is to move beyond such dependency, making
the systems themselves responsible for the knowledge they use.

In General Game Playing (GGP) the goal is to create intelligent agents that can automat-
ically learn how to skillfully play a wide variety of games, given only the descriptions of
the game rules. This requires that the agents learn diverse game-playing strategies without
any game-specific knowledge being provided by their developers. A successful realization
of this task poses interesting research challenges for artificial intelligence sub-disciplines
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such as knowledge representation, agent-based reasoning, heuristic search, computational
intelligence, and machine learning.

The Logic Group at Stanford University initiated the General Game Playing Project in
2005 to facilitate further research into the area, along with the annual GGP competition.
For this purpose they provide both a well-defined language for describing games and a
web-based server for running and viewing general game playing matches.

Similar ideas of general game-playing programs were introduced by Jacques Pitrat in
(Pitrat, 1968) and later by Barney Pell with his program METAGAMER (Pell, 1996),
which could play a wide variety of simplistic chess-like games.

2.1.1 Game Description Language

Games are specified in a Game Description Language (GDL) (Love, Hinrichs, Haley,
Schkufza, & Genesereth, 2008), a specialization of the Knowledge Interchange Format

(KIF) (Genesereth & Fikes, 1992), a first-order logic based language for describing and
communicating knowledge. It is a variant of Datalog that allows function constants,
negation, and recursion (in a restricted form). The expressiveness of GDL allows a large
range of deterministic, perfect-information, simultaneous-move games to be described,
with any number of adversary or cooperating players. Turn-based games are modeled
by having the players who do not have a turn return a special no operation move (often
referred to as no-op). A GDL game description uses keywords known as relations to
specify the initial game state, as well as rules for detecting and scoring terminal states and
for generating and playing legal moves. A game state is defined by the set of propositions
that are true in that state. Only the relations have lexical meaning and during competitions
everything else is obfuscated.

Following is a brief overview of GDL, using the partial Tic-Tac-Toe description in Figure
2.1 as a reference. A complete GDL description for Tic-Tac-Toe is provided in Appendix
A.

The role relation lists the players participating in the game; arbitrarily many roles can be
declared, that is, a game can be single-player (i.e. a puzzle), two-player, or multi-player.
However, once declared the roles are fixed throughout the game. In our Tic-Tac-Toe
example two players are defined, xplayer and oplayer. The init relation states the facts
that are true in the initial state, and they are added to the knowledge-base. Here a game
state is represented by the board position (initially all cells are empty) and whose turn it
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(role xplayer)
(role oplayer)

(init (cell 1 1 b))
(init (cell 1 2 b))
...
(init (control xplayer))

(<= (legal ?w (mark ?x ?y))
(true (cell ?x ?y b))
(true (control ?w)))

(<= (legal oplayer noop)
(true (control xplayer)))

...
(<= (next (cell ?m ?n x))

(does xplayer (mark ?m ?n))
(true (cell ?m ?n b)))

(<= (next (control oplayer))
(true (control xplayer)))

...
(<= (row ?m ?x)

(true (cell ?m 1 ?x))
(true (cell ?m 2 ?x))
(true (cell ?m 3 ?x)))

...
(<= (line ?x)

(row ?m ?x))
(<= (line ?x)

(column ?m ?x))
(<= (line ?x)

(diagonal ?x))
...
(<= (goal xplayer 100)

(line x))
(<= (goal xplayer 0)

(line o))
...
(<= terminal

(line x))

Figure 2.1: A partial Tic-Tac-Toe GDL description
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is to move. The true relation is used in GDL to check whether a fact is in the knowledge-
base.

The legal and next relations are used to determine legal moves and execute them, re-
spectively. In Figure 2.1 the player having the turn can mark any empty cell on the board
(variables in GDL are prefixed with a question mark), whereas the opponent can only play
a no-op move. Moves are executed by temporarily adding a does fact to the knowledge-
base stating the move played, and then call the next clause to determine the resulting state.
Figure 2.1 shows, for one of the players, the next relations for updating the cell played
into and the turn to move; symmetrical next relations are needed for the other player, as
well as relations for stating that the untouched cells retain their mark (see Appendix A).
The facts that the next call returns are added to the knowledge-base, replacing all previous
state information stored there (the temporary does fact is also removed). This knowledge
representation formalism corresponds to the closed-world assumption; that is, the only
true facts are those that are known to be so, others are assumed false.

The terminal relation indicates when a game position is reached where the game is over,
and the goal relation returns the value of the current game state; for terminal states this
corresponds to the game outcome. The goal scores are in the range [0 − 100], and if a
game is coded to provide intermediate goal values for non-terminal positions, then GDL
imposes the restriction that the values are monotonically non-decreasing as the game pro-
gresses. Examples of such a scoring system are games where players get points based on
the number of pieces captured. In Figure 2.1 user-defined predicates are also listed, for ex-
ample line, row, column, and diagonal; arbitrary many such predicates are allowed.

The official syntax and semantics of GDL are described in (Love et al., 2008).

2.1.2 GGP Communication Protocol

The Game Master (GM) is a server for administrating matches between GGP agents.
It does so via an HTTP-based communication protocol. Before a game starts the GGP
agents register with the server. Each new match game gets a unique identification string.
Play begins with a start message being sent to all the agents, containing the match identi-
fier, the GDL game description, the role of the agent, and the time limits used. After all
players have responded, play commences by the GM requesting a move from all players;
subsequent move requests sent by the GM contain the previous round moves of all play-
ers. This way each player can update its game state in accordance with what moves the
other players made. This continues until the game reaches a terminal state. If a player
sends an illegal move to the GM, a random legal move is selected for that player.



Hilmar Finnsson 11

The time limits mentioned above for preparing and playing are positive integer values
called startclock and playclock. The time limit values are presented in seconds; the start-

clock indicates the time from receiving the rules until the game begins and the playclock

the time the player has for deliberating each move.

More details, including the format of the HTTP message contents are in (Love et al.,
2008). A full description of the GM capabilities is given in (Genesereth et al., 2005).

2.2 Monte-Carlo Tree Search

Monte-Carlo simulations play out random sequences of actions in order to make an in-
formed decision based on aggregation of the simulations’ end results. The most appealing
aspect of this approach is the absence of heuristic knowledge for evaluating game states.
Monte-Carlo Tree Search (MCTS) applies Monte-Carlo simulations to tree-search prob-
lems, and has nowadays become a fully matured search method with well defined parts
and many extensions. In recent years MCTS has done remarkably well in many domains.
The reason for its now diverse application in games is mostly due to its successful ap-
plication in the game of Go (Coulom, 2006; Gelly, Wang, Munos, & Teytaud, 2006;
Enzenberger & Müller, 2009), a game where traditional search methods were ineffective
in elevating the state-of-the-art to the level of human experts. Other triumphs of MCTS
include games such as Amazons (Lorentz, 2008), Lines-of-Action (Winands, Björnsson,
& Saito, 2010), Chinese Checkers (Sturtevant, 2008), Kriegspiel (Ciancarini & Favini,
2009) and Settlers of Catan (Szita, Chaslot, & Spronck, 2009).

Monte-Carlo Tree Search (MCTS) is at the core of CADIAPLAYER’s reasoning engine and
was first applied to GGP in the 2007 GGP competition (Finnsson & Björnsson, 2008).
This proved to be very successful where it outplayed more traditional heuristic-based
players in many types of games. However, in other type of games, such as many chess-
like variants, the MCTS-based GGP agent was hopeless in comparison to its αβ-based
counterparts.

MCTS continually runs simulations to play entire games, using the result to gradually
build a game tree in memory where it keeps track of the average return of the state-action
pairs played,Q(s, a). When the deliberation time is up, the method plays the action at the
root of the tree with the highest average return value.

Figure 2.2 depicts the process of running a single simulation: the start state is denoted
with S and the terminal state with T . Each simulation consists of four strategic steps:
selection, playout, expansion, and back-propagation.
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Figure 2.2: An overview of a single simulation

2.2.1 Selection

The selection step is performed at a beginning of a simulation and chooses actions while
still in the tree (upper half of figure). The Upper Confidence Bounds applied to Trees

(UCT) algorithm (Kocsis & Szepesvári, 2006) is customarily used in the selection step,
as it offers an effective and a sound way to balance the exploration versus exploitation
tradeoff. At each visited node in the tree the action a∗ taken is selected by:

a∗ = argmaxa∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}

The N(s) function returns the number of simulation visits to a state, and the N(s, a)

function the number of times an action in a state has been sampled. A(s) is the set of
possible actions in state s; if it contains an action that has never been sampled before, is
selected by default as it has no estimated value. If more than one action is still without an
estimate, a random tie-breaking scheme is used to select the next action. The term added
to Q(s, a) is called the UCT Bonus. It is used to provide a balance between exploiting
the perceived best action and exploring the less favorable ones. Every time an action is
selected the bonus goes down for that action because N(s, a) is incremented, while its
siblings have their UCT bonuses raised as N(s) is incremented. This way, when good
actions have been sampled enough to give an estimate with some confidence, the bonus
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of the suboptimal ones may have increased enough for them to get picked again for further
exploration. If a suboptimal action is found to be good, it needs a smaller bonus boost (if
any) to be picked again, but if it still looks the same or worse it will have to wait longer.
The C parameter is used to tune how much influence the UCT bonus has on the action
selection calculations. In Figure 2.2 the selection phase lasts from state S up to but not
including the terminal state N .

2.2.2 Playout

At some point during the simulation it will fall out of the in-memory MCTS tree. This
marks the start of the Playout phase. In the playout step there are no Q(s, a) values
available for guiding the action selection, so in the most straightforward case one would
choose between those available uniformly at random. However, CADIAPLAYER uses
more sophisticated techniques for biasing the selection in an informed way, as discussed
in later chapters. This phase includes everything from node N up to and including node
T in Figure 2.2.

2.2.3 Expansion

The name of this phase refers to expanding the in-memory MCTS tree. A typical strategy
is to append only one new node to the tree in each simulation: the first node encountered
after stepping out of the tree (Coulom, 2006). This is done to avoid using excessive
memory, in particular if simulations are fast. In Figure 2.2 the node added in this episode
is labeled as N .

This way the tree grows most where the selection strategy believes it will encounter its
best line of play.

2.2.4 Back-Propagation

The back-propagation phase controls how the end reward of the simulation is used to
affect the traversed nodes of the current MCTS simulation path. In the basic implementa-
tion, just as with MC simulations, this keeps track of the average rewards. To distinguish
node rewards at different distances from terminal state, a discounting factor can be applied
to the reward as it is backed up from the terminal state to the root.
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2.3 Summary

In this chapter we gave the necessary background for GGP and MCTS which make up the
foundation for our research and therefore our main research tool, CADIAPLAYER. In the
next chapter we examine the architecture and implementation of CADIAPLAYER.
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Chapter 3

CADIAPLAYER

gggAn agent competing in the GGP competition requires at least three components: an
HTTP server to interact with the GM, the ability to reason using GDL, and the AI for
strategically playing the games presented to it. Our agent, CADIAPLAYER gets its name
from the AI research lab at Reykjavik University, Center for Analysis and Design of In-
telligent Agents (CADIA). The player was created to evaluate and showcase our research.
It has participated in the international GGP competition regularly since 2007. The agent
source code is publicly available at the CADIAPLAYER web site1.

3.1 Overview

An overview of CADIAPLAYER’s architecture is shown in Figure 3.1. The topmost layer
of the figure is an HTTP server which runs the rest of the system as a child process and
communicates with it via standard pipes. Every time a new game begins a new child
process is spawned and the old one is suspended.

The game-playing engine is written in C++ and can be split up into three conceptual lay-
ers: the Game-Agent Interface, the Game-Play Interface and the Game-Logic Interface.
The Game-Agent interface handles external communications and manages the flow of the
game. It queries the Game-Play interface for all intelligent behavior regarding the game.
In the Game-Logic interface the state space of the game is queried and manipulated. Be-
cause we do not have a specialized game engine, and are inferring legal moves, state
transition, etc. from first-order-logic, a considerable slowdown in action and state gener-
ation is to be expected compared to specialized agents. In our experience this slowdown

1 http://cadia.ru.is/wiki/public:cadiaplayer:main
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Figure 3.1: Overview of the architecture of CADIAPLAYER

can in the worst case be several orders of magnitude, depending on how the games are
encoded in the GDL.

We now give an overview of CADIAPLAYER’s architecture and how the agent interacts
with the GM. The subsections that follow describe individual components of the agent in
more detail.

A game begins when the GGP HTTP Server gets a message from the GM announcing a
new game. The server starts a new CADIAPLAYER Child Process, extracts the content of
the HTTP request, which is the GM message to the player, and relays it to the process
through a standard pipe. It then waits for a reply from the process before responding to
the HTTP request. On the other end of the pipe the Game-Agent Interface is waiting for
the message and channels it into the Game Agent which recognizes it as an announcement
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of a new game. The Game Description included in the message is both written to a file
and sent through the Game Parser. The Game Parser initializes the Game-Play Interface

with data from the game description and hands it back to the Game Agent. The Game

Agent proceeds to selecting the type of Game Controller to use. CADIAPLAYER uses the
Prolog Controller which utilizes the Prolog engine YAP (YAP, n.d.). When the Prolog

Controller starts, it locates the game description file saved earlier and runs it through an
external program that converts KIF to Prolog code and saves it to another file. Then it calls
the YAP Compiler on the Prolog Game Description and a handcrafted file containing some
Generic Game Logic. The compiled Prolog code is then loaded into memory through the
YAP Runtime Library and is used to represent the state space for the new game. This
selection varies between games. All this processing is happening on the startclock and
for its remainder the Game Player is allowed to prepare for the game (e.g., start running
simulations). When the start clock is up a message indicating that CADIAPLAYER is
ready to play is returned back through the pipe to the GGP HTTP Server so it can notify
the GM.

When CADIAPLAYER has announced that it is ready a new HTTP request can be ex-
pected. This time the GM is requesting a move decision. As before, the message is sent
through the pipe and ends up in the Game Agent. It then queries the Game Player for a
move decision. The Game Player makes its decision by using the Game-Play Interface

it is plugged into to get information about the game. Once a decision is reached it is re-
turned back to the Game Agent which relays it back to the GGP HTTP Server to be sent
to the GM.

There is a difference between the first move and the rest of them. After the first one, all
move requests from the GM contain the list of moves that were made in the last round
by all players participating in the game. CADIAPLAYER uses this move list to update the
state space in the Game-Logic Interface so it reflects the current state. The move list is
parsed with the Game Parser into a structure the Game-Play Interface understands. The
Game-Logic Interface makes a transition in its state space based on these moves. Finally
the Game Player is queried for a move decision for the GM. This exchange of move lists
and move decisions is now repeated until the game ends.

3.2 Game-Agent Interface

It is the responsibility of this layer to initialize the Game-Play Interface (see Section 3.3)
and the Game-Logic Interface (see Section 3.4). This interface simply hides away all the
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Table 3.1: Game Agent

Function Description
Constructor Takes a pointer to an instance of the Game Player interface

(see Section 3.3.1) to be used and a setting indicating the
type of Game Controller to be instanciated if the default
should not be used.

setLogFile Change the name of the log file. Defaults to “agent.log”.
setPGNFile Change the name of a resulting PGN file. Defaults to

“[match id].pgn”. No used for single player games.
run Start monitoring the standard pipe for input.

nuances of understanding the text based messages from the HTTP Server. This is done by
parsing the various messages of the GM and matching their type and data to functions of
the Game Player Interface that will do the necessary work. The same goes for converting
the returned data into messages that are automatically sent back to the HTTP Server which
forwards it to the GM. The lexical analyzer of the parser was built using Flex (Flex, n.d.).
This layer also logs to file any runtime information about the player and any statistical
data it produces in between moves. This data is retrieved through special functions of
the Game-Play Interface. When a game with two or more players ends, a Portable Game

Notation (PGN) file (PGN Spec, n.d.) is generated from the game history.

In the CADIAPLAYER design framework the Game-Agent Interface is implemented as the
main function of the agent. It has a concrete agent class that only needs to be provided
with data on what implementations to use for the other two interfaces and the names for
the log files. The interface to this agent class is in Table 3.1 and a C++ implementation
sample is shown in Figure 3.2.

3.3 Game-Play Interface

The Game-Play Interface manages the main AI part of the player. It keeps track of the
current state of the game and the history which led to it. Game Player implementations
plug into this layer and use its services to run their algorithms to decide on which action
to take. In order to do so this interface offers a robust class structure to represent states
and actions and the ability to translate those structures back into GDL/KIF. As everything
is represented by strings in KIF and it is inefficient to do string comparisons when look-
ing up and storing, a symbol table is set up when the game description is parsed. Every
atom and variable are assigned an unique unsigned integer value. As GDL demands that
the names of the atoms have no lexical meaning, no information is lost by this transfor-
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#include "agent.h"
#include "../play/players/uctplayer.h"
int main(int argc, char *argv[])
{

cadiaplayer::play::players::UCTPlayer player;
cadiaplayer::agent::Agent agent(&player);
agent.setLogFile("uctagent.log");
agent.setPGNFile("uctagent.pgn");
exit(agent.run(argc, argv));

};

Figure 3.2: Sample C++ main function in the CADIAPLAYER framework

mation. Everything in the player uses this numeric representation, making comparisons
and hashing more efficient. The original strings can be looked up in the symbol table for
output from the player.

