
29.sept 2021

*subject to change

1

Description of undergraduate courses in Computer Science

T-101-STA1 Calculus 1 .. 3

T-103-STST Discrete Mathematics for Engineering  ... 5

T-107-TOLH Computer Architecture ... 7

T-111-PROG Programming .. 8

T-113-VLN1 Semester Project 1  ... 10

T-117-STR1 Discrete Mathematics 1 ... 11

T-133-UIAD Interaction design and user experience .. 13

V-107-FJAR Corporate Finance .. 15

V-108-REHA Financial Accounting ... 16

T-201-STA2 Calculus II .. 19

T-201-GSKI Data Structures ... 21

T-202-GAG1 Databases .. 23

T-213-VEFF Web programming ... 24

T-215-STY1 Operating Systems .. 26

T-216-GHOH Software requirements and Design ... 28

T-218-ALCO Algebra and Combinatorics .. 30

T-220-VLN2 Semester project 2 .. 31

T-233-SRAD System requirements and Design .. 32

V-201-RHAG Microeconomics ... 34

V-202-REGR Managerial Accounting ... 35

T-219-REMO Real-time Models ... 37

T-301-REIR Algorithms .. 39

T-622-ARTI Artificial Intelligence ... 40

T-302-HONN Software Design and Implementation ... 41

T-302-TOLF Statistics I .. 42

T-303-HUGB Software Engineering .. 43

T-315-IUPP Introduction to experience design .. 45

T-316-UPPL The Information and Technology Society .. 47

T-317-CAST Calculus and Statistics .. 48

T-333-HFOV - Software Processes and Project Management ... 50

V-307-GARS Design and Analysis of Ann. Fin. Statem. .. 51

V-311-OPMA Operations Management ... 53

E-402-STFO Mathematical Programming ... 54

T-403-FORC Programming in C++ ... 56

T-404-LOKA Final Project ... 58

I-406-IERP Introduction to ERP Systems (ERP) ... 59

T-409-TSAM Computer Networks ... 61

T-414-AFLV Effective programming and probem solving .. 63

T-417-TOOR Computer Security ... 64

T-419-STR2 Discrete Mathematics II ... 65

T-419-CADP Concurrent and distributed programming ... 67

T-427-WEPO Web-Programming II .. 69

T-430-TOVH Developing Open-Sourced Web Solutions/Software ... 71

T-431-HANE Practical Networks ... 72

T-445-GRTH Graph Theory .. 73

T-488-MAPP Mobile App Development ... 74

T-498-GAGR Data Analysis .. 75

T-501-FMAL Programming languages ... 76

T-504-ITML Introduction to Machine Learning ... 77

29.sept 2021

*subject to change

2

T-505-ROKF Logic in Computer Science .. 78

T-511-TGRA Computer Graphic .. 79

T-513-CRNU Cryptography and Number Theory .. 80

T-514-VEFT Web Services ... 82

T-515-NOTH User Centred Software Development .. 83

T-519-STOR Theory of Computation .. 84

T-533-VIHU Software Maintenance .. 86

T-535-CPSY Cyber-Physical Systems ... 87

T-542-HGOP Introduction to Quality Management and Testing .. 89

T-603-THYD Compilers ... 90

T-604-HGRE Design and analysis of algorithms ... 91

T-622-UROP Undergraduate Research Opportunity .. 92

T-624-CGDD Computer Game Design & Development ... 93

T-634-AGDD Advanced Game Design & Development ... 94

T-631-SOE2 Software Engineering II - Testing .. 95

T-636-SMAT Human Computer Interaction .. 97

T-637-GEDE Game Engine Architecture ... 98

I-707-VGBI Business Intelligence .. 100

X-204-STOF Entrepreneurship and Starting New ventures .. 101

29.sept 2021

*subject to change

3

T-101-STA1 Calculus 1

Credits: 6 ECTS

Year: 1st year

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc in Discrete Mathematics

Prerequisites: None

Structure: 12. week course, on-site, lectures and 2 problem solving classes each week. Weekly support classes are

also offered as part of this course.

Lecturer: Olivier Matthieu S. Moschetta

Description

Calculus of real-valued functions of one variable. We cover the most important functions and their properties,
including; limits, continuous functions, differentiation, integration, linear approximations and Taylor-polynomials In
addition, we look at some simple differential equations, learn about induction proofs and some properties of
complex numbers (polar coordinates and roots). Students should be able to understand and use mathematical
symbols and reasoning.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• write the main definitions of the course, f.eks. when a limit exist at a point, extreme-values of a function and
the formula for Taylor polynomials,

• explain the main theorems of the course: The fundamental theorem of Calculus, The Mean-value therorem
and the Intermediate-calue theorem.

 Skills

• explore basic properties of functions of one variable, f.eks. find limits or determine if a function has an inverse.

• Calculate derivatives, integrals and Taylor-polynomials.

• Solve simple differential equations, including second order differential equations with constant coefficients.

• do simple calculations with complex numbers.

• Use mathematical induction and the main theorems of the course when they apply.

Competence

• Use mathematical symbols and reasoning to set up problems in calculus.

• Choose what method applies when solving problems in calculus.

Course assessment

Assessment is based on: a written final examination, homework assignments, class assignments and tests. Students
must pass the final exam.

Course workload

Lectures 48h

Problem classes 18h

Projects and assignments 60-90h

Exam prep 20h

Exam 4h

Total 150-180h

Reading material

Robert A. Adams, Calculus, A Complete Course. Fyrirlestrarglósur frá kennara.

29.sept 2021

*subject to change

4

29.sept 2021

*subject to change

5

T-103-STST Discrete Mathematics for Engineering 

Credits: 6 ECTS

Year: 1st year

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory, BSc in Discrete Mathematics, BSc in Software Engineering

Prerequisites: None

Structure: 12. week course,2 lectures and 2 problem solving classes each week.

Lecturer: Steinunn Gróa Sigurðardóttir

Description

The main material in this course consists of various aspects of mathematics that are basic to an understanding of

the fundamentals of Computer Science. Various topics are discussed and their relevance to practical issues in

Computer Science demonstrated. Topics covered include: logic and set theory, functions, relations, matrices,

mathematical induction, counting techniques and graph theory. Further there is a brief introduction on the

cardinality of infinite sets and computability. Finally we discuss formal languages, grammars and finite automata.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Be familiar with various topics in discrete mathematics that are important for an understanding of the
fundamentals of computer science.

• Know basic concepts in propositional logic and predicate logic.

• Have been introduced to logic and formal reasoning.

• Know basic set operations.

• Know basic properties af functions, in particular logarithmic and exponential functions, the floor function and
ceiling function.

• Have learnt introductory matrix algebra.

• Know basic counting techniques.

• Know basic concepts of recurrence relations.

• Be familiar with basic material on relations.

• Know basic concepts in graph theory, for instance Euler and Hamilton paths, shortest path and
graph coloring.

• Be familiar with the cardinality of infinite sets.

• Understand the concept of computability and the proof that the Halting problem is unsolvable.

• Know introductory material on formal languages, grammars and finite automata.

Skills

• Be able to construct truth tables, use basic logical equivalences in propositional logic and use quantifiers.

• Be able to construct direct and indirect proofs.

• Be able to construct proofs by mathematical induction and strong induction. Also be able to construct
inductive definitions.

• Be able to prove formulas in set theory using basic set identities.

• Be able to solve simple problems involving logarithmic functions, exponential functions, the floor function
and the ceiling function.

• Be able to use basic matrix operations, e.g. multiplication, for matrices with numbers as well
as boolean matrices.

• Be able to to solve simple counting problems for finite sets, e.g. using permutations and combinations.

• Be able to construct recurrence relations.

• Be able to use recurrence relations as a model to solve various problems.

• Be able to analyze basic properties of relations, in particular equivalence relations.

• Be able to solve problems in graph theory, e.g. involving Euler and Hamilton paths and counting the number
of different paths of a certain length.

• Be able to use Dijkstra´s algorithm to find the shortest path in a graph.

29.sept 2021

*subject to change

6

• Be able to find the chromatic number of various graphs.

• Be able to use graph theory to solve certain practical problems.

• Be able to construct recursive definitions, e.g. for graphs and trees, and prove statements using structural
induction.

• Be able to determine whether sets are countable and give proofs similar to the standard proofs for the set of
rational numbers and the set of real numbers.

• Be able to construct regular grammars, regular expressions and finite automata (DFA and NFA) for simple
problems. Also, be able to convert one of these forms to another. Be able to construct context-free
grammars.

Competence

On completion of the course, students should be able to

• Be able to use logic to analyze statements in the English language.

• Be able to apply graph theory models in various situations outside the scope of the course.

• Be able to use the material in the course to understand formal reasoning in later courses.

• Be able to utilize the knowledge gained on formal languages, grammars and finite automata towards a deeper
understanding of the structure of programming languages.

Reading material

Rosen: Discrete Mathematics and Its Applications, 8. Edition (possible to use 7.th edition)

Course workload

32 hours on lectures
16 hours on problem sessions
3 hours final exam
24 hours exam preparation
32 hours homework
2 hours mid-term test
4 hours mid-term preparation
44 hours lecture preparation

Course assessment

Participation – 5%
Assignment– 10%
Group assignment- 15%
Mid term exam - 20%
Final exam - 50%

29.sept 2021

*subject to change

7

T-107-TOLH Computer Architecture

Credits: 6 ECTS

Year: 1st year BSc in Computer Science and Bsc in Discrete Mathematics, 2nd year in BSc in Software Engineering

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory

Prerequisites: None

Structure: 12. week course, on-site and HMV, 2 lectures and open problem-solving classes each week.

Lecturer: Gylfi Þór Guðmundsson

Description

In this course, students will learn the fundamental operations of a computer, with a special emphasis on issues

related to programmers. They will learn how and why the CPU works, how it uses binary math for calculations, and

how numbers and data is presented in binary. Students become familiar with reading x86_64 assembly code. They

learn how programs are loaded into memory (register, cache, RAM etc.). Students learn how to use common

commands in the command line. 

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Be able to describe the architecture of a computer system in terms of the major building blocks, for instance,
CPU, I/O, main memory and operating system.

• Be able to explain what programs are and how they run on the hardware

• Be able to explain programs written in an instruction set of a CPU (x86_64).

• Be able to describe in detail how data, including numbers, are represented, stored, and retrieved in
computers.

• Have gained basic proficiency with the UNIX / Linux operating system

•

Skills

• Be able to write and explain basic x86_64 assembly code.

• Be able to disassemble, trace and perform rudimentary debugging of programs written in Intel x86_64
assembly.

• Be able to write and debug simple programs in the C programming language.

• Be able to use command line tools for basic tasks in Linux or other Unix-based operating systems.

• Be able to implement basic mathematical functions using only binary operators.

Course assessment

30% of the grade comes from grading and giving feedback to students based on the work they hand in.
15% of the grade is via an auto graded project where the student knows his grade the whole time.
10% of the grade is homework in the form of online quizzes.
Closed-book, 3 hour long written exam worth 45% of the final grade

Course workload

36h of lectures,

18h for homework assign. (of which 50% is assumed for reading),

48h for projects (of which 50% is assumed for reading),

20h for exam prep. and

3 hours for exam.

Reading Material

Computer Systems (2016): A Programmer´s Perspective: Randal E. Bryant and David R. O´Hallaron, Pearson,
3. ed. global ed.

29.sept 2021

*subject to change

8

T-111-PROG Programming

Credits: 6 ECTS

Year: 1st year

Semester: Fall and Spring semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory

Prerequisites: None

Structure: 12. week course, on-site and HMV, Flipped classroom, 2x4 class sessions a week

Lecturer: Hrafn Loftsson

Description

This is an introductory course in programming using Python. Fundamental programming constructs are
covered, e.g. variables, types, control structures, and functions, as well as built-in data structures like strings, lists,
and dictionaries. The concept of a class is introduced and how it supports encapsulation and information hiding in
the context of object-oriented programming. Students learn to use both an Integrated Development Environment
(IDE) and command prompt mechanisms for development and execution of programs.
The last three years, the course has been taught using the Flipped Classroom teaching method.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Be able to analyse and explain the functionality of simple programs that use the following fundamental
programming constructs: variables, types, expressions and assignments, simple I/O, conditional and iterative
statements, collections and functions.