A game state is represented by multiple compound logical sentences, i.e., the logical facts
that are true in it. The game history is stored on a stack and the state on top is the current
state. The Game-Agent Interface is responsible for making any state changes that occur
in the actual game being played, as only actions that the GM announces can be used to
advance the game. This is important as even though the player sent a legal move, it is
possible that it reached the GM too late and it selected a random move on behalf of the
player instead. Without obeying the GM the player would not guaranteed to be in the
same state as the GM.

3.3.1 Game Player

Game Player is a virtual class containing shared player logic and describes the interface a
player must implement to be plugged into the framework. The Game-Agent Interface can
then query the Game Player for move decisions given the state of the Game-Play Interface

it is plugged into. Table 3.2 shows details of the Game Player Interface.

3.3.2 MCTS Game Player

Even though the CADIAPLAYER interfaces make no special distinction between tradi-
tional search or MCTS agents, the research involving CADIAPLAYER has always been
focused on MCTS. The MCTS search procedure is at the heart of CADIAPLAYER and
it is designed to expose certain critical injection points for inheritance rather than being
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Table 3.2: Game Player

Function Description
newGame Should be called when the underlying game is reset or a

different one is started.
setRole Set the role of the player. Implemented in the base class.
getRole Get the role of the player. Implemented in the base class.
prepare Tells the player that the startclock has been triggered.
play Queries the player for what action it would take given the

current state.
postplay Called when a play message has been sent back to the GM,

in case the player wants to do any work outside the play-
clock before a new move request is received.

asyncplay Called repeatedly while waiting for a new message from the
GM, taking advantage of any delay that may be caused by
the other participants or the GM itself. The player can e.g.
run extra simulations.

stop Called when the GM reports the game being over.
getPlayerName For logging purposes only, to identify the player implemen-

tation being used.
getLastPlayInfo For logging purposes, should contain description or some

statistical data about what the player was thinking during
the last call to the play function.

isSolved Players should return true if they have constructed a solu-
tion for the game and actually require no more calculations
to win the game if they are playing adversary- or multi-
player games or to get maximum points in single player
games. This can be useful to the Game Agent layer to make
a decision about whether it should change player implemen-
tation during runtime.

setThinkTime Set the think time allowed for the player. Implemented in
the base class.

startTimer Starts an internal timer for the player that is used to measure
for how long the player has been thinking. Implemented in
the base class.

hasTime Checks if the internal timer has exceeded the think time al-
lowed for the player. Implemented in the base class.

getLastPlayConfidence If multiple agents with varying types of game players are
being run this function should return a move and a value in-
dicating the confidence in this being the best move. Should
only be used when selecting move to send to the GM.

parallelInfo Get data for root parallelization (See Section 3.3.6).
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Algorithm 1 search(ref qValues[])
1: if isTerminal() then
2: for all ri in getRoles() do
3: qV alues[i]← goal(i)
4: end for
5: atTerminal(qV alues)
6: return
7: end if
8: playMoves← ∅
9: for all ri in getRoles() do

10: moves← getMoves(ri)
11: move← selectMove(moves, gameTree[i])
12: playMoves.insert(move)
13: moves.clear()
14: end for
15: make(playMoves)
16: search(qV alues)
17: retract()
18: for all ri in getRoles() do
19: qV alues[i]← γ ∗ qV alues[i]
20: update(playMoves[i], qV alues[i], gameTree[i])
21: end for
22: return

rewritten for each new idea. Algorithm 1 gives an overview of the search implementa-
tion used by CADIAPLAYER. Most of the functions called within this algorithm represent
these injection points. The function atTerminal can be overwritten when something must
be done at the terminal states and selectMove encapsulates both the selection and playout
phase strategies and will be discussed in more detail in a short while. The function make

is called any time the game advances, search is the algorithm’s recursive call, retract re-
stores the game to its previous state. Finally, inheriting players having data that needs to
be updated during the back-propagation phase can do so by overwriting the update func-
tion. The discount factor γ is configurable, but by default set slightly less than one, or
0.999, for the algorithm to prefer earlier rather than later payoffs, as longer playouts have
higher uncertainty.

The selectMove function controls both the selection and playout phase strategies. This
function is described by Algorithm 2. It starts off with initialization (lines 1 to 5), then
for each move available it checks whether there already exists a node for it in the MCTS
tree (line 7) to distinguish between the selection and playout phases. If the node does not
exist we are in the playout phase which is handled by querying each move for a playout-
strategy value that will be fed to a Gibbs sampling routine dictating the distribution of the
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random selection associated with the playout phase (lines 8 to 13). If the playout value
is constant for all moves this reduces to the uniform random distribution. Alternatively,
if the MCTS tree contains the node we collect the set of actions that have the highest
selection value (lines 14 to 22) for tie breaking. For a simple greedy agent the average
value of the looked up node can be used. Finally a decision is made if the selected move
should come from the unexplored set of playout moves or the explored set of the selection
moves (lines 24 to 29).

There are three key intercept points in this function. These are the functions playoutMove-

Value, selectionNodeValue and unexploredValue. The playoutMoveValue can be overwrit-
ten to change the playout strategy as long as the intention is that the end result will be
selected using Gibbs sampling2. The selectionNodeValue function controls the selection
phase strategy, e.g., the UCT formula. By default all unexplored moves have priority in
being tried at each state. This can be changed by overwriting the unexploredValue func-
tion. Its default implementation always returns a number representing positive infinity,
but if it were to return a value lower than the selection strategy value the function will
exploit the selection strategy move.

3.3.3 Game Tree

The MCTS player builds a game tree in memory storing simulation results. The game
tree is modeled in the Game-Play Interface of the architecture.

The game tree uses 64-bit Zobrist keys (Zobrist, 1970) to identify its states and actions
for fast retrieval. When the game tree is initialized against a game description, it builds
multiple maps where each symbol in the symbol table is assigned a 64-bit pseudo-random
number (key). The number of maps equals the highest symbol table entry id (which is zero
based and incrementing) plus the highest number of predicate parameters encountered in
the game description. Whenever a new state is encountered or a state lookup is needed, an
identifier for it is calculated as follows: As a state is represented by multiple compound
logical sentences, each containing possibly nested compound sentences, the calculations
take all symbols of every sentence into account to make the identifier unique. An identifier
for each of the compound sentences is retrieved by applying XOR to the Zobrist keys for
the atoms. These identifiers are then combined into a single identifier for the state using
XOR. The multiple maps are to counteract the chance of getting non-unique identifiers by
having the map selected for fetching a key for an atom be relevant both to the preceding
predicate and parameter position of the atom (if any). This would happen with only a

2 Chapter 4 introduces a number of playout strategies that fit this criterion.
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Algorithm 2 selectMove(moves[], gameTree)
1: actionV alue← −∞
2: currentV alue← −∞
3: tiebreakCount← 0
4: gibbsCount← 0
5: gibbsDivider ← 0
6: for all move in moves do
7: node← gameTree.get(state,move)
8: if node = ∅ then
9: gibbsMoves[gibbsCount]← move

10: gibbsV alues[gibbsCount]← e(playoutMoveV alue(state,move)/getTemperature())

11: gibbsDivider ← gibbsDivider + gibbsV alues[gibbsCount+ +]
12: continue
13: end if
14: actionV alue← selectionNodeV alue(state, node)
15: if currentV alue = actionV alue then
16: tiebreakMoves[tiebreakCount+ +]← move
17: else if currentV alue < actionV alue then
18: currentV alue← actionV alue
19: selectedAction← move
20: tiebreakCount← 0
21: tiebreakMoves[tiebreakCount+ +]← move
22: end if
23: end for
24: if gibbsCount > 0 & currentV alue < unexploredV alue(state,moves) then
25: selectedMove← gibbsMoves[selectGibbsDistribution(gibbsV alues, gibbsDivider)]
26: else if tiebreakCount > 1 then
27: selectedMove← tiebreakMoves[rand()%tiebreakCount]
28: end if
29: return selectedAction

single key map as compound sentences that should have different meaning get the same
identifier when their parameters are rearranged. Algorithms 3 and 4 shows how we can get
an identifier for a state and compound sentence which can recursively call itself for any
nested compounds respectively. Line 6 in Algorithm 4 ensures the uniqueness concerning
differently arranged parameters.

Calculating available actions in Prolog is computationally expensive so in practice, when
a state is added to the MCTS tree we actually store all the available actions, not just the
selected one. This way we can immediately start to bypass Prolog for fetching this state’s
actions when next encountered. The tree is implemented such that all state entries are
references to a transposition table which keeps track of the number of references it has in
the tree. Every time the GM progresses the game all the state references at the expired
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Algorithm 3 getZKey(State s)
1: key ← 0
2: for all ci ∈ s.compounds do
3: key ← key ⊕ getZKey(ci, 0)
4: end for
5: return key

tree level are deleted along with all the actual states in the transposition table they refer to
if they have no more references after their reference counter has been decremented. The
transposition table is a simple hash map keyed on the 64-bit state identifiers.

3.3.4 The Opponent Models

To get the best performance out of MCTS CADIAPLAYER must model not only its own
role, but also the ones of the other players. So for each opponent in the game a separate
game-tree model is used. Because GGP is not limited to two-player zero-sum games,
the opponents cannot be modeled simply by using the negation of our return value. Any
participant can have its own agenda and therefore needs its own action-value function.
All these game-tree models work together when running simulations and control the UCT
action selection for the player they are model. Algorithm 1 shows how the opponent
models are combined with MCTS in CADIAPLAYER. The GameTrees array stores the
different models. The functions selectMove and update use the corresponding model at
position i to make move selections and updates.

3.3.5 Single-Agent Games

In the 2007 GGP competition a rudimentary implementation of the memory-enhanced
IDA* (Reinefeld & Marsland, 1994) search algorithm was used as the Game Player for
the single-agent games. However, if no (partial) solution was found on the startclock then
the agent fell back on using the UCT algorithm on the playclock. For the 2008 GGP com-
petition a scheme for automatically deriving search-guidance heuristics for single-agent
games was developed, using a relaxed planning graph in a similar manner as heuris-
tic search-based planners do (Hoffmann & Nebel, 2001). The heuristic (Guðmundsson,
2009) was used to guide a time-bounded A*-like algorithm (Björnsson, Bulitko, & Sturte-
vant, 2009) on both the startclock and the playclock. In the preliminaries we initially used
this scheme alongside MCTS/UCT, picking the move from whichever method promised
the higher score. However, the scheme proved neither sufficiently efficient nor robust
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Algorithm 4 getZKey(Compound c, index m)
1: key ← keymaps[m].getKey(c.symbol())
2: if c.arguments = ∅ then
3: return key
4: end if
5: for all ci ∈ c.arguments do
6: key ← key ⊕ getZKey(ci, key + i)
7: end for
8: return key

enough across different games, and was consequently suspended. Instead, we made sev-
eral small adjustments to MCTS/UCT to make it better suited to handle single-agent
games.

First, the absence of an adversary makes play deterministic in the sense that the game will
never take an unexpected turn because of an unforeseen move by the opponent. The length
of the solution path therefore becomes irrelevant and the discount parameter unnecessary
and possibly even harmful; no discounting was thus done (γ = 1.0).

Secondly, when deciding on a move to send to the GM, the best one available may not
be the one with the highest average return. The average can hide a high goal if it is sur-
rounded with low goals, while leading the player down paths littered with medium goals.
We therefore also keep track of the maximum simulation score returned for each node
in the MCTS tree. The average score is still used for action-selection during simulation
playouts, but the move finally played at the root will be the one with the highest maximum
score.

Finally, we add the entire simulation path leading to a better or equal solution than previ-
ously found to the game-tree, as opposed to only growing the tree one node at a time as
the multi-player MCTS variant does. This guarantees that a good solution, once found, is
never forgotten. The effect of this is clearly visible in Figure 3.3.

Overall MCTS/UCT does a reasonable job on simple single-agent puzzles, or where many
(or partial) solutions are available. However, on more complex puzzles with large state
spaces it is often clueless; there is really no good replacement for having a well-informed
heuristic for guidance. Nested Monte-Carlo Tree Search (Cazenave, 2009; Rosin, 2011)
is a more advanced MCTS approach for single player games which has been applied to
GGP (Méhat & Cazenave, 2010b).
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3.3.6 Parallelization

One of the appeals of simulation-based searches is that they are far easier to perform
in parallel than a traditional game-tree search because of fewer synchronization points.
CADIAPLAYER supports two methods of running simulations in parallel. The first one is
Leaf Parallelization where the MCTS tree is maintained by a master process and whenever
crossing the MCTS border, falling out of the tree, it generates and delegates the actual
playout work to a client process if available, otherwise the master does the playout. To
better balance the workload a client may be asked to perform several simulations from
the leaf position before returning. The second one is Root Parallelization where multiple
instances of the MCTS agent are run completely separately and just before it is time to
reply to the GM they pool all their root data to make the selection for the next move.

Parallelization for CADIAPLAYER has mostly only been used for competition purposes
and is not a prominent feature of the agent. We will therefore not dwell on this subject.
The above parallelization schemes are based on ideas presented in (Cazenave & Jouan-
deau, 2007). Further work on parallelization schemes for Monte-Carlo tree search are
presented in (Chaslot, Winands, & Herik, 2008; Cazenave & Jouandeau, 2008; Chaslot,
2010).

3.4 Game-Logic Interface

The Game-Logic Interface encapsulates the state space of the game, provides information
of available moves, how the state changes when a move is made, tells if a state is terminal
and if so, what the goal reward is. It uses classes implementing an interface called Game
Controller.

3.4.1 Game Controller

Game Controller is a well-defined interface which the Game-Play Interface connects to
for the services of the Game-Logic Interface. It is thus easy to plug in different imple-
mentations. A detailed description of this interface is provided in Table 3.3.

The game controller implementation that CADIAPLAYER uses is called Prolog Controller.
As the name indicates it uses Prolog as a theorem prover for the GDL logic of the game
or to be more precise it uses YAP Prolog (Yet Another Prolog) (YAP, n.d.). YAP is free to
use in academic environments, is a high-performance Prolog compiler and has a good C
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interface. This controller takes the KIF description and converts it to a Prolog file using a
home made tool (see File System box in Figure 3.1). This tool parses the KIF description,
which is similar to Prolog code, so it is easy to write it back out as such. Then it calls YAP
through a system command making it load the converted file plus a file containing some
predefined functions (see Figure 3.1) and compile them into a YAP state. The newly
compiled state is loaded into the controller using the YAP runtime library C interface.
The controller uses the YAP interface to construct Prolog queries to make state transitions
in the YAP state and retrieve game information from it. The controller also handles the
conversion from the YAP structures into the internal structures used by the Game-Play

Interface.

The predefined Prolog functions are always the same for all games and are used to provide
easy access to extracting legal moves and play and retract them. The predefined Prolog
function file is included as Appendix B.

Table 3.3: Game Controller

Function Description
init To initialize the Game Controller. Should be called before

any other method.
getCurrentState Retrieve the current state.
getMoves Returns the list of available moves for a specific role.
make If given moves for all roles it advances the game with those

moves, but if only given a move by a single player the con-
troller adds random moves for all other players before ad-
vancing the game.

retract Undo the last move made by all roles.
isTerminal Returns true if the game is over, false otherwise.
goal Returns the value of the goal currently reached for a specific

role.
gotoState Jump to a stored or an arbitrary state that are not on the

history stack. When called the history stack is unchanged
except the jumped-to state has been pushed onto the top.
Use with caution.

assertStateFact Add a certain state predicate into the current state.
retractStateFact Remove a certain state predicate into the current state.
muteRetract Disables retracts. Can be useful when running simulations

because no backtracking is needed.
syncRetract Restore the game state that was present when muteRetract

was called and re-enables retracts.
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3.5 Summary

This Chapter described CADIAPLAYER, our GGP agent which has played a pivotal role
in advancing and verifying our research. In the next chapter we move on to exploring
the details of the various simulation control schemes we created and implemented into
CADIAPLAYER for analysis.
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Chapter 4

Learning Simulation Control

In this chapter we describe five different search-control mechanism for guiding simulation
runs in MCTS. Four of them are original but the fifth one is adapted from Go programs.
In the more recent versions of CADIAPLAYER some of these schemes are used collec-
tively, giving an effective and robust search-control guidance on a wide range of disparate
games. We also discuss the combinations we have used and which additional logic must
be implemented to merge these techniques. We then finish by empirically evaluating all
the simulation control techniques and selected combinations.

4.1 Simulation Control

The five different search-control mechanism for guiding simulation runs in MCTS are
the following: The first one, Move-Average Sampling Technique (MAST), automatically
learns domain knowledge for enhancing the action selection strategy in simulation play-
outs; the next one, Tree-Only MAST (TO-MAST), is identical to the first except that it
is more restrictive about its learning. The third one, Predicate-Average Sampling Tech-

nique (PAST), is more informed about how to generalize the learned control information,
that is, it affects mainly states with similar properties. The fourth method, Features-

to-Action Sampling (FAST), uses temporal-difference learning to learn board-specific
domain-knowledge for search control. The fifth method, Rapid Action Value Estimation

(RAVE) (Gelly & Silver, 2007), is a technique originally designed to expedite search-
control learning in Go programs.