• Be able to analyse and explain the functionality of simple programs that use classes.

• Be able to explain the concepts of encapsulation, information hiding and abstract data type and how classes
support these concepts.

• Be able to understand the difference between a declaration and an implementation.

• Be able to discuss the importance of an algorithm in problem-solving and how a problem can be solved with
different algorithms. mentation.

Skills

• Be able to use a command shell and an integrated development environment (IDE) for developing and
running a program.

• Be able to design, implement, test, debug and change a program that uses each of the following fundamental
programming constructs: variables, types, expressions and assignments, simple I/O, conditional and iterative
statements, collections and functions.

• Be able to choose appropriate conditional and iterative constructs for a given programming task.

• Be able to apply top-down design to break a program into smaller pieces.

• Be able to design, implement, test and debug a program that uses classes.

• Be able to design an algorithm to solve a simple problem.

Competence

• Be able to design and implement a program for a problem that is described in a general manner.

Course assessment

In class quizzes : 10%

In class programming assignments: 10%

Weakly home assignments (two in group): 20% (7 best out of 10)

Mid term exams: 20% (Two exams, no retake)

Final exam: 40-60%.

29.sept 2021

*subject to change

9

Course workload

Classes (flipped classroom) and preparation: 9 hours per week * 12 = 108 hours

Homework assignments: 5 hours per week * 12 = 60

Final exam and preparation: 12 hours

Total: 180 hours

Reading Material

The Practice of Computing Using Python. Third Edition (Global Edition). William Punch &
Richard Enbody. Pearson Education, 2017.

29.sept 2021

*subject to change

10

T-113-VLN1 Semester Project 1 

Credits: 6 ECTS

Year: 1st year, 1st term on the first year for BSc-CS (1st term 2nd year for BSc-SE).

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory

Prerequisites: To have been enrolled in the course(s) T-111-PROG Programming and T-216-GHOH

Structure: 3. week course, on-site, the course is divided up into week long subtasks. Week 1- design and planning of

the software. Week 2-implementation (coding). Week 3-finishing up code and preparation for delivery (hand-in).

In this course the students are expected to do a full 8 hours of work for each working day over the three weeks that

this course spans.

Lecturer: Dr. Gylfi Þór Guðmundsson

Description

The course is based on the knowledge and experience the students have previously acquired during the

programming course. Students will gain a greater understanding of the use of classes and object-

oriented programming by creating layered software projects. Troubleshooting and debugging will be covered.

Students are introduced to the SQL programming language and response driven programming with a graphical user

interface. Students will be introduced to a version control system that will be used throughout the course.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Be able to identify the main types of UI programs and write simple such programs.

• Know the advantages of a layered architecture.

• Recognize the benefits of using a version control system.

• Be able to discuss copyright, intellectual property, data protection and security.

•

Skills

• Be able to write simple algorithms.

• Be able to give simple commands in the console.

• Know additional skills in input data validation and application debugging.

Competence

• Be able to use classes and object- oriented programming when constructing a simple software project.

• Be able to set up small databases, retrieve data from them, and write data using SQL.

Course assessment

Group hands in design documents, code and an “instruction video for new users” at the end of the 3 weeks. Grading

is as follows:

Functionality of application – 40%

Design report – 30%

Coding style – 10%

Video – 10%

Peer-review – 5%

Self-evaluation – 5%

Course workload

8h a day for 3 weeks or 120h.

Reading material:

Slides from lecturer

29.sept 2021

*subject to change

11

T-117-STR1 Discrete Mathematics 1

Credits: 6 ECTS

Year: 1st year

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc in computer science, Bsc in Computer Science-Business minor, Diploma in

Computer Science

Prerequisites: None

Structure: 12. week course,2 lectures and 2 problem solving classes each week.

Lecturer: Steinunn Gróa Sigurðardóttir

Description

The main material in this course consists of various aspects of mathematics that are basic to an understanding of

the fundamentals of Computer Science. Various topics are discussed and their relevance to practical issues in

Computer Science demonstrated. Topics covered include: logic and set theory, functions, relations, matrices,

mathematical induction, counting techniques and graph theory.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Be familiar with various topics in discrete mathematics that are important for an understanding of the
fundamentals of computer science.

• Know basic concepts in propositional logic and predicate logic.

• Have been introduced to logic and formal reasoning.

• Know basic set operations.

• Know basic properties of functions, in particular logarithmic and exponential functions, the floor function and
ceiling function.

• Have learnt introductory matrix algebra.

• Know basic counting techniques.

• Have learnt basic concepts of recurrence relations.

• Be familiar with basic material on relations.

• Know basic concepts in graph theory, for instance Euler and Hamilton paths, shortest path and
graph coloring.

Skills

• Be able to construct truth tables, use basic logical equivalences in propositional logic and use quantifiers.

• Be able to construct direct and indirect proofs.

• Be able to construct proofs by mathematical induction and strong induction. Also, be able to construct
inductive definitions.

• Be able to prove formulas in set theory using basic set identities.

• Be able to solve simple problems involving logarithmic functions, exponential functions, the floor function
and the ceiling function.

• Be able to use basic matrix operations, e.g. multiplication, for matrices with numbers as well
as boolean matrices.

• Be able to solve simple counting problems for finite sets, e.g. using permutations and combinations.

• Be able to construct recurrence relations.

• Be able to use recurrence relations as a model to solve various problems.

• Be able to analyze basic properties of relations, in particular equivalence relations.

• Be able to solve problems in graph theory, e.g. involving Euler and Hamilton paths and counting the number
of different paths of a certain length.

• Be able to use Dijkstra´s algorithm to find the shortest path in a graph.

• Be able to find the chromatic number of various graphs.

• Be able to use graph theory to solve certain practical problems.

29.sept 2021

*subject to change

12

Competence

• Be able to use logic to analyze statements in the English language.

• Be able to apply graph theory models in various situations outside the scope of the course.

• Be able to use the material in the course to understand formal reasoning in later courses. courses.

Course assessment

Participation– 5%
Assignments – 10%
Group assignments - 15%
Mid-term exam - 20%
Final exam - 50%

Course workload

32 hours on lectures
16 hours on problem sessions
3 hours final exam
24 hours exam preparation
32 hours homework
2 hours mid-term test
4 hours mid-term preparation
44 hours lecture preparation

Reading material

Rosen: Discrete Mathematics and Its Applications, 8. edition.

29.sept 2021

*subject to change

13

T-133-UIAD Interaction design and user experience

Credits: 6 ECTS

Year: 1st year

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc in Software Engineering

Prerequisites: None

Structure: 12. week course, on-site,2 lectures and 2 problem solving classes each week.

Lecturer: Anna Sigríður Islind

Description

During the course students will learn and develop skills to use methods for analysing users' needs for software.

Particularly interviews and gathering feedback from users on design suggestions will be practised in the course

through various projects. Students learn about individual cognition and user cognitive problem complexity. Students

will learn about and develop skills in interacting with various stakeholders, and how enterprises could be modelled.

Additionally, students learn how to and dealing with multicultural environments, with uncertainty and ambiguity.

Students will state requirements based on user analysis and design user interfaces to meet those requirements, and

practice how to state quality requirements (e.g., safety, usability and user experience). Additionally, students will

evaluate with users if the designs meet the stated requirements. Requirement evolution will also be covered.

In the course students will learn about various ways to describe users to describe, different design alternatives

through prototyping. General HCI design principles and visual design guidelines will be covered. The students

practice how to use those while designing and evaluating their design prototypes. Students practise how to make

interactive prototypes through using prototyping tools and how to evaluate those with users. Different modalities

of human-computer interaction will be discussed in the course.

Various application areas for user interface requirements and design will be discussed. In the course students will

practise how to write reports to describe their results. This course will be practice based, so students will be coached

through various projects to practice the skills of conducting the user interface requirements and design methods

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Be familiar with various methods for analysing and designing software and user interfaces based on users
needs

• Know basic principles in the design of information technology and user interfaces

• Be familiar with different information gathering methods on user needs and for gathering feedback on design
from users

• Know in what way the design of a computer system or application might succeed or fail because of the
diversity of human beings

• Be familiar with the user-centred design process, the phases of it and the main methods used

• Be familiar with the main software development processes, what design is and how design processes can be
structured

Skills

• Be able to analyze the user groups and describe those in a structured way

• Be able to conduct interviews and workshops with users to gather information on users’ needs and
requirements

• Be able to state requirements, (both functional and non-functional) for a medium sized company system

• Be able to make paper prototypes and intermedium porotypes design both formally and informally

• Be able to write reports that are understandable for recipients

• Be able to describe the analysis, design and evaluation of user interfaces in a comprehensive manner in the
form of personas, user evaluations and be able to conduct design of information technology

Competence

29.sept 2021

*subject to change

14

• Be able to state the benefits and drawbacks of designing and evaluating paper porotypes in contrast to
making more detailed prototypes

• Be able to state the benefits and drawbacks of integrating user-centered design methods into various
software development processes

• Be able to state the benefits and drawbacks of using various user-centered design methods and be able to
describe, and apply a variety of design approaches

Course assessment

Assignments – 40%
In class assignments – 10%
Mid-term exam – 10%
Final exam – 40%

Course workload

32 hours on lectures

24 hours on problem sessions and individual assignments

3 hours final exam

24 hours exam preparation

50 hours group work

1-hour mid-term test

4 hours mid-term preparation

42 hours reading and learning individually

Reading material

Interaction Design-beyond human-computer interaction (2019), Sharp, Rogers & Preece

29.sept 2021

*subject to change

15

V-107-FJAR Corporate Finance

Credits: 6 ECTS

Year: 3rd year

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc in computer science-Business minor

Prerequisites: Calculus and statistics

Structure: This course V-107-FJAR Corporate Finance is a 6 ECTS-credit undergraduate level course offered through

the Department of Business Administration. Weekly teaching sessions two times a week for 12 weeks and weekly

tutorials/problem solving sessions.

Lecturer: Not registered

Description

The course covers the fundamental concepts of corporate finance. Based on the time value of money the course

discusses key instruments in equity and debt financing and their valuation. This includes a discussion of the

relationship between risk and return and key theories in that respect. The course also focuses on capital budgeting

and its practical application. The capital structure choice is discussed in both perfect and imperfect market settings.

This includes the impact of, e.g., taxes, financial distress, conflicts of interests and agency problems as well as a

discussion of ways to influence the capital structure including issuance of securities and payout policies. The course

also discusses the limitations of the key theories applied in corporate finance with regard to potential ethical

conflicts.

Learning outcomes

At the end of the course students possess fundamental knowledge of corporate financing instruments and their

valuation, the main theories on the relationship between risk and return from a stockholder’s and a bondholder’s

perspective, perfect financial markets and market imperfections, capital budgeting, capital structure theories,

conflicts of interests and agency problems, issuance of securities, and payout policies. Students develop their skills

to calculate present and future value of cash flows and financial return measures, apply financial theories to infer

the cost of capital for both equity and debt analyze a firm’s capital structure and financing decisions and identify

ways for improvement recognize the limitations inherent in the theories discussed, including potential ethical

conflicts. Students develop their competences to participate in corporate financial decision making, identify financial

challenges and find and justify appropriate solutions, reflect on the consequences of their decisions in the corporate,

economic, social and ecological context, and participate in discussions about corporate finance.

Course assessment

Group Assignments (24%)

Mini assignments (20%)
Midterm exam (16%) Individual 60-minute exam.

Final exam (40%) Individual 120-minute exam.

Course workload

TBA

Reading material: Not registered

29.sept 2021

*subject to change

16

V-108-REHA Financial Accounting

Credits: 6 ECTS

Year: 2ndyear

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc in Computer science with a minor in Business Administration

Prerequisites:

Structure: 12. week course, on-site,2 lectures and 2 problem solving classes each week.

Lecturer: Not registered

Description

The course provides introduction of basic accounting concepts with emphasis on the accounting cycle in the double

entry accounting system and how the journal entries affect the financial statements. The students will gain

knowledge of how generally accepted accounting principles (GAAP) are used in general trading, and service

companies in order to ensure reliability in their financial statements. The students also gain insight to the importance

of accounting information to stakeholders and other users and how accounting information can be useful in a

business environment.