32 Simulation-Based General Game Playing

4.1.1 Move-Average Sampling Technique

Move-Average Sampling Technique (MAST) (Finnsson & Björnsson, 2008) is the search-
control method used by CADIAPLAYER when winning the AAAI 2008 GGP competition.
It is loosely related to the history-heuristic (Schaeffer, 1989), which is a well-established
move-ordering mechanism in Chess. The method learns search-control information dur-
ing the back-propagation step, which it then uses in future playout steps to bias the random
action selection towards choosing more promising moves. More specifically, when a re-
turn value of a simulation is backed up from T to S (see Fig. 4.1), then for each action a on
the path a global (over all simulations) average for the action a, Qh(a), is incrementally
calculated and kept in a lookup table. Moves found to be good on average, independent
of a game state, will get higher values. The rationale is that such moves are more likely to
be good whenever they are available, e.g. placing a piece in the center cell in Tic-Tac-Toe

or one of the corner cells in Othello. In the playout step, the action selections are biased
towards selecting such moves. This is done using Gibbs sampling as below:

P(a) =
eQh(a)/τ

Σn
b=1e

Qh(b)/τ

where P(a) is the probability that action a will be chosen from the set of n available
actions in the current playout state and Qh(a) is the average of all values backed up in
any state when action a has been selected. This results in actions with a high Qh(a)

value becoming more likely to be chosen. One can stretch or flatten the above distribution
using the τ parameter (τ → 0 stretches the distribution, whereas higher values make it
more uniform).

One of the main attractions of this scheme is its simplicity and generality, allowing useful
search-control information to be efficiently computed in a game independent manner. The
scheme’s effectiveness has proved quite robust across a wide range of games.

4.1.2 Tree-Only MAST

Tree-Only MAST (TO-MAST) is a slight variation of MAST. Instead of updating the
Qh(a) for an entire simulation episode, it does so only for the part within the game tree
(from state N back to S in Figure 4.1). This scheme is thus more selective about which
action values to update, and because the actions in the tree are generally more informed
than those in the playout part, this potentially leads to decisions based on more robust and
less variance data. In short this method prefers quality of data over sample quantity for
controlling the search.
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Figure 4.1: Difference between back-propagation activity of MAST and TO-MAST

4.1.3 Predicate-Average Sampling Technique

Predicate-Average Sampling Technique (PAST) has a finer granularity of its generaliza-
tion than the previous schemes. As the name implies, it uses the predicates encountered
in the states to discriminate how to generalize.1

This method works as MAST except that now average values for predicate-action pairs
are maintained,Qp(p, a), instead of action valuesQh(a). During the back-propagation, in
a state s where action a was taken,Qp(p, a) is updated for all p ∈ P (s) where P (s) is the
set of predicates true in state s. In the playout step, an action is chosen as in MAST except
that in the Gibbs sampling Qh(a) is substituted with Qp(p′, a), where p′ is the predicate
in the state s with the maximum predicate-action average for a. The maximum is used for
practical reasons, as it is computationally less expensive than calculating the average over
all the predicate-action pairs available.

Whereas MAST concentrates on moves that are good on average, PAST can realize that a
given move is good only in a given context, e.g., when there is a piece on a certain square.
To ignore PAST values with unacceptably high variance, they are returned as the average
game value (50) until a pre-determined minimum threshold of samples is reached.

1 A game position, i.e. a state, is represented as a list of predicates that hold true in the state.
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4.1.4 Features-to-Action Sampling Technique

The aforementioned schemes do not use any game-specific domain knowledge. Although
this has the benefit of allowing effective deployment over a wide range of disparate games,
this approach seems simplistic in contrast to human players, which use high-level features
such as piece types and board geometry in their reasoning. The lack of understanding of
such high-level game concepts does indeed severely handicap GGP players using simple
search-control schemes in certain types of games, for example chess-like games where
a good understanding of the different piece type values is essential for competitive play.
Although GDL does not explicitly represents items such as pieces and boards such game-
specific concepts can often be inferred.

With the Features-to-Action Sampling Technique (FAST) we use template matching to
identify common board game features, currently detecting two such: piece types and cells
(squares). Piece type is only judged relevant if it can take on more than one value; if not,
we consider cell locations as our feature set. We use TD(λ) (Sutton, 1988) to learn the
relative importance of the detected features, e.g. the values of the different types of pieces
or the value of placing a piece on a particular cell. Each simulation, both on the start-
and play-clock, generates an episode s1 → s2 → ... → sn that the agent learns from by
applying the delta rule to each state st in the episode:

~δ = ~δ + α× [Rλ
t − V (st)]×5~θV (st)

where Rλ
t is the λ-return (average of exponentially weighted n-step TD returns), α is the

step size parameter, V (s) is our value function, and 5~θV (s) is its gradient. A reward is
given at the end of the episode, as the difference of the players’ goal values. The ~δ is
then used in between episodes to update the weight vector ~θ used by the value function to
linearly weigh and combine the detected features ~f(s):

V (s) =

|~f |∑
i=1

θi × fi(s)

In games with different piece types, each feature fi(s) represents the number of pieces of
a given type in state s (we do not detect piece symmetry, so a white rook is considered
different from a black one). In games where cell-based features (location on a board)
are instead detected each feature is binary, telling whether a player has a piece in a given
cell (i.e. a two-player game with N cells would result in 2N features). Only one set of
features, pieces or locations, is used during a game and its features are referred to as the
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active features. Note that for some games, no features are detected, resulting in no active
features.

The value function is not used directly to evaluate states in our playouts. Although that
would be possible, it would require executing not only the actions along the playout path,
but also all sibling actions. This would cause a considerable slowdown as executing ac-
tions is a somewhat time consuming operation in GGP. Instead we map the value function
into the same Qh(a) framework as used by MAST. This is done differently depending
on type of detected features and actions. For example, for piece-type features in games
where pieces move around the mapping is:

Qh(a) =

−(2× θPce(to) + θPce(from)), if capture move

−100 otherwise
(4.1)

where θPce(from) and θPce(to) are the learned values of the pieces on the from and to

squares, respectively. This way capture moves get added attention when available and
capturing a high ranking piece with a low ranking one is preferred.

For the cell features the mapping is:

Qh(a) = c× θp,to (4.2)

where θp,to is the weight for the feature of player p having a piece on square to, and c is
a constant. Now that we have established a way to calculate Qh(a) the P(a) distribution
can be used to choose between actions.

We look at a concrete example in Figure 4.2 of how piece-type features are used. In
Chess and similar board games a common encoding practice in GDL for representing
a board configuration with state predicates will take on the general form (or variation
thereof)

(< predicate-name >< column >< row >< piece >)

for each piece on the board. The name of the predicate may vary but a common feature
is that two of its arguments indicate the cell location and the remaining one the piece
type currently occupying the cell. For example, (cell h 1 wr) indicates a white rook
on square h1. Our template does not care in what order the column and row are, but it
needs the piece to be the last argument. Similarly, actions in games where pieces move
around are commonly encoded using the recurring format of indicating the from and
to cell locations of the moving piece, e.g. (move h 1 h 8). This way both different
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( cell  h 8  br )

( move h 1  h 8 )

( cell  h 1  wr )

From

To

The values learnt for the piece type features found 
at the from and to positions are then fed to the formula
for this move:

Figure 4.2: FAST capture calculations in Chess for (move h 1 h 8) in a state containing
(cell h 1 wr) and (cell h 8 br).

piece types and piece captures can be identified. As soon as the program starts running
its simulations, the TD-learning episodes provide learned values for the different piece
types. For example, in Chess we would expect the winning side to be material up more
often and our own pieces thus getting positive values and the opponent’s pieces negative
ones. The more powerful pieces —such as queens and rooks— have higher absolute
values (e.g., in Skirmish, a simplified chess-like game used in our experiments, the values
typically learned for a pawn, knight, bishop, and rook were approximately 5, 10, 10, and
13, respectively). The learned piece values θ are stored in a lookup table and consulted
when captures moves are made, as depicted in Figure 4.2 for the move rook h1 captures

on h8. The more powerful the captured opponent’s piece is, especially when captured
with a low ranked piece, the higher the Qh(a) becomes and thus the likelihood that the
move will be played. The learned piece values are constantly updated throughout the
game, however, as a precaution, they are not used unless having a value far enough from
zero.
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The values learnt for the position with our marker
are then fed to the formula for these moves :

Figure 4.3: FAST calculations in Othello for available moves.

In games with only one type of piece for each role, the piece locations become active
features instead of piece types. This is shown for the game Othello in Figure 4.3, where
(3 4 white) is an example feature (i.e., a white disk on cell 3 4). During the playout step,
in each state, we look up the Qh(a) values for all available actions in the feature table by
their associated role and location, and bias play towards placing disks onto cells with high
learned values, such as corners and edges.

4.1.5 Rapid Action Value Estimation

Rapid Action Value Estimation (RAVE) (Gelly & Silver, 2007) is a method to speed up
the learning process inside the game tree. In Go this method is known as All-Moves-As-

First (AMAF) heuristic because it uses returns associated with moves further down the
simulation path to get more samples for duplicate moves available, but not selected, in
the root state. When this method is applied to a tree structure as in MCTS the same is
done for all levels of the tree. When backing up the value of a simulation, we update in
the tree not only the value for the action taken, Q(s, a), but also sibling action values,
QRAV E(s, a′), if and only if action a′ occurs further down the path being backed up (S to
T in Figure 4.1).
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As this presents bias into the average values, which is mainly good initially when the
sampled data is still unreliable, these rapidly learned estimates should only be used for
high variance state-action values. With more simulations the state-action averagesQ(s, a)

become more reliable, and should be trusted more than the RAVE valueQRAV E(s, a). To
accomplish this the method stores the RAVE value separately from the actual state-action
values, and then weights them linearly as:

β (s)×QRAV E(s, a) + (1− β (s))×QUCT (s, a)

where QUCT (s, a) is the UCT value of the state-action pair (see Section 2.2.1) and

β (s) =

√
k

3n (s) + k

The parameter k is called the equivalence parameter and controls how many state visits
are needed for both estimates to be weighted equal. The function n(s) tells how many
times state s has been visited.

4.2 Combining Schemes

In CADIAPLAYER you always use the same player throughout a single game, so in order
to apply different techniques at the same time, they must be combined into a single player
implementation.

The RAVE scheme can be easily combined with all the other simulation control schemes
as it operates in the selection step of a simulation, as opposed to in the playout step
as the other four. Due to this straight forwardness in implementation a RAVE/MAST
combination was built and used in the 2009 version of CADIAPLAYER.

The later devised FAST scheme was not as easily integrated into the already existing
combined RAVE/MAST scheme. The problem is that MAST and FAST both operate
on the playout step and possibly bias the action selection differently. We opted for the
following MAST/FAST integration in the playout step:

Qh(a) =

QMAST(a) + w ×QFAST(a) if any features active in A(s)

QMAST(a) otherwise
(4.3)
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where QMAST(a) and QFAST(a) are the Qh(a) values as calculated by the MAST and
FAST schemes respectively, and the w parameter is a weighing constant deciding on their
relative importance. If no features are active in the current state, meaning that either no
features were detected in the game description or that no capture moves are available in
such a game, the QFAST(a) distribution becomes uniform and is omitted (as it would
shift the final distribution without adding any information).

For maximum efficiency the influence of each scheme must be carefully weighted, pos-
sibly varying depending on the game type. A RAVE/MAST/FAST combination scheme
was used in the 2010 competition, however, we simply fixed w = 1.0 because of a lack
of time for thoroughly tuning a more appropriate value.

Since MAST, TO-MAST and PAST are closely related and really just a different take on
a similar logic they are not viable to be mixed. They could, however, be selected between
if some criteria for such selection was invented. The above combination method can be
used to swap in both TO-MAST and PAST instead of MAST.

4.3 Empirical Evaluation

The aforementioned search-control schemes were developed and added to CADIAPLAYER

at different time points, often in a response to an observed inefficiency of the agent in par-
ticular types of games. The driving force behind combining these schemes has in part
been the GGP competition and therefore only a few number of combinations have been
used. Because of this we will evaluate all simulation-control schemes individually, but
only the subset of possible combinations that have been used for the GGP competitions.
The main difference in the agent between subsequent GGP competitions has thus been
the sophistication level of the search control. Although there have been other more minor
improvements made to the agent from year to year, e.g., in the form of a more effec-
tive transposition table, implementation efficiency improvements, and better tuned pa-
rameter settings, in here we are interested in quantifying the effects of the search-control
schemes. We nullify the effect of other changes by having all agent versions share the
newest and most effective code base, thus differing only in the type of search-control
scheme used.
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4.3.1 Setup

We empirically evaluate eight versions of CADIAPLAYER, one is a basic MCTS version,
five representing a certain type of search-control and the remaining two are RAVE/MAST
and RAVE/MAST/FAST combinations. The MCTS and MAST versions are used as base-
line players that all other versions are matched against. The MCTS baseline agent chooses
actions uniformly at random in the playout phase. We use MAST as a baseline of a player
with an augmented playout strategy as it is the most general and was the search-control
scheme used when CADIAPLAYER won the 2008 competition. In the tables that follow,
each data point represents the result of a 300-game match, showing both a win percentage
and a 95% confidence interval. The matches were conducted on CentOS Linux running
on Intel(R) Xeon(R) 3.00GHz and 3.20GHz CPU computers. Each agent used a single
processor and competing agents always used the same speed processors.

The value of the UCT parameter C is set to 40 (for perspective, possible game outcomes
are in the range 0-100). The τ parameter of the P(a) distribution is set to 10 for all
agents, with the exception of PAST where we have it set to 8. The sample threshold for a
PAST value to be used was set to 3. In FAST the λ parameter is set to 0.99, the step-size
parameter α to 0.01, c to 5, and w to 1. The equivalence parameter for RAVE is set to
500. These parameters are the best known settings for each scheme, based on trial and
error testing. The startclock and the playclock were both set to 10 seconds.

Our experiments used:

• Eight two-player turn-taking games: 3D Tic-Tac-Toe, Breakthrough, Checkers, Con-

nect 5, Knightthrough, Othello, Skirmish and TCCC4.

• Two two-player simultaneous-move games: Battle and Chinook.

• Two three-player turn-taking games: 3-player Chinese Checkers and 3-player TCCC4.

Full game descriptions can be found on the Dresden GGP server (Dresden GGP, n.d.) and
descriptions of the games used in these experiments are found in Appendix C.

4.3.2 Individual Schemes Result

Tables 4.1 and 4.2 show the result of the matches of all individual schemes. In addition
to an MCTS baseline player (Table 4.1), we also compare to the MAST scheme (Table
4.2).
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All five schemes show a significant improvement over the MCTS base player overall
where PAST does the best with an over 70% average improvement on this set of games.
MAST and RAVE tie for second best (67% − 68%) but the games they individually ex-
cel in do not have any noticeable overlap. TO-MAST and FAST also do similar overall
(62% − 63%). TO-MAST sets itself apart from its related schemes with its great per-
formance boost in Checkers while the most noticeable result of FAST is its excellent
performance in Skirmish. We can see from Table 4.1 that the MAST and PAST schemes
offer a genuine improvement over the MCTS player in almost all the games, particu-
larly in Breakthrough and related games along with TO-MAST. This is not surprising as
the schemes were originally created to improve the agent’s performance in such type of
games. The only game where the MAST and PAST schemes have non-positive effects on
performance is in Skirmish. Even though PAST performs somewhat better than MAST
we have preferred to use MAST in our competition player as it is in some ways more
robust. For example PAST might suffer from scaling problems in games with unnaturally
large state representation.

The addition of RAVE does not cause MCTS to suffer any adverse effects with this set of
games and adds a lot to the performance in 3D Tic-Tac-Toe, Battle, Checkers, and Connect

5, be it against MCTS or MAST.

Regarding Table 4.2, there are several points of interest. First of all RAVE offers improve-
ment over MAST in half of the games (and vice-versa) indicating that a lot can be gained
by combining the two such that they compensate for each other weaknesses. PAST still
does better than MAST when going head to head against it with 55% average win. It only
does statistically significantly worse in Knightthrough.