Learning outcomes

On completion of the course, students should be able to:Understand the basic concepts in accounting with

emphasis on the double entry accounting system.

Students gain the ability to prepare simple financial statements on a business-to-business basis for business and

service activities and to analyze the impact of business on their operational performance and economic position.

Understand the relationship between the income statement and the balance sheet

Students understand the context of the income statement and balance sheet and can share a variety of useful

accounting information to their users. Be able to prepare financial statements based on accrual accounting

Course assessment

Online exam 15%

Midterm Exam 15%

Final exam 55%

Group assignment 15%

Course workload

48h of lectures,

24h exercise classes,

60h projects and reading

15h for exam prep. and

3 hours for the exam.

Reading material

Fundamental Financial Accounting Concepts (10th edition)

29.sept 2021

*subject to change

17

T-201-LINC Linear Algebra through Computer Science Applications

Credits: 6 ECTS

Year: 1. year

Semester: Spring semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc in Discrete Mathematics

Prerequisites: T111-PROG Programming and T-103 STST Discrete mathematics for engineering students

Structure: 12. week course, on-site,2 lectures and 2 problem solving classes each week.

Lecturer: Henning Arnór Úlfarsson

Description

A big portion of modern technology is based on concepts from linear algebra, that are also essential in many areas

of computer science, such as graphics, image processing, cryptography, machine learning, computer vision,

optimization, graph algorithms, quantum computation, computational biology, bioinformatics, information retrieval

and web search. Two basic elements of linear algebra are vectors and matrices. This course teaches the basics of

vectors, matrices and algorithms based on them. The student will learn concepts and methods, how to work with

them in Python as well as think about and solve various problems in computer science with linear algebra.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Understand the basic concepts of linear algebra related to matrices, vectors and vector spaces.

• Understand the terms linear combination, span and generating set.

• Know what a basis is.

• Know what similar matrices are.

• Know what a diagonalizable matrix is.

• Know what linearly dependent vectors are.

• Understand the relationship between a diagonalizable matrix and linearly independent eigenvectors.

• Understand orthogonal projections in many dimensions and orthogonalization.

• Understand linear projections

• Understand the terms eigenvalue and eigenvector.

• Know what QR factorization is

• Be familiar with linear algebra operations in Python.

Skills

• Can multiply vector and matrix, matrix and vector and two matrices.

• Be able to determine whether vectors are linearly dependent.

• Can find a generating set.

• Can change a base.

• Can solve linear equations with Gaussian elimination

• Can find the null set of an array and the solution set of a linear equation.

• Can find the inverse of an invertible matrix.

• Can use orthogonalization to find to find closest point and to solve other problems.

• Can use the power method.

• Can work with vectors and matrices in Python.

• Can solve problems with Python.

• Be able to create programs in Python to implement matrix and vector algorithms, apply them to real data to
solve various tasks such as analyzing and blurring faces and error-correcting code.

Competence

• Have the knowledge to look for the application of linear algebra in computer science.

• Have the knowledge to program solutions to linear algebra problems

• Have the knowledge to apply ´best approximation´ to solve various problems, e.g., image compression, least
squares method, principal component analysis and information retrieval.

Course Assessment

29.sept 2021

*subject to change

18

8 labs: 48% of grade
4 smaller projects: 15%
12 WeBWork assignments: 10%
Oral exam: 27%

Course workload

36 hours lecture

16 hours exercise sessions

3 hours final exam

25 hours exam preparation

68 hours homework

20 hours lecture preparation

Reading material

Slides from lecturer

29.sept 2021

*subject to change

19

T-201-STA2 Calculus II

Credits: 6 ECTS

Year: 1st year

Semester: Spring semester

Level of course:

Type of course: Mandatory in BSc in Discrete Mathematics

Prerequisites: T-101-STA1, Calculus I, T-211-LINA, Linear Algebra

Structure: 12 weeks – 4 lectures and 2 problem solving classes each week.

Lecturer: Olivier Matthieu S. Moschetta

Description

Multivariable calculus and sums and series. We cover: Paraterization of curves, position vector of a particle in space,

velocity, speed and acceleration, arc length and line integrals. Functions of several variables; limits, continuity,

differetiability, derivatives, linear approximation and extreme values. Double and triple integrals in Cartesian-, polar-

spherical and cylendrical coordinates. Conservative vector fields, potential function, integrals of vectorfields. The

theorems of Green, Stokes and Gauss. In sequences and series we cover: Convergence tests. Geometric Series, p-

series, Telescoping Series, Power Series, Taylor Series.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Know basic characteristics of sequences and series

• Know 4 tests to determine convergence of series: The integral test, the comparison test, the limit comparison
test and the ratio test.

• Know geometric series, p-series, power series, telescoping series and Taylor series.

• Know the parametric representation of basic curves, e.g. a line and a circle.

• Be acquainted with the parametric representation of the intersection of simple surfaces.

• Know the parametric representation of a particle ‘s position in 3 space and how to represent it‘s speed,
velocity and acceleration.

• Know how to find curve length and line integrals.

• Know basic characteristics of functions of several variables: Limits, continuity and differentiability.

• Know partial derivatives, directional derivatives, derivatives, chain rule, linear approximation and extreme
values of functions of several variables.

• Know double integrals in Cartesian and polar coordinates.

• Be acquainted with improper integrals.

• Know triple integrals in Cartesian, spherical and cylindrical coordinates.

• Be acquainted with a general change of variables in 2 and 3 dimensions.

• Be acquainted with field lines of vector fields.

• Know conservative fields, the potential of a vector field and line integrals.

• Be acquainted with the parametrization of a surface in 3 space.

• Know Green‘s theorem, Stoke‘s theorem and the Divergence Theorem.

• Be familiar with mathematical reasoning and proofs.

Skills

• Be able to determine basic properties of series and sequenses.

• Be able to use an appropriate convergence test to determine if a series converges or diverges.

• Be able to find the parametric representation of basic curves and the intersection of basic surfaces.

• Be able to describe a particle in 3 space by a parametric curve and find its speed, velocity and acceleration.

• Be able to set up and evaluate a integral to find arc length and line integral.

• Be able to determine basic properties of functions of several variables; find its limit, determine convergence
and differentiability.

• Be able to calculate partial derivatives and directional derivatives and know how to interpet them graphically.

29.sept 2021

*subject to change

20

• Be able to find the derivative of functions from m-space to n-space and use the chaine rule.

• Be able to find a linear approximation of functions of several variables.

• Be able to find extreme values of functions of several variables.

• Be able to set up and evaluate double integrals in Cartesian and polar coordinates.

• Be able to set up and evaluate triple integrals in Cartesian, spherical and cylindrical coordinates.

• Be able to find field lines.

• Be able to determine if vector fields are conservative and if so find a potential.

• Be able to evaluate line integrals of vector fields.

• Be able to use Stoke‘s Theorem, Green‘s Theorem and the Divergence theorem when appropriate.

Competence

• Be able to read and understand mathematical reasoning and derivation of mathematical theorems.

• Be able to use mathematical symbols and reasoning to present solutions to problems in the subject.

Course assessment

Final exam: 70%,

Semester exams: 20%

Homework assignments :10%.

Students must pass final exam.

Course workload

Lectures 48h

Problem classes 18h

Projects and assignments 60-90h

Exam prep 20h

Exam 4h

Total 150-180h

Reading material:

Not registered

29.sept 2021

*subject to change

21

T-201-GSKI Data Structures

Credits: 6 ECTS

Year: 1st year

Semester: Spring semester/fall semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc-CS, BSc-SE, BSc-DiMACS, BSc-CSwB

Prerequisites: T-111-PROG Programming

Structure: 12-week course, Flipped classroom

Lecturer: Kári Halldórsson

Description

This course discusses various data structures, like linked lists, stacks, queues, trees and hash tables. Recursive

programming and sorting algorithms are also discussed. At the same time, emphasis is put on abstract data types,

object-oriented programming, templates, and exception handling.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Be able to identify the basic steps and inductive steps in the problem defined in a recursive manner.

• Be able to describe abstract data types and the difference between their declaration and implementation.

• Be able to describe the concepts of object-oriented design with regard to encapsulation, inheritance and
polymorphism.

• Be able to describe and understand the meaning of complexity/growth function algorithms.

Skills

• Be able to write programs that use each of the following data structures: arrays, linked lists, stacks, queues,
trees, and hash tables.

• Be able to implement various types of data structure by using linked list.

• Be able to implement simple recursive functions.

• Be able to design, implement, test and debug a program in object-oriented programming language.

• Be able to write a program that uses inheritance and polymorphism to solve a specific problem.

• Be able to write programs that responds to exceptions raised during execution.

• Be able to apply sequential search, binary search and ranking algorithm under various circumstances.

• Be able to use abstract data types by having access to their declaration only.

Competence

• Be able to design and develop programs for the programs described in general terms.

• Be able to choose the appropriate data structure for modelling of a given problem.

Course assessment

Quizzes: 20%

Programming assignments: 20%

Chapter exam: 20%

Final exam: 40%

Course workload

12 hours preparation

60 hours practice exercises/lectures/quizzes

60-80 hours programming assignments

30 hours exam preparation

3 hours exam

29.sept 2021

*subject to change

22

Reading Material

MichaelT. Goodrich, Roberto Tamassia, Michael
H Goldwasser. Data Structures & Algorithms in Python - Wiley,1st edition,2013

29.sept 2021

*subject to change

23

T-202-GAG1 Databases

Credits: 6 ECTS

Year: 1st year, Second term for Computer Science, fourth term for Software Engineering

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in B.Sc. in Computer Science, B.Sc. in Software Engineering, B.Sc. in Computer Science

wit Business minor

Prerequisites: T-111-PROG Programming

Structure: 12-week course

Lecturer: Anna Sigríður Islind

Description

The course is a hands-on introduction to information management in general and relational database management

in particular, covering the following topics: the role and function of database management systems; the relational

database model, including relational concepts and relational query languages; data modeling using the ER model

and its conversion into a relational database schema; all major aspects of the SQL language, covered in detail,

including DDL, DML, complex queries, views, procedures, triggers and transactions; transaction and administration

concepts; and, finally, a brief discussion of alternative data models and approaches, such as unstructured databases,

information retrieval and “big data”.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Be able to discuss structured and unstructured databases in social and organizational context, including
privacy and ethical issues, access and preservation.

• Be able to describe concepts and measures related to reliability, scalability, efficiency and effectiveness.

• Be able to describe major components and functions of database management systems.

• Be able to describe and compare common data models.

• Be able to describe fundamental principles of the relational model.

• Be able to describe fundamental transaction concepts.

• Be able to describe basic database administration functions.

• Be able to discuss concepts and techniques for unstructured data and information retrieval.

• Be able to discuss major approaches to storing and processing large volumes of data.

Skills

• Be able to write SQL commands to create a complete relational database.

• Be able to write SQL commands to insert, delete, and modify data.

• Be able to write simple and complex SQL queries to retrieve data, including joins, aggregates, sub-queries,
nested sub-queries, and division.

• Be able to write simple database views, stored procedures, triggers and transactions.

• Be able to write queries in relational algebra and tuple relational calculus.

Competence

• Be able to model data requirements and constraints using the ER-model.

• Be able to convert an ER-model into a corresponding relational schema.

• Be able to normalize a relational schema.

• Be able to select and create the appropriate indices for simple database queries and constraints.

Course assessment

In-class quizzes: 10%

Group assignments: 50%

Final exam – 40%

29.sept 2021

*subject to change

24

Course workload

32 hours on lectures
24 hours on problem sessions and individual assignments
3 hours final exam
24 hours exam preparation
55 hours group work
42 hours reading and learning individually

Reading Material

Ramakrishnan & Gehrke. Database Management Systems

T-213-VEFF Web programming

Credits: 6 ECTS

Year: 1st year

Semester: Spring semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc in Computer Science, Computer Science – minor in Business and BSc in Software

Engineering

Prerequisites: T-111-PROG Programming

Structure: 12-week structure

Lecturer: Grischa Liebel

Description

This course covers the basic three languages of the web (HTML, CSS, and JavaScript). Additionally, RESTful web

services (using Node.js), and how to test and debug the entirety. The course touches on security issues in the web

context and how to avoid them.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Define and contrast client-side and server-side web applications.