Also of interest is to contrast TO-MAST’s performance on different games. The only
difference between MAST and TO-MAST is that the former updates action values in
the entire episode, whereas the latter only updates action values when back-propagating
values in the top part of the episode, that is, when in the tree. TO-MAST significantly
improves upon MAST in the game of Checkers, whereas it has a detrimental effect in the
game of Othello. A possible explanation is that actions generalize better between states in
different game phases in Othello than in Checkers, that is, an action judged good towards
the end of the game is more often also good early on if available. For example, placing
a piece on the edge of the board is typically always good and such actions, although not
available early on in the game, start to accumulate credit right away. FAST might offer
some improvements in Othello, and again so does RAVE, but FAST outperforms all others
in Skirmish. The problem that MCTS-based players have with chess-like games such as
Skirmish is that they do not realize fast enough that the value of the pieces are radically
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Table 4.3: Tournament: Combined Agents versus MCTS

RAVE/MAST RAVE/MAST/FAST
Game Roles Move win % win %
3D Tic-Tac-Toe 2 Turn 87.33 (± 3.77) 85.33 (± 4.01)
Battle 2 Sim. 94.67 (± 2.37) 26.50 (± 4.70)
Breakthrough 2 Turn 89.33 (± 3.50) 78.67 (± 4.64)
Checkers 2 Turn 79.67 (± 4.37) 69.00 (± 5.01)
Chinese Checkers 3P 3 Turn 68.33 (± 5.27) 63.33 (± 5.46)
Chinook 2 Sim. 74.33 (± 4.89) 56.33 (± 5.55)
Connect 5 2 Turn 95.83 (± 2.24) 84.00 (± 4.16)
Knightthrough 2 Turn 93.00 (± 2.89) 91.00 (± 3.24)
Othello 2 Turn 78.17 (± 4.63) 72.17 (± 4.96)
Skirmish 2 Turn 51.67 (± 5.39) 89.50 (± 3.17)
TCCC4 2 Turn 75.33 (± 4.66) 49.33 (± 5.59)
TCCC4 3P 3 Turn 60.00 (± 5.49) 44.33 (± 5.59)
Overall 78.97 (± 0.00) 67.46 (± 0.00)

different, e.g. that a rook is worth more than a pawn. Even though MCTS might towards
the end of the game start to realize this then it is far to late to save the game. The reason
for FAST’s performance is that it is not only able to detect the capture moves in Skimish,
it can also evaluate the loss or gain in material. FAST is therefore very helpful in focusing
the simulations towards the objective of the game which is to capture all the opponent’s
pieces.

4.3.3 Combined Schemes Result

In CADIAPLAYER 2009 the combined RAVE/MAST scheme was introduced. The new
version is though still inferior to the baseline player in the game of Skimish so we specif-
ically targeted this inefficiency in the 2010 version of the agent by incorporating FAST.
The 2011 competition version of CADIAPLAYER was also a RAVE/MAST/FAST com-
bination, but this time it was parallelized over 40 cores using Root Parallelization. To
measure how CADIAPLAYER has improved through the years as its search control mech-
anism has been improved we also pitch these two versions against the MCTS and MAST
baseline players which are actually the 2007 and 2008 versions of CADIAPLAYER respec-
tively. The results of these tournaments are presented in Tables 4.3 and 4.4

From the tournament data we see that the new combined RAVE/MAST/FAST scheme is
very effective in Skirmish against the baseline players as expected. Still the new combina-
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Table 4.4: Tournament: Combined Agents versus MAST

RAVE/MAST RAVE/MAST/FAST
Game Roles Move win % win %
3D Tic-Tac-Toe 2 Turn 81.67 (± 4.39) 75.00 (± 4.91)
Battle 2 Sim. 86.33 (± 3.75) 25.50 (± 4.64)
Breakthrough 2 Turn 53.00 (± 5.66) 40.67 (± 5.57)
Checkers 2 Turn 79.50 (± 4.27) 65.00 (± 5.23)
Chinese Checkers 3P 3 Turn 49.67 (± 5.67) 53.33 (± 5.65)
Chinook 2 Sim. 55.50 (± 5.55) 35.33 (± 5.32)
Connect 5 2 Turn 91.67 (± 3.13) 68.67 (± 5.22)
Knightthrough 2 Turn 55.00 (± 5.64) 26.67 (± 5.01)
Othello 2 Turn 63.33 (± 5.34) 57.67 (± 5.52)
Skirmish 2 Turn 54.50 (± 5.22) 92.50 (± 2.74)
TCCC4 2 Turn 53.50 (± 5.45) 27.50 (± 4.90)
TCCC4 3P 3 Turn 46.50 (± 5.63) 31.17 (± 5.20)
Overall 64.18 (± 0.00) 49.92 (± 0.00)

tion does incur reduced performance in multiple games with this set. First of all FAST did
not activate in 3D Tic-Tac-Toe and Chinese Checkers 3P so the small dip in performance
from RAVE/MAST is explained by the overhead of coming to that conclusion.

Battle, Checkers, Skirmish, TCCC4, and TCCC4 3P triggered the piece-type feature of
FAST. Even though triggered in Checkers, it was rather ineffective as the captures there
are achieved by jumping over pieces. Battle seems to confuse FAST as playing a capture
move does not guarantee a capture. Since the game uses simultaneous moves, the oppo-
nent can move out of the way or choose to defend a piece so if attacked the attacker is
captured. The problem with TCCC4 and TCCC4 3P is that the number of pieces vary only
for disks as the other pieces re-spawn on capture, and the agent thus learned a significant
value for that piece only, making our agent too aggressive in adding such pieces to the
board.

Breakthrough, Chinook, Connect5, Knightthrough, and Othello all triggered the location
feature of FAST. For Breakthrough, Chinook, and Knightthrough piece formations are
more important than placing pieces on particular locations, and the FAST scheme thus
adds noise which may reduce the effectiveness of MAST. In Othello and especially Con-

nect5 FAST and MAST appear have competing strategies resulting in loss of focus on
both sides.

From these experiments, it is clear that a deeper analysis is needed into which game prop-
erties must be present to apply the FAST scheme in the most effective way. Using FAST
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in the competition build of CADIAPLAYER is still important as it offers great performance
boost in chess-like games, e.g. Skirmish, which none of the other schemes handle effec-
tively.

4.4 Summary

Informed search-control for guiding simulations playouts is an essential core component
of CADIAPLAYER. In here we described the various search-control schemes we have
created and/or tried and empirically evaluated the performance gains achieved over the
years as it evolved.

Generic search-control schemes using only implicit domain knowledge, such as MAST
and RAVE, are able to provide impressive performance across a large collection of games.
However, such a generic approach fails to take advantage of higher-level game concepts
that are important for skillful play in many game domains. By using search-control meth-
ods that incorporate such concepts, like FAST, we were able to improve the performance
of CADIAPLAYER in chess-like games, which had previously proved problematic for our
agent. Challenges in using such game-type specific approaches include knowing when
to apply them and how to balance them with existing search-control approaches. We
made some initial steps in that direction with the RAVE/MAST/FAST combination of the
CADIAPLAYER agent.
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Chapter 5

Generalizing MCTS Extensions

GGP agents must learn in real time. This means that various MCTS search enhancements
that rely on a priori knowledge, either handcrafted or learned offline, are not applicable as
is in GGP. The contributions of this chapter are extensions to two existing techniques that
generalize their knowledge acquisition such that no domain specific knowledge is required
a priori; real time information is gathered from the MCTS simulations rather than making
assumptions from the game rules. These extensions are Early Cutoffs and Unexplored

Action Urgency. They deal with terminating simulations early if they are good enough or
useless and keeping the focus on good actions in the presence of completely unexplored
actions, respectively.

5.1 MCTS Extensions for GGP

In GGP it is a difficult task to generate reliable knowledge which can even backfire, caus-
ing undesirable behavior in the agent. Extending MCTS with knowledge can produce
good results but the improvement gain relies heavily on the quality of the knowledge
used. Any attempt of injecting such extensions into an MCTS GGP agent must take into
consideration at least two possible scenarios. The extension may be harmful in some
games if the knowledge it utilizes is not general enough and in some cases it may not be
applicable at all and should be ignored.

Following are generalizations of two extensions for MCTS. They make use of statistical
information gathered in real time from the simulations rather than making static assump-
tions from the game rules.
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5.1.1 Early Cutoffs

Without knowledge to guide the MCTS simulations huge amounts of computation time
may be wasted on irrelevant continuations in the playout phase. There is a danger of
simulations running for a long time, missing a lot of obvious good moves or even just
going around in circles in the state space. When they finally end up in a terminal state the
information backed up in the tree may be just noise. Since GGP has no prior knowledge
to help avoid useless paths, it can waste a large portion of the node expansions traversing
such paths. Also, to ensure that GGP games are finite a counter artificially terminated too
long games is often encoded into the game rules. This may lead to uninformative scores
as such games are typically as a draw without any regards to which player is closer to
winning. If it would be possible to predict that a simulation is headed nowhere it would
be better to terminate it immediately and use the time saved to run another simulation that
has a better chance of generating more relevant information.

In other cases simulations may have entered a part of the state space where one player is
in such a good position that it is not necessary to continue and better to score the game
immediately so another simulation can run. It may even be enough to know when in the
playout phase the simulation discovers a better or worse position for the agent and return
back this information.

This extension covers two cases when simulations can be terminated early. On one hand
is the case when a simulation can be evaluated to an informative score before reaching a
terminal state and on the other hand is the case when the simulation has gone on longer
than any rational play of the game would without reaching a terminal state.

Before cutoffs can be made we first gather data that helps us decide if the extension is
applicable to the game being played. This is done by observing the “normal” simulations
of the agent to get information on whether the extension should be activated and what
settings to use. This data includes the maximum and minimum depths of the terminal
states and therefore needs naturally terminated simulations.

To see if it is possible to evaluate the states we use the scoring mechanism of GDL, the
Goal relation. The trouble here is that it makes no promises of returning useful informa-
tion, if any at all, in non-terminal states. Still in some games it can give a good estimation
on the state as a result of how the game rules are written, To make sure that the Goal rela-
tion can be used we check it for a property called Stability. The notion of stability in GGP
was invented for the agent CLUNEPLAYER (Clune, 2008) and was used to determine if a
feature extracted from the game description would be useful in evaluating game positions.
Stability is based on the assumption that if a value calculated from a state changes gradu-
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Algorithm 5 Pseudo-code for deciding cuts for the Early Cutoff extension
if not useEarlyCutoff then

return false
end if
if playoutSteps < minimumSteps then

return false
end if
if IsGoalStable() then

// Cutoff point has been calculated as:
// cut← firstGoalChange + numPlayers
return playoutSteps ≥ cut

end if
if hasTerminalInterval() then

// Cutoff point has been calculated as:
// cut← firstTerminal + 0.33 ∗ terminalInterval
return playoutSteps ≥ cut

end if

ally throughout the course of the game it is in some way correlated with what is actually
happening in the game as it plays out. If this value jumps back and forth continuously or
never changes it is deemed unrelated to the game progression. To calculate the stability
value the variance of the changes in the score obtained from the Goal relation is observed
throughout the simulations and then averaged over them. If the resulting stability value
is lower than a predetermined stability threshold but not zero this score is believed to be
stable and the extension is activated.

Algorithm 5 outlines the decision-making process for whether an early cutoff should be
made; we use it as a reference throughout this section. It is called right after checking
if the current state is terminal and before any actions retrieval or selection is made to
transition to the next state. The variable useEarlyCutoff is true if the extension is active
and playoutSteps always contains the current number of states traversed since the current
simulation left the MCTS tree.

The Goal stability part of the extension has precedence and once it has been activated it
terminates simulations and scores them with the Goal relation as shown with the condi-
tional function IsGoalStable in Algorithm 5. The cutoff point is the distance from the
initial state of the game to the first state where the goal changes with the number of play-
ers participating added. It is then checked relative to how many playout steps have been
taken. This way the simulations should immediately start to draw attention towards the
parts of the state space where something is to be gained. The player count addition is
made to allow at least one round to be played beyond the goal point if there is an imme-
diate neutralizing response, not to mention if it is a forced one. These variables are only
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set during the initial simulations at the same time the stability is determined and therefore
keep the same distance from the MCTS tree fringe throughout the game.

In order to predict if a simulation is a waste of time due to its length the agent collects data
on at what depth terminal states are encountered and uses it to estimate the depth interval
in which they occur. If the interval is very narrow or always at the same depth, there is no
benefit in making early cuts as little or no time can be saved by doing so. The minimum
interval size is set equal to the variable minimumSteps seen in Algorithm 5 where it is
also used as a failsafe for a minimum number of playout steps that must be made for a cut
to be considered. If it is found that the interval is sufficiently big the extension becomes
active through the conditional function hasTerminalInterval() in Algorithm 5.

As before a cutoff depth is set and then checked relative to the MCTS tree fringe by
keeping track of the number of steps taken in the playout phase. The cutoff depth is set
relative to the initial state and matches traversing the third of the interval where terminal
states have been observed. As an example let us say we have a game where terminal
states have been reached at depths 20 to 50 relative to the initial state. The cutoff depth is
then:

20 +
1

3
∗ (50− 20) = 20 + 10 = 30

If we then exit the MCTS tree at depth 8 from the initial state the simulation will be termi-
nated at depth 38. A terminal interval cutoff defaults to a draw (GGP score of 50).

The reason for one third being the fraction of the terminal state interval traversed as a
minimum for a cut to be made was based on results from Chapter 7. They have shown
that pushing back an artificial termination depth to give a UCT agent more chance to find a
real terminal state does not result in better play through better information. In the example
game there the agent reached its peak performance as early as only finding a real terminal
state 30% of the time. From those results, traversing the top one third of the terminal state
interval as an absolute minimum is a reasonable setting for this parameter.

5.1.2 Unexplored Action Urgency

In GGP it is commonplace to use UCT in the selection phase to control the explo-
ration/exploitation balance in MCTS. By default UCT never exploits on the fringe of
the MCTS tree, always selecting amongst the unexplored actions available. It is not until
all unexplored actions have been exhausted that attention is given to exploitation in the
state. When domain-specific knowledge is available unexplored actions can be evaluated
and bad ones ignored. This may sound unreasonable but if the knowledge is accurate, the
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Algorithm 6 Pseudo-code for using the Unexplored Action Urgency extension
if state.explored = ∅ then

// We are in the Playout phase
return playoutStrategy(state.unexplored)

end if
action← selectionStrategy(state.explored)
if state.unexplored = ∅ then

// Fringe not reached in the Selection phase
return action

end if
// Fringe reached in the Selection phase
exploit← action.uctV alue
discount← state.unexplored.size()/state.actions.size()
// Calculate the urgency of the unexplored actions
urgency ← 50 + Cp ∗

√
ln state.visits() ∗ discount

// Check if it is more urgent to exploit or explore
if exploit ≥ urgency then

return action
else

return playoutStrategy(state.unexplored)
end if

agent would never have selected the bad action anyway. Although in GGP we may not
have domain-specific knowledge at our disposal, on the fringe of the MCTS tree we have
some knowledge about the actions available, the explored actions, which motivates us to
use this knowledge to do something smarter than the default handling.

The main idea with the extension is to make it possible for the agent to exploit actions on
the MCTS tree fringe if there is reason to do so. Even though no domain specific knowl-
edge is available we can observe how the rewards of an action accumulate. Basically if
the reward is consistently very good the action estimated average will stay high no matter
how often we select. So if an action fits this description we are going to prefer it over
any unexplored action found in the state while the number of simulations traversing this
state is low. Instead of the default rule with unexplored actions taking precedence a quick
decision point is added when the agent is on the MCTS fringe. The decision of selecting
an unexplored action is given a value that can be compared with the highest UCT value
of the already explored actions and the higher value wins. Basically the agent is selecting
between using the selection strategy on the subset of explored actions in the state or the
playout strategy on the subset of the unexplored actions. We call the value assigned to
the unexplored actions their urgency, which is a phrase used when knowledge is used to
assign values to actions in (Bouzy, 2005). This is similar to the First Play Urgency (FPU)
in MOGO (Gelly et al., 2006).
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Pseudo-code for the urgency calculations is shown in Algorithm 6. The variable state
accesses the current simulation state and from it we get three action sets, unexplored
actions, explored actions, and all actions. The exploit variable stores the highest UCT
value of the already explored actions in the state and the urgency variable holds the
urgency of the unexplored actions. The formula for the urgency is actually the UCT
formula as it would look for an action that has been tried once before in this state and
resulted in an immediate draw (GGP scores range from 0 to 100). The discount variable
has the purpose of lowering the urgency as more and more actions get explored. We have
the discount calculated as the ratio between the number of unexplored actions left and the
total number of actions, because with fewer and fewer actions left unexplored, the more
likely we are to have already come across the best available action. By incorporating the
UCT formula into this decision we keep the guarantee of all actions getting explored in
the limit.

This extension relies on the agent actually selecting a good action early on when exhaust-
ing the unexplored actions in a state on the MCTS fringe. It is likely that given a uniform
random playout strategy this extension will simply get balanced out and no improvements
made. This extension must be paired with a playout strategy that shifts the action selec-
tion in favor of selecting good actions early. Given such a playout strategy this extension
should boost its effect while not causing harm if it turns out only as good as the uniform
random strategy in some games. An example of such an extension is the Move-Average

Sampling Technique (MAST) (Finnsson & Björnsson, 2008) (see Section 4.1.1) which we
will use in order to evaluate this extension in the experiments section of this chapter.

5.2 Empirical Evaluation

Both extensions were implemented into CADIAPLAYER. The game set is the same as in
Chapter 4. Descriptions of them are in Appendix C.

5.2.1 Setup

The agents ran on a single Intel Xeon 2.66GHz, 3.00GHz or 3.20GHZ CPU (competing
agents always on matching CPUs) and every game type was run as a tournament be-
tween two agents with 300 game instances played, having the agents switch roles half
way through. In every game the agents were given 10 seconds both for the startclock and
the playclock. The number of sample simulations for the Early Cutoff extensions was
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set as 100 and its stability threshold as 1000 (in this setup the measured stability value of
Checkers is around 250 and Othello around 3000). The results are displayed in Tables 5.1
and 5.2. The cells marked as -N/A- under the Early Cutoff extension are games where the
extension decided that it should not activate. In every tournament an extended agent was
pitched against the base agent it was derived from. All cell data is the winning percentage
of the extended agent along with a 95% confidence interval.

The base agents used were MCTS and MAST CADIAPLAYER agents. MAST has the
ability to bias the playout action selection in many games towards good actions, al-
lowing the hypothesized consequences of Unexplored Action Urgency extension to be
checked. In Table 5.2 the base agents are extended with both extensions to reveal the
overall gain and test for any improvement overlap. The third base player in that table, the
RAVE/MAST/FAST agent is the extension combination used by the GGP agent CADI-
APLAYER (Finnsson & Björnsson, 2008) in the GGP competition in 2011. The failsafe
variable for minimum steps in the Early Cutoff extension was set to 10.

5.2.2 Results

The results for the Early Cutoff extension (Table 5.1) show significant improvement in the
games 3D Tic-Tac-Toe, Battle, Checkers, Skirmish and TCCC both with and without the
MAST extension plus in Connect 5 when using only vanilla MCTS. Also it is important
to point out that in other games where this extension is active it shows little or no sign
of having adverse effects on the agent. Regarding the games that did not activate the
extension, let us take a closer look at Othello as an example. It has only extremely rare
instances of the game ending before the board has been filled, making the terminal interval
just a single value when sampled. The player who has more disks wins and this is the
information the Goal relation gives at every state of the game. This information goes back
and forth in declaring which player is winning and therefore gets evaluated as unstable
by the extension. This matches the generally known fact that the difference in number of
disks is a bad heuristic for Othello.
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The Unexplored Action Urgency extension yields significant improvements on many of
the games and as expected it needs an informed playout strategy to work. This is con-
firmed by the fact that no improvement is gained when paired with the random playouts
of UCT while the MAST pairing shows significant improvements in six out of the twelve
games. Using plain UCT seem even to be harmful to Chinese Checkers 3P, Skirmish and
TCCC. Note that this combination should never be used in practice as the extension de-
mands an informed playout strategy and with MAST the results of these games go back to
being within neutral significance limits. Because the development of MAST was inspired
by problems UCT encountered when playing Breakthrough, it is not surprising to see the
biggest improvements there.

When the extensions have been joined together (Table 5.2), the improvements they pro-
vide do not seem to overlap except in the case of Battle and Connect 5. Battle, even
though still at approximately 75%, does worse than without the Unexplored Action Ur-

gency in the UCT case. Early Cutoffs improves Connect 5 with UCT and Unexplored

Action Urgency with MAST, but combined they seem to cancel out the improvements of
the other. With MAST we have significant improvements on eight of the twelve games
plus Othello being close as it did go over the significance threshold in Table 5.1 and does
not activate the Early Cutoff extension.

Both extensions, Early Cutoffs and Unexplored Action Urgency, apart or together did
not improve upon either of the three player games, no matter what base agent they were
combined with.

Regarding the question if these extensions can improve upon the state-of-the-art in GGP
we see that there are undeniable significant improvements for 8 of the 12 games resulting
in approximately 14% overall improvement on this set of games.

5.3 Summary

In this chapter we described how two MCTS extensions can be generalized for practical
use in GGP agents. The two extensions show genuine improvements to basic agents
without, as far as we can tell, displaying any severe adverse effects when they do not
help. When merged with a GGP agent that is armed with extensions that allow it to reach
competition level strength, both these extensions still offer overall improvements.
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Chapter 6

MCTS Simultaneous Moves Solver

When searching game trees significant benefits can be achieved by pruning away branches
which under no circumstances can produce information beneficial to the decision being
made at the root. The most fundamental of all such pruning methods is Alpha-Beta prun-
ing (Knuth & Moore, 1975; Russell & Norvig, 2010). It applies to zero-sum sequential
two-player games such as Chess and Checkers. Extending the kind of safe pruning alpha-
beta does beyond the constraints of sequential (turn-taking) zero-sum two-player games
has also been achieved for sequential games without zero-sum rewards and more than two
players (Sturtevant & Korf, 2000; Sturtevant, 2005). The first MCTS solver (Winands,
Björnsson, & Saito, 2008) backing up MiniMax values was made for the game Lines of

Action and recently a generalized MCTS solver for zero-sum games which allows for
alpha-beta style pruning under the name Score Bounded MCTS (Cazenave & Saffidine,
2011). This method allows safe pruning of proven irrelevant parts of the search tree.

In this chapter we focus on how to implement a generalized MCTS solver with safe prun-
ing that also works on game trees without the sequential constraint, but are still confined
to two players and zero-sum rewards. We do this by treating the game tree nodes as
stacked matrix games (normal-form games) which propagate back up the tree their Nash

Equilibria values.

We first briefly explain the Nash Equilibria, Normal-Form games, and Score Bounded

MCTS before describing the proposed pruning method and how MCTS can be extended
with it. This is continuation on a joint work with Abdallah Saffidine and Michael Buro
on Alpha-Beta pruning for games with simultaneous moves (Saffidine et al., 2012).
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6.1 Nash Equilibrium and Normal-Form Games

A Nash equilibrium is a strategy profile for all players for which no player can increase
his payoff by deviating unilaterally from his strategy. In the case of zero-sum two-player
games, all Nash equilibria result in the same payoff, called the value of the game. Mini-

Max values are a special case of the Nash equilibrium where only one of the two players
decides how the game progresses in each state. When faced with simultaneous actions,
Nash equilibrium strategies are often mixed strategies in which actions are performed with
certain probabilities (e.g., the only Nash equilibrium strategy for Rock-Paper-Scissors is
playing rock, paper, and scissors randomly with probability 1/3 each).

Two-player zero-sum games presented in normal-form lists all action combination payoffs
in a matrix for player MAX where the rows and columns represent the separate action
sets of the players. When working with normal-form games it is sometimes possible
to simplify them based on action domination. This happens when no matter how the
opponent acts, the payoff for some action a is always less or equal to the payoff for some
other action b or a mixed strategy not containing a. In this situation there is no incentive to
play action a and it can be ignored. Action domination is the basis for our pruning.

6.2 Score Bounded MCTS

An MCTS solver which backs up exact MiniMax values of the sequential zero-sum two-
outcome game Lines of Action was introduced in (Winands et al., 2008). Score bounded

MCTS (Cazenave & Saffidine, 2011) expands on this idea and generalizes the MCTS
solver concept to any sequential zero-sum game. Score bounded search allows for pruning
in the absence of exact MiniMax values as long as there is some information available to
establish upper and lower bounds on the MiniMax values.

Because simulations do not usually methodically explore the game tree, it is to be ex-
pected that we cannot easily assign MiniMax values to the states when we explore them
as we are only sampling the subtree below. Even though we may not have explored ev-
ery reachable state, the sampling information builds up and can be used to get tighter
and tighter bounds on state values. These bounds are called Pessimistic and Optimistic,
referring to the payoff MAX believes can be achieved in the worst and best case, re-
spectively. Such pessimistic and optimistic bounds were also used in the B* algorithm
(Berliner, 1979). The default bounds are the minimum and maximum achievable values.
Instead of backing up a MiniMax value, the pessimistic and optimistic bounds of a state
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are deduced via the MiniMax rule from the matching bounds of subsequent states. If the
pessimistic value and optimistic value become equal the real MiniMax value of the state
has been found and it has been proved. Having these bounds also allows pruning in a
shallow Alpha-Beta fashion if at a MAX node there is a child node with an optimistic
value equal or lower than the pessimistic value of the current node and vice versa at the
MIN nodes.

6.3 Score Bounded Simultaneous MCTS

To adapt the Score Bounded MCTS to simultaneous games we still keep the pessimistic
and optimistic values in the game tree nodes, but now we view the bounds of the child
states as a normal-form game for which we can calculate the game theoretical Nash Equi-

librium value which is then used as the node’s bounds. For node n the pessimistic value
is the Nash value of the normal-form game assembled from the pessimistic values of its
children and the same for the optimistic value of node n.

With these bounds serving as the Pessimistic and Optimistic bounds of the Score Bounded

MCTS we obtain the real game theoretical values of the game tree nodes. For the remain-
der of the chapter we use the terms pessimistic and optimistic values for the lower and
upper bounds respectively, the minimum (0) and maximum (100) scores in GGP as the
score limits so if MAX gets a score of x, MIN will always get 100 − x. P will stand for
the pessimistic matrix and O for the optimistic one. Furthermore we will also from now
on assume play from the perspective of MAX who is the row player.

Let q be a position in the game tree withm actions for MAX and n actions for MIN. When
q is created it sets up two m× n matrices, P for the pessimistic values of all child states
and O for the optimistic values. P is initialized with 0 and O with 100, which also are the
Nash values of such initialized matrices in the children. Terminal states only get a single
value, the actual game outcome in that state which is backed up to its corresponding cell
in both P and O of the parent. At some point these true outcomes will affect the Nash
values of the P and O in the parent which in turn will be propagated to its parent, and
so on. Calculation of the Nash values for zero-sum normal-form game is done via the
Linear Program (LP) in Figure 6.1 which uses the pessimistic value (p) calculation as an
example. To work, this method needs all the elements of the equation matrix to be positive
and it does not affect the outcome if all the matrix elements are offset by a constant value
which is then subtracted from the outcome. As the lowest score in GGP is 0 it is enough
to use 1 as this constant. In Figure 6.1, P+1 represents P offset by +1. This is why p is
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x =



x1
...

xa−1

xa+1
...
xm


, P =

p1,1 . . . p1,n
...

...
pm,1 . . . pm,n

 , e =

1
...
1



minx, subject to xtP+1 ≥ e, x ≥ 0, p =
1∑
x
− 1

Figure 6.1: Calculating Nash Equilibrium value in a zero-sum Normal-Form game

G =
b1

a1 50
a2 value(H)

H =
b2 b3

a3 40 ?
a4 30 ?

Figure 6.2: Example Normal-Form games

subtracted by 1. The optimistic value is done exactly the same using the optimistic matrix
also offset by +1.

6.4 Simultaneous Move Pruning

Consider game G in Figure 6.2. The row player will only select action a2 if the value
of subgame H is greater than 50. Now consider subgame H: no matter what the values
of cells (a3, b3) and (a4, b3) are, the best value the row player can hope for at this point
is 40. As a result, we do not even need to compute the exact value for H and it can be
pruned.

Figure 6.2 is an example of when the opponent can lower an already attained proven value
if given the opportunity and therefore the action leading to it should never be played. Also
it cannot contribute to the game value. Even if we assume that the unknown values of
game H are equal to the maximum score of the game the row player’s Nash equilibrium
value will still be 40 and will not change unless the unknown values cause it to lower.
With this limited information we can deduce that 40 is an upper bound on the game value
of H .

As mentioned above we will use action domination as the pruning criterion because, sim-
ilar to that of the Alpha-Beta algorithm, such sub-tree pruning indicates that we have
proof that they will under no circumstances improve upon the current guaranteed payoff
assuming rational players.
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...
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...

...
pm,1 . . . pm,n


, f =

(
oa,1 . . . oa,n

)

xtP ≥ f, 0 ≤ x ≤ 1,
∑

i xi = 1

Figure 6.3: System of inequalities for deciding whether row action a is dominated

x =
(
x1 . . . xb−1 xb+1 . . . xm

)
,

O =

o1,1 . . . o1,b−1 o1,b+1 . . . o1,n
...

...
...

...
om,1 . . . om,b−1 om,b+1 . . . om,n

 , f =

p1,b
...

pm,b


Oxt ≤ f, 0 ≤ x ≤ 1,

∑
i xi = 1

Figure 6.4: System of inequalities to decide if a column action b is dominated

To determine if a MAX action is dominated we must establish if there exists a strategy
among the other MAX actions that even in the worst case is still better than or equal to the
best case of the action selected for domination checking. Similarly for the MIN actions,
an action may be pruned if the worst case bounds of using said action as a pure strategy
for MIN is equal or higher than a strategy MIN can assemble from the other available
actions.

To calculate the domination we use P ,O and LP. Figures 6.3 and 6.4 describe the inequal-
ities used for this. If the problem in Figure 6.3 has a feasible solution then the MAX action
a is dominated because there exists a strategy using the other pessimistic estimates, that
pays more than the optimistic estimate of a no matter what action MIN chooses. In other
words, if MAX takes action a MIN can make sure that the game value will stay fixed or
go down from there on. Likewise if the problem in Figure 6.4 has a feasible solution then
the MIN action b is dominated because there exists a strategy using the other actions op-
timistic estimates, that pays less than the pessimistic estimate of b no matter what action
MAX chooses.
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6.5 Implementation

Having to solve LPs we can expect some overhead once the solver has been joined with the
MCTS agent. It is therefore important to try to keep the solver calculations to a minimum.
In CADIAPLAYER the solver was implemented using the GNU Linear Programming Kit

(GLPK) and a player inheriting the MCTS player. Every state that needs to calculate
its bounds and Nash values is issued a special solver node which contains all LP’s and
last known bounds of each child. All solver nodes are stored in a hash map keyed on
the state id. This map also keeps track of the deepest ply the state has occurred so those
nodes no longer needed may be deleted to free up memory. The solver nodes are also able
to map action ids to the 1-based index used by GLPK for the LP problem matrices and
back.

Solver nodes get created only if the state they represent is a terminal state or if during the
back-propagation step its child state on the simulation path already has a solver node that
does not still only have 0 and 100 as its bounds. Solver states are updated during the back-
propagation step if their child state has a solver state which bounds have changed. If a state
needs to be updated, the new value is inserted into all LP’s and the pruning check is run.
At the moment all unpruned actions of both participants are checked, alternating between
the action sets while something gets pruned. Now the new pessimistic and optimistic
values of the state are calculated. Because both the pruning and the bounds will not
change unless at least one complete row or column has changed, no calculation is done
until the solver node has incurred at least as many changes as the length of the shorter
dimension of its bounds matrices.

In (Winands et al., 2008) the authors identified a problem with how solved loss nodes can
affect the MCTS averages. If you ignore them their parent may become too biased towards
only a subset of its children. We therefore added an option into the solver such that it can
either backup the values of the solved nodes if selected during the agent simulation, or to
avoid the solved nodes and always try one of the unsolved children. The latter approach,
although maybe not ideal for competitive play, may be helpful for solving games. If the
game gets solved as a win in the root, the agent stops running simulations and plays out
the guaranteed win as a solved win can only happen through pure strategies.

Pruning is achieved by overwriting the value calculations of available moves in the selec-
tion step such that pruned moves are given a large negative value instead of their normal
UCT value.
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6.6 Empirical Evaluation

We set up a four game tournament between normal UCT and UCT augmented with
the each of the two solver variants. In the following section the variant also selecting
solved nodes is called S-UCT and the one that explores only unsolved nodes is called
E-UCT.

6.6.1 Setup

In all games between the solver agents and the UCT agent, time controls were set to 10

seconds and each agent played 150 games as either side, 300 in all for each data point.
All games used are described in Appendix C. All agents and experiments ran on a single
Intel Xeon 2.66GHz CPU. The Goofspiel games were encoded such that they contain no
transpositions.

6.6.2 Results

Tables 6.1 and 6.2 show the results of the tournaments. The first column shows the game
played, and the numbers in parenthesis in the Goofspiel rows indicate the number of
cards dealt to each player. The Node Expansions column shows how many nodes the
agent expanded on average during each turn in all 300 games before reaching a solved
position. The accompanying percentage is the ratio of average node expansions relative to
those of the UCT opponent during that tournament. The third column Simulation Count,
displays the same information as the previous one, except the numbers are for complete
simulations per turn. The last column shows the winning percentage of the MCTS solver
agent with a 95% confidence interval.

Table 6.1: E-UCT vs. UCT
Node Simulation

Game Expansions Count Win%
Bidding TTT 88,629 (60.01%) 6,383 (46.11%) 9.50 (± 3.24 )
Goofspiel(6) 29,466 (28.38%) 4,538 (27.66%) 35.33 (± 4.49 )
Goofspiel(9) 21,531 (65.89%) 2,699 (59.57%) 37.00 (± 4.72)
Pawn Whopping 35,613 (81.31%) 2,443 (43.67%) 46.67 (± 4.88)
Average 58.90% 44.25% 32.13 (± 0.00)
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Table 6.2: S-UCT vs. UCT
Node Simulation

Game Expansions Count Win%
Bidding TTT 102,256 (91.68%) 9,259 (102.98%) 45.33 (± 5.31)
Goofspiel(6) 110,743 (74.18%) 3,4671 (123.96%) 47.50 (± 3.53)
Goofspiel(9) 47,793 (81.17%) 13,464 (120.81%) 51.17 (± 4.52)
Pawn Whopping 40,415 (94.31%) 5,663 (106.45%) 48.33 (± 4.85)
Average 85.33% 113.55% 48.08 (± 0.00)

Clearly, avoiding simulating solved nodes has adverse effects on the agent as the E-UCT
agent performs relatively much worse than S-UCT. Added information, if any, does not
outweigh the cost of the extra exploration. When it comes to the average winning per-
centage, S-UCT seems to be on par with UCT. The solver overhead of S-UCT in node
expansions is very game specific, averaging around 85%, but more interestingly the sim-
ulation count goes beyond that of the normal UCT. The solved nodes shorten the simu-
lations enough to increase their number even with the decrease in node expansions. The
increase in number of simulations does, however, not translate into a stronger player. If
anything, the solver-based player might even be slightly worse.