• Summarise the content of HTTP requests and responses.

• List different HTTP verbs and explain their purpose.

• Explain the features of the different HTTP verbs.

• Define and explain key language concepts of HTML, CSS, and JavaScript.

• Define accessibility for web applications and give examples for accessible/not accessible code.

• Predict the behaviour and look of a web application based on its source code.

• Predict the behaviour of asynchronous JavaScript codel.

• Discuss web application testing and contrast different testing techniques.

• Summarise the different principles of RESTful APIs.

• Discuss the correctness of HTTP response status codes for different REST endpoints.

• List and explain the most important web security threats according to the OWASP TOP 10.

Skills

• Develop basic client-side web applications using HTML, CSS, and JavaScript.

• Make use of AJAX to enrich web applications with asynchronous behaviour.

• Debug and test basic client-side web applications.

• Analyse web application source code for errors.

• Choose the correct HTTP request method for different REST endpoints.

• Build a RESTful backend application using Node.js and Express.js.

• Analyse web application source code for errors.

• Analyse an existing RESTful API and point out shortcomings.

• Deploy a server-side JavaScript application to an online cloud provider.

• Test and debug server-side JavaScript code.

29.sept 2021

*subject to change

25

• Develop tests for common web security threats.

• Inspect web application source code for potential security threats.

Competence

• Develop basic client-side web applications using HTML, CSS, and JavaScript

• make use of AJAX to enrich web applications with asynchronous behaviour

• debug and test basic client-side web applications

• analyse web application source code for errors

• choose the correct HTTP request method for different REST endpoints

• build a RESTful backend application using Node.js and Express.js

• analyse an existing RESTful API and point out shortcomings

• deploy a server-side JavaScript application to an online cloud provider

• test and debug server-side JavaScript code

• develop tests for common web security threats

• inspect web application source code for potential security threats

Course assessment

3-4 Assignments: 50%

Final exam: 50%

Course workload

Lecture preparations (reading/watching recordings): 2 hours

In-class session: 90 min

Labs: 90 min

Assignments/Practice: 6 hours

Reading Material

Semmy Purewal, Learning Web App Development: Build Quickly with Proven JavaScript Techniques, O'Reilly Media

29.sept 2021

*subject to change

26

T-215-STY1 Operating Systems

Credits: 6 ECTS

Year: 2nd year

Semester: Spring semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in all BSc programmes

Prerequisites: T-201-GSKI, Data Structures and T-107-TOLH, Computer Architecture

Structure: 12. week course

Lucture: Hans Reiser

Description

The course will cover many of the fundamentals of operating systems: x86_64 assembly, virtual memory, processes,

threads, process communications,deadlocks, scheduling, memory management, I/O, filesystems, access control and

security. The crux of the course will be projects and hands-on assignments..

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Be able to explain the objectives and functions of modern operating systems.

• Be able to explain dynamic memory allocation in modern operating systems.

• Be able to describe the need for concurrency within the framework of an operating system.

• Be able to explain the memory hierarchy and cost-performance trade offs.

• Be able to describe the difference between processes and threads.

• Be able to discuss the need for a hardware cache, as well as common algorithms and optimizations used to
implement it..

• Be able to explain signal handling within UNIX -based operating systems.

Skills

• Be able to explain conditions that lead to deadlock.

• Be able to compare and contrast the common algorithms used for both preemptive and non- preemptive
scheduling of tasks in operating systems, such as priority, performance comparison, and fair-share schemes.

• Be able to explain the concept of virtual memory and how it is realized in hardware and software.

• Be able to summarize the principles of virtual memory as applied to caching, paging, and segmentation.

• Be able to compare and contrast paging and segmentation techniques.

• Be able to disassemble, trace and perform rudimentary debugging of programs written in Intel x86_64
assembly.

• Be able to boot an operating system using a simulator.

• Be able to write a simple kernel module for the Linux kernel.

• Be able to write a buffer-overflow exploit.

• Be able to write working C code that interacts with standard C libraries and the operating system kernel
directly.

• Be able to write a multi-threaded multi-tenant service using semaphores and mutexes.

• Be able to write a primitive command shell for UNIX-based operating systems.

Competence

• Be able to disassemble, trace and perform rudimentary debugging of programs written in Intel x86_64
assembly.

• Be able to boot an operating system using a simulator.

• Be able to write a simple kernel module for the Linux kernel.

• Be able to write a buffer-overflow exploit.

• Be able to write working C code that interacts with standard C libraries and the operating system kernel
directly.

• Be able to write a multi-threaded multi-tenant service using semaphores and mutexes.

• Be able to write a primitive command shell for UNIX-based operating systems.

29.sept 2021

*subject to change

27

Course assessment

Homework – 15%

Participation Activities – 15%

Programming Projects – 20%

Exams – 50% (25% each)

Course workload

48 hours lecture

24 hours lab classes

24 hours lecture preparation

72 hours self-study

12 hours exam preparation and exam

Reading Material

Operating Systems published by zyBooks/Wiley

29.sept 2021

*subject to change

28

T-216-GHOH Software requirements and Design

Credits: 6 ECTS

Year: 1st year

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in Computer Science and Computer Science – business minor.

Prerequisites: No prerequisites

Structure: 12-week course

Lecturer: Dr.

Marta Kristín Lárusdóttir og Skúli Arnlaugsson

Description

Methods for the presentation and organization of requirements for software and its design are taught in the

course. The user's needs are analyzed, the structure and design of systems are defined and collaboration with the

user is practiced. Students practice the use of design methods and models in software development and user

interface design. The course coveres different test methods and introduces definition and chracteristics of object-

oriented modelling and design.

The main emphasis of the course is on the practice of methods and models for claiming, analysis, design and

testing in the early stages of software development.

Learning Objectives

On completion of the course, students should be able to:

Knowledge

• Be familiar with methods for analysing software requirements.

• Be familiar with methods for designing software.

• Know basic principles in the design of user interfaces, to be called standards and guidelines for the design of
user interfaces.

• Know the main definitions and characteristics of object oriented modelling and design.