So the question becomes: If we could remove some of the overhead, will we get a stronger
agent? The overhead of solving the LP problems may be reduced simply by switching
to one of the commercial LP kits available that is faster than GLPK. To examine how
the S-UCT solver would do if the overhead were absent we set up an additional 300

game tournament where the node expansions per turn were fixed for both agents. These
tournament results are shown in Table 6.3. Now the simulation count rises even more,
but still the strength of S-UCT is not much affected. Apparently, UCT is already picking
good moves. Also, it is one thing to prove a game value, but in game positions like
Rock-Paper-Scissors knowing the game value does not help you to win.

To see if it is a trait of the S-UCT that the extra simulations do not help, we set up one final
300 game tournament. This time we used normal UCT in place of S-UCT and allowed it
to have the same simulation count advantage as S-UCT had managed in Table 6.3. The
results are in Table 6.4. The first result column shows the number of simulations the
first player was limited to (see the Simulation Count column in Table 6.3). The second
result column contains the second player’s simulation limit which equals 100% of the
Simulation Count column in Table 6.3. The last column gives the winning percentage of
the first player, the one which was allowed more simulations. The extra simulations do
not seem to help UCT to improve much, so it is not just an artifact of having S-UCT in
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Table 6.3: Fixed Node Expansions: S-UCT vs. UCT
Node Simulation

Game Expansions Count Win%
Bidding TTT 100,000 (100.00%) 8,341 (113.56%) 47.67 (± 5.17)
Goofspiel(6) 100,000 (100.00%) 27,350 (160.85%) 47.17 (± 3.64)
Goofspiel(9) 50,000 (100.00%) 10,079 (135.25%) 52.33 (± 4.45)
Pawn Whopping 50,000 (100.00%) 4,838 (113.36%) 49.67 (± 4.56)
Average 100.00% 130.76% 49.21 (± 0.00)

Table 6.4: Uneven Simulation Count: UCT vs. UCT
P1 Simulation P2 Simulation Simulation

Game Limit Limit Ratio P1 Win %
Bidding TTT 8,341 7,345 113.56% 53.00 (± 5.12)
Goofspiel(6) 27,350 17,003 160.85% 49.83 (± 2.51)
Goofspiel(9) 10,079 7,452 135.25% 48.33 (± 4.41)
Pawn Whopping 4,838 4,268 113.36% 53.33 (± 4.54)
Average 130.76% 51.12 (± 0.00)

control of those extra simulations. It seems that if might take more than just boosting
UCT to significantly improve its playing strength in these games.

To get an idea of the amount of pruning this kind of UCT solver may be able to provide we
had the E-UCT agent solve the root node of Goofspiel with 4, 5, or 6 six cards per player.
The reason for not using the S-UCT agent was simply that the focus of UCT keeps it
from exploring enough for the root to get solved within any reasonable time limits. The
results are in Table 6.5 and the columns from left to right show the time the solution took
in seconds, the number of solver nodes created, and the ratio of solver nodes relative to
the full game tree. All numbers are an average of 10 runs.

Table 6.5 shows that there is much that even MCTS can prune away in these simultaneous
game as in the best case here E-UCT has only created solver nodes for about quarter of
the tree to have solved the game value at the root.

Table 6.5: Solving Goofspiel on the Startclock with E-UCT
Game Seconds Nodes Ratio

Goofspiel(4) 1.074 669 50.95%
Goofspiel(5) 11.314 8,934 27.22%
Goofspiel(6) 510.055 380,142 32.17%
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6.7 Summary

In the chapter we have presented a method to incorporate a solver in MCTS which can
handle simultaneous-move zero-sum games. This preliminary look into the subject indi-
cates that the solver can be incorporated without much overhead, however, the benefits in
terms of an improved playing strength are unclear, at least for games we tried. We also
showed that large sections of the game trees in simultaneous-move games can be pruned
by a MCTS solver.
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Chapter 7

Game-Tree Properties

Some games are more problematic for MCTS than others. Often, more game-specific
knowledge is needed to make the simulations effective. In the previous chapters we have
aimed at developing search-control methods that are robust across a large range of games.
However using more game specific properties tailored towards certain game types may
be beneficial. In this chapter we identify high-level properties that are commonly found
in game trees and measure how they affect the performance of MCTS. By doing so we
hope to lay some groundwork for searching smarter rather than relying on brute force.
This work helped for example in developing the Early Cutoff extension in Chapter 5 and
the magnitude of a problem we have called Optimistic Moves which was the inspiration
of MAST in Chapter 4. In this section we will not be using CADIAPLAYER as a testbed.
Instead we use simple custom-made games that allow us to vary the properties of interest
and obtain large datasets much quicker than using GGP.

7.1 Properties

In the following we describe tree properties we identified as being particularly important
for MCTS performance that are general enough to be found in a wide variety of games. It
is by no means intended as a complete list.

7.1.1 Tree Depth vs. Branching Factor

The most general and distinct properties of game trees are their depth and width, so the
first property we investigate is the balance between the depth and the branching factor.
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These are properties that can quickly be estimated using simulations at runtime. With
increasing depth the simulations become longer and therefore decrease the number of
samples that make up the aggregated values at the root. Also, longer simulations are more
likely to result in improbable lines of simulation play. Increasing the branching factor
results in a wider tree, decreasing the proportion of lines of play investigated. The depth
and width relative to the number of nodes in the trees can be varied, allowing us to answer
the question if MCTS favors one over the other.

7.1.2 Progression

Some games progress towards a natural termination with every move made while other
allow moves that only maintain a status quo. Examples of naturally progressive games are
Connect 4, Othello and Quarto, while on the other end of the spectrum we have games
like Skirmish, Chess and Bomberman. Games that can go on infinitely in practice have
some maximum length imposed on them. When reaching this length limit the game either
results in a draw or is scored based on the current board position. This is especially com-
mon in GGP games. When such artificial termination is applied, progression is affected
because some percentage of simulations do not yield useful results. This is especially true
when all artificially terminated positions are scored as a draw.

7.1.3 Optimistic Moves

Optimistic moves is a name we have given to moves that achieve very good result for its
player assuming that the opponent does not realize that this seemingly excellent move can
be refuted right away. The refutation is for example accomplished by capturing a piece
just moved, which MCTS thinks is on its way to ensure victory for the player. This situ-
ation arises when the opponent’s best response gets lost among the other moves available
to the simulation action selection policies. In the worst case this causes the player to play
the optimistic move and lose the piece for nothing. Given enough simulations MCTS
eventually becomes wice to the fact that this move is not a good idea, but at the cost of
running many simulations to rule out this move as an interesting one.

Figure 7.1 is an example of an optimistic move. It is Black’s turn to move and an MCTS
agent would initially find it most attractive to move the far advanced black piece one
square forward (b4-b3). However, this is obviously a bad move because White can capture
the piece with a2-b3; this is actually the only good reply for White as all the others lead
to a forced win for Black (b3-a2 followed by a2-b1). This can work both ways as the
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Figure 7.1: Breakthrough game position

simulations can also detect such a move for the opponent and thus waste simulations on a
preventive move when one is not needed.

7.2 Empirical Evaluation

We used custom-made games for evaluating the aforementioned properties, as described
in the following setup subsection. This is followed by subsections detailing the individual
game property experiments and their results.

7.2.1 Setup

All games have players named White and Black and are turn-taking with White going
first. The experiments were run on Linux based dual processor Intel(R) Xeon(TM) 3GHz
and 3.20GHz CPU computers with 2GB of RAM. Each experiment used a single proces-
sor.

The scoring for each game is in the interval of [0, 1] and MCTS uses Cp = 1/
√

2 with
a uniform random playout strategy. The node expansion strategy adds only the first new
node encountered to the MCTS tree and neither a discount factor nor other modifiers are
used in the back-propagation step. The players only deliberate during their own turn.
A custom-made tool is used to create all games and agents. This tool allows games to
be set up as FEN strings1 for boards of any size and by extending the notation one can
select from custom predefined piece types. Additional parameters are used to set game
options like goals (capture all opponents or reach the back rank of the opponent), artificial
termination depth and scoring policy, and whether squares can inflict penalty points.

1 Forsyth-Edwards Notation. http://en.wikipedia.org/wiki/FEN
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7.2.2 Tree Depth vs. Branching Factor

The games created for this experiment can be thought of as navigating runners through
an obstacle course where the obstacles inflict penalty points. We experimented with three
different setups for the penalties as shown in Figure 7.2. The pawns are the runners, the
corresponding colored flags their goal and the big X’s walls that the runners cannot go
through. The numbered squares indicate the penalty inflicted when stepped on. White
and Black each control a single runner that can take one step forward each turn. The
board is divided by the walls so the runners will never collide with each other. Every time
the runner takes a step forward, additionally a new lane may be selected on their side of
the wall. For example, on its first move in the setups in Figure 7.2 White could choose
from the moves a1-a2, a1-b2, a1-c2 and a1-d2. All but one of the lanes available to each
player incur one or more penalty points. The game is set up as a turn taking game but both
players must make an equal number of moves and therefore both will have reached the
goal before the game terminates. This helps in keeping the size of the tree more constant.
The winner is the one that has fewer penalty points upon game termination. The optimal
play for White is to always move on lane a, resulting in finishing with no penalty points,
while for Black the optimal lane is always lane i. This game setup allows us to control
the properties of interest by varying the board size. The depth of the tree to be tuned by
setting the lanes to a different length. The branching factor is tuned through the number
of lanes per player. To ensure that the amount of tree nodes does not collapse with all the
transpositions possible in this game, the game engine produces state ids that depend on the
path taken to the state it represents. Therefore states that are identical will be perceived
as different ones by the MCTS algorithm if reached through different paths. This state id
scheme was used only for the experiments in this subsection.

The first game we call Penalties and can be seen in Figure 7.2 (a). Here all lanes except
for the safe one have all steps giving a penalty of one. The second one we call Shock
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Figure 7.2: (a) Penalties Game, (b) Shock Step Game, and (c) Punishment Game
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Figure 7.3: (a) Penalties Results, (b) Shock Step Results, and (c) Punishment results

Step and is depicted in Figure 7.2 (b). Here the squares of each non-safe lane have the
same amount of penalty, but the penalty by the lane’s distance from the safe lane. The
third game called Punishment is shown in Figure 7.2 (c). The penalty amount is as in the
Shock Step game except now it also gets progressively larger the further the runner has
advanced.

We set up races for the three games with all combinations of lanes of length 4 to 20 squares
and number of lanes from 2 to 20. We ran 1000 games for each data point. MCTS runs all
races as White against an optimal opponent that always selects the move that will traverse
the course without any penalties. MCTS was allowed 5000 node expansions per move for
all setups. The results from these experiments are shown in Figure 7.3. The background
depicts the trend in how many nodes there are in the game trees related to number of
lanes and their length. The borders where the shaded areas meet are node equivalent
lines, that is, along each border all points represent the same node count. When moving
from the bottom left corner towards the top right one we are increasing the node count
exponentially. The overlaid lines, called win lines, are the data points gathered from
running the MCTS experiments. The line closest to the bottom left corner represent the
50% win border (remember the opponent is perfect and a draw is the best MCTS can
get). Each borderline after that shows a 5% lower win ratio from the previous one. This
means that if MCTS only cares how many nodes there are in the game tree and its depth
or width has no bearing on the outcome, then the win lines should follow the trend of the
background plot exactly.

The three game setups all show different behaviors related to how depth and branching
factor influence the strength of MCTS. When the penalties of any of the sub-optimal
moves are minimal as in the first setup, bigger branching factor seems to have almost no
effect on how well the player does. This is seen by the fact that when the number of nodes
in the game tree increases due to more lanes, the win lines do not follow the trend of the
node count which moves down. They stay almost stationary at the same depth.
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As soon as the moves can do more damage as in the second game setup we start to see
quite a different trend. Not only does the branching factor drag the performance down, it
does so at a faster rate than the node count in the game tree is maintained. This means
that MCTS is now preferring more depth over bigger branching factor. Note that as the
branching factor goes up so does the maximum possible penalty.

In the third game the change in branching factor keeps on having the same effect as in
the second one. In addition, now that more depth also raises the penalties, MCTS also
declines in strength if the depth becomes responsible for the majority of game tree nodes.
This is like allowing the players to make bigger and bigger mistakes the closer they get to
the goal. This gives us the third trend where MCTS seems to favor a balance between the
tree depth and the branching factor.

To summarize, MCTS does not have a definite preference when it comes to depth and
branching factor and its strength cannot be predicted from those properties only. It appears
to be dependent on the rules of the game being played. We show that games can have
big branching factors that pose no problem for MCTS and vice versa. Still with very
simple alterations to our abstract game we can see how MCTS does worse with increasing
branching factor and can even prefer a balance between it and the tree depth.

7.2.3 Progression

For experimenting with the progression property we created a racing game similar to the
one used in the tree depth vs. width experiments. Here, however, the size of the board is
kept constant (20 lanes of length 10) and the runners are confined to their original lane
by not being allowed to move sideways. Each player, White and Black, has two types
of runners, ten in total, initially set up as shown in Figure 7.4. The former type, named
active runner and depicted as a pawn, moves one step forward when played whereas
the second, named inactive runner and depicted by circular arrows, stays on its original
square when played. In the example shown in the figure each player has 6 active and
4 inactive runners. In the context of GGP each inactive runner has only a single noop

move available for play. By changing the ratio between runner types a player has, one can
alter the progression property of the game: the more active runners there are, the faster
the game progresses (given sub-optimal play). The game terminates with a win once a
player’s runner reaches a goal square (a square with the same colored flag).

We also impose an upper limit on the number of moves a game can last. A game is
terminated artificially and scored as a tie if neither player has reached a goal within the
upper limit of moves. By changing the limit one can affect the progression property of
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Figure 7.4: Progression game

the game: the longer a game is allowed to last the more likely it is to end in a naturally
resulting goal rather than being depth terminated, thus progressing better. We modify this
upper limit of moves in fixed step sizes of 18, which is the minimum number of moves it
takes Black to reach a goal (Black can first reach a flag on its 9th move, which is the 18th
move of the game as White goes first). A depth factor of one thus represents an upper
limit of 18 moves, depth factor of two 36 moves, etc.

In the experiments that follow we run multiple matches of different progression, one for
each combination of the number of active runners ([1-10]) and the depth factor ([1-16]).
Each match consists of 2000 games where MCTS plays White against an optimal Black
player always moving the same active runner. The computing resources of MCTS are
restricted to 100,000 node expansions per move.

The result is shown in Figure 7.5, with the winning percentage of MCTS plotted against
both the depth factor (left) and percentage of simulations ending naturally (right). Each
curve represents a game setup using a different number of active runners.2 The overall
shape of both plots shows the same trend, reinforcing that changing the depth factor is
a good model for indirectly altering the number of simulations that terminate naturally
(which is not easy to change directly in our game setup). When looking at each curve
in an isolation we see that as the depth factor increases, so does MCTS’s performance
initially, but then it starts to decrease again. Increasing the depth factor means longer,
and thus fewer, simulations because the number of node expansions per move is fixed.
The detrimental effect can thus be explained by fewer simulations. This is better seen

2 We omit the 5, 7, and 9 active runners’ curves from the plots to make them less cluttered; the omitted
curves follow the same trend as the neighboring ones.
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Figure 7.5: Progression Depth Factor: Fixed node expansion count

in Figure 7.6 where the result of identical experiments as in the previous figure is given,
except now the number of simulations —as opposed to node expansions— is kept fixed
(at 1000).

The above results show that progression is an important property for MCTS. What is
somewhat surprising, however, is how quickly MCTS’s performance improves as the per-
centage of simulations ending at true terminal states goes up. In our testbed it already
reaches close to peak performance as early as 30%. This shows promise for MCTS even
in games where most paths may be non-progressive, as long as a somewhat healthy ratio
of the simulations terminate in useful game outcomes. Additionally, in GGP one could
take advantage of this in games where many lines end with the step counter reaching the
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Figure 7.6: Progression Depth Factor: Fixed simulation count

upper limit, by curtailing the simulations even earlier. Although this would result in a
somewhat lower ratio of simulations returning useful game outcomes, it would result in
more simulations, thus potentially giving a better quality tradeoff (as in Figure 7.5).

We can see the effects of changing the other dimension —number of active runners a
player has— by contrasting the different curves in the plots. As the number of active
runners increases, so does the percentage of simulations ending in true terminal game
outcomes, however, instead of resulting in an improved performance, it decreases sharply.
This performance drop is seen clearly in Figure 7.7 when plotted against the number
of active runners (for demonstration, only a single depth factor curve is shown). This
behavior, however, instead of being a counter argument against progression, is an artifact
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Figure 7.7: Progression Active Runners: Fixed node expansion count

of our experimental setup. In the game setup, if White makes even a single mistake,
i.e., not moving the most advanced runner, the game is lost. When there are more good
runners to choose from, as happens when the number of active runners go up, so does
the likelihood of inadvertently picking a wrong runner to move. This game property
of winning only by committing to any single out of many possible good strategies, is
clearly important in the context of MCTS. We suspect that in games with this property
MCTS might be more prone to switching strategies than traditional αβ search, because
of the inherent variance in simulation-based move evaluation. Although we did not set
out to investigate this now apparently important game property, it clearly deserves further
investigation in future work.
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Figure 7.8: Optimistic Moves game

7.2.4 Optimistic Moves

For this experiment we observe how MCTS handles a position in a special variation of
Breakthrough which accentuates the optimistic moves property. Breakthrough is a turn-
taking game played with pawns that can only move one square at a time either straight
or diagonally forward. When moving diagonally they are allowed to capture an opponent
pawn, should one reside on the square they are moving onto. The player who is first to
move a pawn onto the opponent’s back rank wins. The variation and the position we set
up is shown in Figure 7.8. The big X’s are walls that the pawns cannot move onto. There
is a clear winning strategy for White on the board, namely moving any of the pawns
in the midfield on the second rank along the wall to their left. The opponent only has
enough moves to intercept with a single pawn which is not enough to prevent losing.
This position has also built-in pitfalls presented by an optimistic move, for both White
and Black, because of the setups on the a and b files and k and l files, respectively. For
example, if White moves the b pawn forward he threatens to win against all but one Black
reply. That is, capturing the pawn on a7 and then win by stepping on the opponent’s
back rank. This move is optimistic because naturally the opponent responds right away
by capturing the pawn and in addition, the opponent now has a guaranteed win if he keeps
moving the capturing pawn forward from now on. Similar setup exists on the k file for
Black. Still since it is one ply deeper in the tree it should not influence White before he
deals with his own optimistic move. Yet it is much closer in the game tree than the actual
best moves on the board.
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We ran experiments showing what MCTS considered the best move after various amount
of node expansions. We combined this with four setups with decreased branching factor.
The branching factor was decreased by removing pawns from the middle section. The
pawn setups used were the ones shown in Figure 7.8, one with the all pawns removed
from files f and g, one by additionally removing all pawns from files e and h and finally
one where the midfield only contained the pawns on d2 and i7. The results are in Table
7.1 and the row named “Six Pawns” refers to the setup in Figure 7.8, that is, each player
has six pawns in the midfield and so on. The columns then show the three most frequently
chosen moves after 1000 tries and how often they were chosen by MCTS at the end of
deliberation. The headers show the expansion counts given for move deliberation. The
true optimal moves are printed in bold.

The setup showcases that optimistic moves are indeed a big problem for MCTS. Even
at 50,000,000 node expansions the player faced with the biggest branching factor still
erroneously believes that he must block the opponent’s piece on the right wing before it
is moved forward (the opponent’s optimistic move). Taking away two pawns from each
player thus lowering the branching factor makes it possible for the player to figure out the
true best move (moving any of the front pawns in the midfield forward) in the end, but
at the 10,000,000 node expansion mark the player is still also clueless. The setup when
each player only has two pawns each and only one that can make a best move, MCTS
makes this realization somewhere between the 1,000,000 and 2,500,000 mark. Finally, in
the setup which only has a single pawn per player in the midfield, MCTS has realized the
correct course of action before the lowest node expansion count measured.

Clearly the bigger branching factors aggravate this problem. The simulations can be put
to much better use if this problem could be avoided by pruning these optimistic moves
early on. The discovery process of avoiding these moves can be sped up by more greedy
simulations or biasing the playouts towards the (seemingly) winning moves when they
are first discovered. Two general method of doing so are the MAST (see Section 4.1.1)
and RAVE (Gelly & Silver, 2007) techniques, but much bigger improvements could be
made if these moves could be identified when they are first encountered and from then on
completely ignored. MCTS solvers can also detect optimistic moves, but only in endgame
scenarios.
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7.3 Summary

In this chapter we ran experiments to gain insight into game tree properties that influence
MCTS performance. We found that it depends on the game itself whether MCTS prefers
deep trees, big branching factor, or a balance between the two. Apparently small nuances
in game rules and scoring systems may alter the preferred game-tree structure. Conse-
quently it is hard to generalize much about MCTS performance based on game tree depth
and width. Progression is important to MCTS. However, our results suggests that MCTS
may also be applied successfully in slowly progressing games, as long as a relatively small
percentage of the simulations provides useful outcomes. In GGP games one could poten-
tially take advantage of this low ratio by curtailing potentially fruitless simulations early,
thus increasing simulation throughput. Hints of MCTS having difficulty in committing to
a strategy when faced with many good ones were also discovered. Optimistic Moves are
a real problem for MCTS that escalates with an increased branching factor.
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Chapter 8

Related Work

8.1 General Game Playing Agents

One of the first general game-playing systems was Pell’s METAGAMER (Pell, 1996),
which played a wide variety of simplified chess-like games, but the introduction of the
AAAI GGP competition (Genesereth et al., 2005) really brought about an ongoing inter-
est in general game-playing systems.

CLUNEPLAYER (Clune, 2007) and FLUXPLAYER (Schiffel & Thielscher, 2007) were the
winners of the 2005 and 2006 GGP competitions, respectively. CADIAPLAYER won the
competition in 2007 and 2008, and the agent ARY (Méhat & Cazenave, 2010a) won in
2009 and 2010. Turbo Turtle (Sam Schreiber, Independent Researcher) proved victorious
in the 2011 competition. An overview of all GGP Competition results can be found in
Appendix D. The first two agents employed traditional game-tree search, whereas the all
the later winners are MCTS based.

The CLUNEPLAYER (Clune, 2007) agent creates abstract models from the game descrip-
tions that incorporate essential aspects of the original game, such as payoff, control, and
termination. The agent then identifies stable features through sampling, which are then
used for fitting the models using regression. Since winning the GGP competition in 2005,
the agent has finished second in all subsequent GGP competitions until its retirement in
2008. In the 2008 competition the agent had dual capabilities such that it could choose
between using either mimimax-based or Monte-Carlo simulation search, based on game
properties.

The FLUXPLAYER agent (Schiffel & Thielscher, 2007; Haufe, Michulke, Schiffel, &
Thielscher, 2011) uses fluent calculus (an extension of situated calculus) for reasoning
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about actions and for generating game states. Standard game-tree search techniques are
used for the planning phase, including non-uniform depth-first search, iterative deepening,
transposition tables, and history heuristic. The heuristic function evaluation is based on
fuzzy logic where semantic properties of game predicates are used for detecting static
structures in the game descriptions. In addition to winning the 2006 GGP competition,
this system has frequently been at the top and is still competing.

The ARY agent (Méhat & Cazenave, 2010a) uses MCTS and was developed at the Paris 8
University. It has successfully used root parallelization (Chaslot et al., 2008) to increase
its playing strength (Méhat & Cazenave, 2011; Méhat & Cazenave, 2011). ARY has also
been used to research single player MCTS in GGP with regards to the use of transposition
tables and Nested Monte-Carlo Search (Méhat & Cazenave, 2010b).

The GAMER agent (Kissmann & Edelkamp, 2011) instantiates the game rules upon re-
ceiving them and proceeds with trying to solve the game (Kissmann & Edelkamp, 2010).
Their solver is based on symbolic search using Binary Decision Diagrams solving in a
backwards direction and can handle single- and two-player turn-taking games. As this
approach can be time consuming, depending on the game, GAMER runs a UCT/MCTS
player until the solver reaches the current game state. From there on the agent plays
optimally.

The CENTURIO agent (Möller, Schneider, Wegner, & Schaub, 2011) uses MCTS, but
with different strategies depending on if the game type is single-player, turn-taking or
simultaneous move multiplayer. Additionally Answer Set Programming is also used with
single-player games. This agent can translate GDL into Java code using techniques in
(Waugh, 2009) adapted to Java. CENTURIO supports both thread parallelizing a single
MCTS tree on a multicore computer and multiple MCTS trees over a cluster of comput-
ers.

8.2 Work on General Game Playing

In (Banerjee, Kuhlmann, & Stone, 2006) it is shown how knowledge transfer can be
obtained with games of the same genre when using reinforcement learning. First a small
game that can be learned quickly and captures the genre is selected. Then a number of
features for it are identified and handcrafted. In this case the features are recognized from
the structure of the game tree, but can be expanded to other types of feature recognition.
After learning the small game, each feature Fi is assigned the average value of theQ(s, a)

values where Fi ∈ (s, a). Now, with the aid of these feature values we can initialize states
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in other games of the same genre. When a state-action pair is initialized we examine
which features it contains and use the highest value of these features. This way the value
function of the new game does not have to start from scratch. Two of the authors, Gregory
Kuhlmann and Peter Stone, participated in the first three GGP competitions with their
player UTEXAS LARG (G. Kuhlmann, Dresner, & Stone, 2006). To read more on the
subject of knowledge transfer we refer to (Sherstov & Stone, 2005), (Taylor, Whiteson, &
Stone, 2006), (Banerjee & Stone, 2007) and (G. J. Kuhlmann, 2010).

Search control in GGP has also been studied in (Sharma, Kobti, & Goodwin, 2008) where
states and move patterns are used to generate domain-independent knowledge, and in
(Kirci, Schaeffer, & Sturtevant, 2009) differences in state predicates are combined with
the causing actions to detect both offensive and defensive features. Automatic generation
of state evaluation function has also been addressed in (Michulke, 2011) which aims at
mitigating the problems of expensive feature generation and cost of learning weights by
use of the GDL Goal function. A co-evolution approach that allows algorithm designers
to both minimize the amount of domain knowledge built into the system and model oppo-
nent strategies more efficiently (Reisinger, Bahceci, Karpov, & Miikkulainen, 2007) and a
logic program approach where the game descriptions are translated into specialized eval-
uator that works with decomposed logical features for improving accuracy and efficiency
(Kaneko, Yamaguchi, & Kawai, 2001).

Other important GGP research topics include: representations (G. Kuhlmann & Stone,
2007), efficient GDL reasoning engines (Waugh, 2009; Saffidine & Cazenave, 2011), de-
tecting state-space properties such as symmetries (Schiffel, 2010) and factorability (Cox,
Schkufza, Madsen, & Genesereth, 2009; Günther, Schiffel, & Thielscher, 2009), prov-
ing game properties (Schiffel & Thielscher, 2009; Thielscher & Voigt, 2010), and auto-
matic opening book generation (Chaslot et al., 2009). There is also interest in extend-
ing the expressive power of GDL (Love et al., 2008) to what had been dubbed GDL-
II (Thielscher, 2010), adding support for both non-deterministic and incomplete informa-
tion games.

We would also like to refer the reader to (Thielscher, 2011), which is an overview of GGP
research, for more detail.

8.3 Monte-Carlo Tree Search

Monte Carlo Tree Search (MCTS) was pioneered in computer Go, and is now used by sev-
eral of the strongest Go programs, including MOGO (Gelly et al., 2006),CRAZYSTONE
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(Coulom, 2006), and FUEGO (Enzenberger & Müller, 2009). Nowadays many other game
programs have also adopted MCTS for games such as Amazons (Lorentz, 2008), Lines-

of-Action (Winands et al., 2010), Chinese Checkers (Sturtevant, 2008), Kriegspiel (Cian-
carini & Favini, 2009), and Settlers of Catan (Szita et al., 2009).

Experiments in Go showing how simulations can benefit from using an informed playout
policy are presented in (Gelly & Silver, 2007). This, however, requires game-specific
knowledge which makes it difficult to apply in GGP. The paper also introduced RAVE.
A RAVE variant called poolRave (Rimmel, Teytaud, & Teytaud, 2010) for the playout
phase of MCTS has been shown to have some general benefits as it is applicable in both
the game Go and Havannah. Progressive Strategies (Chaslot, Winands, Herik, Uiterwijk,
& Bouzy, 2007) are also used by Go programs to improve simulation guidance in the
MCTS’s selection step.

Comparison between Monte-Carlo and AlphaBeta methods was done in (Clune, 2008).
There the author conjectures that AlphaBeta methods do best compared to MCTS when:
(1) The heuristic evaluation function is both stable and accurate, (2) The game is two-
player, (3) The game is turn-taking, (4) The game is zero-sum and (5) The branching
factor is relatively low. Experiments using both real and randomly generated synthetic
games are then administered to show that the further you deviate from these settings the
better Monte-Carlo does in relation to AlphaBeta.

Early Cutoff has been used before in MCTS game playing agents in an effort to get better
information through more simulations. INVADERMC (Lorentz, 2008) is an MCTS agent
made for the game Amazons that utilizes this kind of extension. It terminates a simulation
when it has reached a fixed number of playout-steps, returning a heuristic evaluation of
the reached state. This extension is also used in the game Lines of Action (Winands &
Björnsson, 2009), where it has the more appropriate name Evaluation Cut-offs. There
the cutoff is not made until the evaluation function has reached a certain score instead of
having the length of the simulation dictate when to cut. However, both approaches rely on
pre-coded evaluation knowledge. The Unexplored Action Urgency extension resembles
extensions that include domain specific knowledge in selecting between actions in the
playout phase. The notion of move urgency was used in (Bouzy, 2005) when playing
Go. There knowledge about Go is used to bias the selection probability distribution of
playout moves from being uniform to reflect what is known, that is moves that are known
to be good become more urgent. Move urgency is widely used in Go programs. The
Unexplored Action Urgency is similar to the First Play Urgency (FPU) in MOGO (Gelly
et al., 2006), except there the unexplored urgency value is a constant. We extended early
cutoffs and action urgency to also be applicable in GGP.
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An MCTS solver for the game Lines of Action was introduced in (Winands et al., 2008).
Lines of Action is turn-taking and has only win or loss outcomes. A generalized version
of the MCTS solver was presented under the name Score Bounded MCTS in (Cazenave
& Saffidine, 2011) that is applicable to any outcome turn-taking zero-sum game. This
method keeps track of Pessimistic and Optimistic bounds (Berliner, 1979) for each tree
node, updated based on the same type of bounds in the child nodes, so that pruning may be
done if the bounds cross before the actual MiniMax value of the node is discovered. Score

Bounded MCTS solver has been applied to the simultaneous game Tron (Teuling, 2011),
but the simultaneous aspect is bypassed by treating the game as a turn-taking one.

In (Ramanujan, Sabharwal, & Selman, 2010) the authors identify Shallow Traps, i.e.
when MCTS agent fails to realize that taking a certain action leads to a winning strat-
egy for the opponent. Instead of this action getting a low ranking score, it looks like being
close to or even as good as the best action available. The paper examines MCTS behavior
faced with such traps 1, 3, 5 and 7 plies away. We believe there is some overlapping
between our Optimistic Moves and these Shallow Traps.

MCTS performance in imperfect information games is studied in (Long, Sturtevant, Buro,
& Furtak, 2010). For their experiments the authors use game trees where they can tune
three properties: (1) Leaf Correlation - the probability of all siblings of a terminal node
having the same payoff value, (2) Bias - the probability of one player winning the other
and (3) Disambiguation factor - how quickly the information sets shrink. They then show
how any combination of these three properties affect the strength of MCTS.
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Chapter 9

Conclusions and Future Work

In this thesis we have taken a close look at MCTS in the context of GGP. MCTS has
over recent years proven to be most resilient in many domains. The combination of the
two produced our successful and trendsetting GGP agent CADIAPLAYER, the subject of
Chapter 3, which has been at the forefront of the GGP competition since its debut in
2007.

9.1 Summary of Results

One of the most essential part of simulation-based GGP agents is the search-control meth-
ods they use for guiding the simulations. Forming a strategy in real-time having only the
game description is challenging, but in this task lie the potentials of generating intelligent
behavior. It seems clear that integrating knowledge into the search process is necessary
to achieve an expert level of play. This task may be approached using simulation-based
methods, giving access to a world of statistical data or we may try to impose meaning
onto the rules of the game. Even though the problem of finding useful data is achieved for
a certain game, not all data is applicable to every game and can even be damaging in some
cases. In competition settings, as in any real-time use of the GGP agents, robustness is
vital to the success of this challenge and must be taken into account. In Chapter 4 we in-
troduced several method to address this task, utilizing both statistical domain-independent
and game-specific approached to improve the playing strength of CADIAPLAYER while
making sure robustness is maintained, showing that knowledge truly is power. These
methods form the state-of-the-art in simulation search-control in GGP.
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Nowadays, game-specific programs have embraced MCTS and while adapting it to their
game, some have come up with beneficial extensions. These advances are, however, more
often than not targeted towards something very problem-specific and often rely heavily
on some domain-dependent knowledge. This makes many such extensions hard to di-
rectly apply to GGP. In Chapter 5 we generalize two such extensions to be applicable in
GGP, which when applied to CADIAPLAYER, improve its playing strength by a significant
margin.

Recently methods that allow MCTS to deploy a general solver have started to surface. In
Chapter 6 we add to the evolution of such solvers by extending the current two-player
turn-taking zero-sum method to also include simultaneous move games.

What makes MCTS outperform the more traditional search methods in some domains and
not others is still a relatively open question. Is there any way to predict the effectiveness
of MCTS and if so can we bias some aspect or property to our advantage? In order to
come up with methods that better control MCTS it seems necessary to understand what
influences its behavior in game trees. In Chapter 7 we pinpoint three properties common
in MCTS and through extensive experiments were able to give insight into how much and
at what level they affect MCTS to guide further development.

9.2 Future Work

For future work there are still many interesting research questions to explore for further
improving simulation-based search control in GGP.

• There is some specific work that can be done to further improve the schemes dis-
cussed, for example, improving PAST so that it reaches a competition level of ro-
bustness. Also, we do not fully understand which game properties determine why
MAST is so much better than TO-MAST on certain games but clearly worse on
others.

• FAST is just the beginning for the research needed on how best to incorporate
higher-level game concepts like material and captures into simulation control, e.g.
to understand a much broader range of games and game concepts. We believe that
to take GGP simulation-based agents to the next level such reasoning is essential.

• The combination of FAST with MAST was just an initial step in that direction and
needs to be better explored with regards to how their application overlaps in some
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games, so measures can be taken against decreasing the performance boost of the
better suited method.

• The MCTS simultaneous moves solver has still some way to go. Another research
task regarding the solver is to examine the feasibility of dropping the zero-sum
constraint by treating each of the bounds as a bimatrix game, for which a Nash
value can be calculated with known algorithms.

• Regarding the game tree properties in Chapter 7 methods may be devised for MCTS
that help identifying these properties on the fly and take measures that either exploit
or counteract what is discovered. As of now we have only used the insight into slow
game progression to motivate the design of the Early Cutoff extension in Chapter 5.
This could be in the form of new extensions, pruning techniques or even parameter
tuning of known extension. Also more research needs to be done regarding the
possible MCTS strategy commitment issues.
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Appendix A

GDL for Tic-Tac-Toe

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Tictactoe

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Roles

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(role xplayer)

(role oplayer)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Initial State

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (cell 1 1 b))

(init (cell 1 2 b))

(init (cell 1 3 b))

(init (cell 2 1 b))

(init (cell 2 2 b))

(init (cell 2 3 b))

(init (cell 3 1 b))

(init (cell 3 2 b))

(init (cell 3 3 b))

(init (control xplayer))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Dynamic Components

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Cell

(<= (next (cell ?m ?n x))

(does xplayer (mark ?m ?n))

(true (cell ?m ?n b)))

(<= (next (cell ?m ?n o))

(does oplayer (mark ?m ?n))
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(true (cell ?m ?n b)))

(<= (next (cell ?m ?n ?w))

(true (cell ?m ?n ?w))

(distinct ?w b))

(<= (next (cell ?m ?n b))

(does ?w (mark ?j ?k))

(true (cell ?m ?n b))

(or (distinct ?m ?j) (distinct ?n ?k)))

(<= (next (control xplayer))

(true (control oplayer)))

(<= (next (control oplayer))

(true (control xplayer)))

(<= (row ?m ?x)

(true (cell ?m 1 ?x))

(true (cell ?m 2 ?x))

(true (cell ?m 3 ?x)))

(<= (column ?n ?x)

(true (cell 1 ?n ?x))

(true (cell 2 ?n ?x))

(true (cell 3 ?n ?x)))

(<= (diagonal ?x)

(true (cell 1 1 ?x))

(true (cell 2 2 ?x))

(true (cell 3 3 ?x)))

(<= (diagonal ?x)

(true (cell 1 3 ?x))

(true (cell 2 2 ?x))

(true (cell 3 1 ?x)))

(<= (line ?x) (row ?m ?x))

(<= (line ?x) (column ?m ?x))

(<= (line ?x) (diagonal ?x))

(<= open

(true (cell ?m ?n b)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal ?w (mark ?x ?y))

(true (cell ?x ?y b))

(true (control ?w)))

(<= (legal xplayer noop)

(true (control oplayer)))

(<= (legal oplayer noop)
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(true (control xplayer)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (goal xplayer 100)

(line x))

(<= (goal xplayer 50)

(not (line x))

(not (line o))

(not open))

(<= (goal xplayer 0)

(line o))

(<= (goal oplayer 100)

(line o))

(<= (goal oplayer 50)

(not (line x))

(not (line o))

(not open))

(<= (goal oplayer 0)

(line x))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= terminal

(line x))

(<= terminal

(line o))

(<= terminal

(not open))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
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Appendix B

Prolog GGP Functions

:- use_module( library( lists ) ).

:- use_module( library( ordsets ) ).

distinct( _x, _y ) :- _x \= _y.

or( _x, _y ) :- _x ; _y.

or( _x, _y, _z ) :- _x ; _y ; _z.

or( _x, _y, _z, _w ) :- _x ; _y ; _z ; _w.

or( _x, _y, _z, _w, _v ) :-

_x ; _y ; _z ; _w ; _v.

or( _x, _y, _z, _w, _v, _q ) :-

_x ; _y ; _z ; _w ; _v ; _q.

or( _x, _y, _z, _w, _v, _q, _r ) :-

_x ; _y ; _z ; _w ; _v ; _q ; _r.

or( _x, _y, _z, _w, _v, _q, _r, _s ) :-

_x ; _y ; _z ; _w ; _v ; _q ; _r ; _s.

or( _x, _y, _z, _w, _v, _q, _r, _s, _t ) :-

_x ; _y ; _z ; _w ; _v ; _q ; _r ; _s ; _t.

or( _x, _y, _z, _w, _v, _q, _r, _s, _t, _u ) :-

_x ; _y ; _z ; _w ; _v ; _q ; _r ; _s ; _t ; _u.

:- dynamic state/1.

add_state_clauses( [] ).

add_state_clauses( [_x | _l] ) :-

assert( state( _x ) ),

add_state_clauses( _l ).

add_does_clauses( [] ).

add_does_clauses( [ [_p,_m] | _l] ) :-

assert( does( _p, _m ) ),

add_does_clauses( _l ).

add_does_clause( _p, _m ) :-

assert( does( _p, _m ) ).
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get_does_clause(_p, _m) :-

does(_p, _m).

state_init( _r ) :-

role( _r ).

state_retract_info( _l ) :-

bagof( _c, state( _c ), _l ).

state_gen_moves( _p, _m ) :-

legal( _p, _m ).

state_make_move( _p, _m ) :-

assert( does( _p, _m ) ),

bagof( A, next( A ), _l ),

retract( does( _p, _m ) ),

retractall( state( _ ) ),

add_state_clauses( _l ).

state_make_sim_moves( _ml ) :-

add_does_clauses( _ml ),

bagof( A, next( A ), _l ),

retractall( does( _, _ ) ),

retractall( state( _ ) ),

remove_duplicates( _l, _ll ),

add_state_clauses( _ll ).

state_make_rel_moves( _ml ) :-

add_does_clauses( _ml ),

bagof( A, next( A ), _l ),

bagof( B, state( B ), _ll ),

retractall( does( _, _ ) ),

retractall( state( _ ) ),

append(_l, _ll, _lll),

remove_duplicates( _lll, _llll ),

add_state_clauses( _llll ).

state_make_exist_moves :-

bagof( A, next( A ), _l ),

retractall( does( _, _ ) ),

retractall( state( _ ) ),

remove_duplicates( _l, _ll ),

add_state_clauses( _ll ).

state_retract_move( _ri ) :-

retractall( state( _ ) ),

add_state_clauses( _ri ).

state_append_move( _ri ) :-

add_state_clauses( _ri ).

state_remove_duplicates :-

state_retract_info( _l ),

remove_duplicates( _l, _ll ),

retractall( state( _ ) ),

add_state_clauses( _ll ).
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state_peek_next( _ml, _sl ) :-

add_does_clauses( _ml ),

bagof( A, next( A ), _l ),

retractall( does( _, _ ) ),

remove_duplicates( _l, _sl ).

state_effects_plus( _ml, _ps ) :-

state_peek_next( _ml, _nl ),

list_to_ord_set( _nl, _ns ),

state_retract_info( _cl ),

list_to_ord_set( _cl, _cs ),

ord_subtract( _ns, _cs, _ps ).

state_effects_minus( _ml, _ms ) :-

state_peek_next( _ml, _nl ),

list_to_ord_set( _nl, _ns ),

state_retract_info( _cl ),

list_to_ord_set( _cl , _cs ),

not(state_get_has_seen( _hl )),

ord_subtract( _cs, _ns, _ms ).

state_effects_minus( _ml, _ms ) :-

state_peek_next( _ml, _nl ),

list_to_ord_set( _nl, _ns ),

state_retract_info( _cl ),

list_to_ord_set( _cl , _cs ),

state_get_has_seen( _hl ),

list_to_ord_set( _hl, _hs ),

ord_subtract( _cs, _ns, _ds ),

ord_subtract( _ds, _hs, _ms ).

state_get_has_seen( _hl) :-

bagof( has_seen( A ), state( has_seen( A ) ), _hl ).

state_is_terminal :-

terminal.

state_goal( _p, _r ) :-

goal( _p, _r ).

state_assert_clause( _x ) :-

assert( state( _x ) ).

state_retract_clause( _x ) :-

retract( state( _x ) ).

state_initialize :-

bagof( A, state( A ), _l ),

retractall( state( _ ) ),

remove_duplicates( _l, _ll ),

add_state_clauses( _ll ).

has_seen_function(state(X)) :-

state(has_seen(X)).

has_seen_function(X) :-

not(X).
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Appendix C

Rules of Games used in Experiments

Following are descriptions of all the GGP games used in the experiments presented of this
thesis.

3D Tic-Tac-Toe (Turn-taking, 2-player):
3D Tic-Tac-Toe is a variant of Tic-Tac-Toe played on a 4× 4× 4 cube with the objective
of lining up four of your pieces in a straight line.

Battle (Simultaneous move, 2-player):
Battle is a simultaneous move game played on an 8 × 8 board where each player has
20 disks along the edges of two adjacent sides that can move one square or capture an
opponent disks next to them. Instead of moving, players can also opt for defending a
square occupied by their piece. If a defending piece is attacked the attacker is captured.
The goal is to be the first to capture 10 opponent disks.

Bidding Tic-Tac-Toe (Simultaneous move, 2-player):
This is a variation of normal Tic-Tac-Toe where the there is a bidding round between
normal play that decides who gets to place a maker on the board. Each player begins with
three coins and the x player has an additional tiebreaker token. When a player wins a
bidding round, allowing him to place a marker, all coins bid go to the opponent. It is up
to the holder of the tiebreaker if he wants to play it or not, but just as with the coins, it
changes hands when it is a part of a winning bid. The winning conditions are the same as
in normal Tic-Tac-Toe.
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Breakthrough (Turn-taking, 2-player):
Breakthrough is played on a chess board where the players, armed with two ranks of
pawns, try to be the first to break through to reach the opponent’s back rank. The pawns
can move forward and diagonally, but can only capture diagonally.

Checkers (Turn-taking, 2-player):
Checkers is played on a 8× 8 square board with alternating colored squares (like a chess
board) and is played only on one of the colors. Each player has twelve pawns placed
on the three ranks closest to him. The pieces move diagonally forward and capture by
jumping over diagonally adjacent opponent and multiple jumps/captures are allowed in a
single turn. If a pawn reaches the opposite end of the board it is turned into a king. The
kings may also move and capture backwards. The player who captures all his opponent’s
pieces wins.

Chinese Checkers 3P (Turn-taking, 3-player):
Chinese Checkers with three players is played on the traditional hexagram Chinese Check-
ers board. Each player starts in one corner such that the corner opposite each player is not
occupied. The GGP version of Chinese Checkers has corners of size three and therefore
each player has three pieces. The pieces can either move to an adjacent empty position or
do chains of jumps over an adjacent own or opponent piece. There are no captures. The
first player to completely populate the opposite corner of his starting corner, wins.

Chinook (Simultaneous move, 2-player):
Chinook is a variant of Breakthrough played with checkers pawns and the added twist that
two independent games are played simultaneously, one on the white squares and another
on the black ones. Chinook is a games presented at the 2010 GGP competition and is a
breakthrough type game using pieces that move like Checkers pawns. Chinook also has
simultaneous moves such that White alternates moving pawns on white and black squares
each ply starting with a pawn on a white square while Black moves simultaneously one
of its pawns that reside on the opposite colored squares. The sided of the board are also
connected making it cylindrical.

Connect 5 (Turn-taking, 2-player):
Connect 5 is played on an 8× 8 board where the players take turn in securing a square by
placing their marker on it. the first one to line up five of their own markers in a straight
line, diagonally included, wins.

Goofspiel (Simultaneous move, 2-player):
In this thesis we use a few variations by changing the number of cards used. Lets use the
five card variation as an example. Each player then gets five cards, ace to a five which
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they may play in any which order they choose. On the table are also five cards with the
top one face up. Each player now plays a card and the one with the higher card gets the
point value of the card on the table and it is discarded. If both play the same card neither
gets any points. When all cards have been played the one with more points wins.

Knightthrough (Turn-taking, 2-player):
Knightthrough is the same as Breakthrough except it is played with chess knights that
may only play knight-type moves that advance them on the board.

Othello (Turn-taking, 2-player):
Othello (also known as Reversi) is played on an 8 × 8 board. There are 64 disks, having
one side dark and the other light, to be played onto the board by both players. One player
may only place disks with the dark side up and the other only with the light side up. The
starting position has four disks in the middle of the board, two of each color connected
diagonally. Each turn a player can only place a disk adjacent to another disk that has the
opponents color if somewhere in a straight line (diagonally included) from those two disks
respectively there is another disk with the player’s color and no empty squares between
them. Once a disk has been placed all the opponent’s disk in between are turned over and
therefore change color. If a player has nowhere to place he looses his turn. The winner is
the one with more disks in his color when all 64 disks have been placed, or if all the disks
on the boards become the same color.

Pawn Whopping (Simultaneous move, 2-player):
This game is played on a normal chess board where all pieces except the pawns have
been removed. The pawns move just like they would in chess. The participants play
simultaneously and if opposing pawns try to capture each other or move to the same
square, the moves on both sides are cancelled. The first one to reach the back ranks of the
opponent wins.
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Skirmish (Turn-taking, 2-player):
Skirmish is a chess-like game. We used the variation played in the 2007 GGP finals where
each player has two knights, two bishops, two rooks, and four pawns. The objective is to
capture as many of the opponent’s pieces as possible. In the version used in this thesis
the pawns can only move by capturing, in addition the squares at c3, c6, f3 and f6 are off
limits.

TCCC4 (Turn-taking, 2-player):
TCCC4 is a hybrid of several games played on a 5 × 5 size board with three piece start
squares on either side where each player has a chess pawn, a chess knight, and a checkers
king — these pieces re-spawn on their start square if captured. Instead of moving a piece
a player can choose to drop a disk onto the board like in Connect 4 (captured disks do not
respawn). The goal is to form a 3-in-a-row formation with your pieces anywhere on the
3 × 3 center squares of the table as int Tic-Tac-Toe. TCCC4 stands for the games it is a
mix of, Tic-Tac-Toe, Chess, Checkers, and Connect4.

TCCC4 3P (Turn-taking, 3-player):
Same as TCCC4 with an additional player at the bottom of the board.
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Appendix D

GGP Competition Results

There have been different knock-out formats in the competition finals through the years
and sometimes preliminaries were held. For the last years, then number of players com-
peting has been between 10 and 20. The following is an overview of the results of the
annual GGP competition. Due to availability of the data and competition formatting, we
show as many of the top three places as we can.

GGP Competition 2005 - Finals
1. CLUNEPLAYER University of California, Los Angeles
2. OGRE Florida International University
3. FLUXPLAYER Technical University of Dresden

GGP Competition 2006 - Finals
1. FLUXPLAYER Technical University of Dresden
2. CLUNEPLAYER University of California, Los Angeles
3. UT-AUSTIN-LARG University of Texas, Austin

GGP Competition 2007 - Preliminaries
1. CADIAPLAYER Reykjavík University
2. FLUXPLAYER Technical University of Dresden
3. ARY University of Paris 8
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GGP Competition 2007 - Finals
1. CADIAPLAYER Reykjavík University
2. CLUNEPLAYER University of California, Los Angeles

GGP Competition 2008 - Preliminaries
1. CADIAPLAYER Reykjavík University
2. CLUNEPLAYER University of California, LA
3. ARY University of Paris 8

GGP Competition 2008 - Finals
1. CADIAPLAYER Reykjavík University
2. CLUNEPLAYER University of California, Los Angeles

GGP Competition 2009 - Preliminaries
1. CADIAPLAYER Reykjavík University
2. ARY University of Paris 8
3. TURBOTURTLE Sam Schreiber, Independent

GGP Competition 2009 - Finals
1. ARY University of Paris 8
2. FLUXPLAYER Technical University of Dresden
3. MALIGNE University of Alberta, Canada

GGP Competition 2010 - Finals
1. ARY University of Paris 8
2. MALIGNE University of Alberta, Canada
3. CADIAPLAYER Reykjavík University

GGP Competition 2011 - Finals
1. TURBOTURTLE Sam Schreiber, Independent
2. CADIAPLAYER Reykjavík University
3. ARY University of Paris 8
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