• Be familiar with different methods of information gathering.

• Know in what way the design of a computer system or application might succeed or fail because of the
diversity of human beings.

• Be able to identify the main types of software testing and when these are used.

• Be able to describe the main concepts for user centred software development such as usability and user
experience.

Skills

• Be able to state requirements, (both functional and non-functional) for a medium sized computer system.

• Be able to make paper prototypes and intermedium prototypes of a software system.

• Have developed skills of testing in the analysis and design phase.

• Be able to evaluate the individual parts of design software.

• Be able to model the system design using diagrams like state, sequence and class diagrams.

• Be able to write reports that are understandable for recipients.

Competence

• Be able to state the requirements for a software system in a comprehensive manner.

• Be able to design user interface software systems according to the needs of users.

• Be able to evaluate their designs and improve the design with iterations.

• Be able to set out an analysis and design of a comprehensive manner in the form of reports, prototypes and
models.

Course assessment

40% of the final grade - Group assignments

10% of the final grade – Individual assignments

50% of the final grade – Written exam
To complete the course students have to: Get 4,75 or above in the written exam

29.sept 2021

*subject to change

29

Course workload

24 hours on site lectures
12 hours recorded lectures
22 hours on site problem solving sessions
2 hour exam
20 hours preparation for exam
24 hours homework on assignments

Reading material

• Interaction Design: Beyond Human-Computer Interaction (5th edition) by Sharp, H., Preece, J., Rogers, Y.,
Wiley, 2019

• UML Distilled (3rd Edition) by Fowler, M., Addison-Wesley, 2004

29.sept 2021

*subject to change

30

T-218-ALCO Algebra and Combinatorics

Credits: 6 ECTS

Year: 2nd year

Semester: Spring term, tought on odd years

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc in Discrete Mathematics and Computer Science

Prerequisites: Discrete Mathematics for engineering or Discrete mathematics II

Structure: 12-week course

Lecturer: Christian Bean

Description

This course covers groups, rings and related themes in abstract algebra. We will also cover basic combinatorics:

Counting methods, partitions, generating functions, permutations and patterns.

Learning objectives

On completion of the course, students should be able to:

Knowledge

• Know when a set with an operation is a group and when a subset of a group is a subgroup.

• Know the most common properties of groups, such as commutative and cyclic groups, normal subgroups etc.

• Know when a set with two operations is a ring and when a subset of a ring is a subring.

• Know common sets that appear in combinatorics, such as special sets of lattice paths, permutations, strings,
etc.

• Know standard methods of counting.

• Know classical permutation patterns.

Skills

• Be able to use common theorems from group theory to solve/prove statements in group theory and
combinatorics.

• Be able to use bijective maps and standard methods of counting to find the size of sets of combinatorial
objects.

• Be able to use generating functions to count.

Competence

• Know when mathematical concepts in other courses relate to groups and rings and can use group theoretic
properties outside of group theory, such as in linear algebra and number theory.

• Be able to work with generalizations of groups, such as semi-groups, groupoids and others.

Course assessment

Final exam 50%
Final project: 20%
Weekly tutorials: 30%

Course workload

36 hours lecture

16 hours exercise sessions

3 hours final exam

25 hours exam preparation

68 hours homework

20 hours lecture preparation

Reading Material

Abstract Algebra: Theory and Applications, by Tom Judson.

Combinatorics: The art of counting, by Peter Cameron.

29.sept 2021

*subject to change

31

T-220-VLN2 Semester project 2

Credits: 6 ECTS

Year: 1st year

Semester: Spring semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc in Computer Science, Bsc in Computer Science-Business minor

Prerequisites: T-216 Software requirements and Design, T-213-VEFF Web programming, T-202-GAG1 Databases

Structure: 3-week course, on-site

Lecturer: Arnar Leifsson

Description

In this course we will combine knowledge and skills from previous courses and create a fullfledged application you

can be proud to show. In the course you will create an application from idea phase to a fully functioning application.

You will embark on technologies such as Django, PostgreSQL and more.

Learning outcomes

Upon completion of the course, the student should:

Knowledge

• Student knows the requirement- and design phase of creating a complex web application.

• Student knows how to use Django to create complex web applications.

• Student knows what the MTV/MVC pattern is.

• Student knows how to communicate with a database using the Model API.

• Student knows how to migrate database changes using code-first in Django.

• Student knows how to communicate with Django views using JavaScript.

• Student knows how to use Git for better team collaboration.

Skills

• Student can work in group work when developing a complex web application.

• Student can setup a Django project.

• Student can create a complex web application using Django and Python.

• Student can pitch their assignment in an informative and concise manner. combinations.

Course Assessment

Programming Assignment: 55%

Reports: 30%

System Walkthrough: 10%

Peer Review: 5%

Course workload

20 hours lectures

28 hours reports (2 total)

90 hours coding assignment

Total: ~138 hours

Reading material

Slides from lecturer

29.sept 2021

*subject to change

32

T-233-SRAD System requirements and Design

Credits: 6 ECTS

Year: 1st year

Semester: Spring semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc in Software engineering

Prerequisites: No prerequisites needed

Structure: 12-week course-on site

Lecturer: Skúli Arnlaugsson

Description

During the course, the students will learn and develop skills to use methods for analysing and modelling the software

systems structure. In this course the focus is on designing the back end of the software systems using an object-

oriented approach using the UML modelling language. This includes describing use cases, making state diagrams,

making class diagrams, making sequence diagrams and other diagrams for supporting the modelling of the back end.

Students will do peer reviewing of the models made in the course. Additionally, students will learn about various

other models that could be used to model the software and about different design alternatives. In the course

students will practise how to write reports to describe their results. This course will be practice based, so students

will be coached through various projects to practice the skills of conducting the user interface requirements and

design methods.

Learning Objectives

Upon completion of the course, the student should:

Knowledge

• Know the main definitions and characteristics of object-oriented modelling and design.
• Be familiar with methods for analysing system requirements (back-end).
• Be familiar with methods for designing systems architecture (back-end).
• Be familiar with the main concepts of objective design and programming.
• Be able to identify the main types of software testing and when these are used.

Skills

• Be able to model the system design using diagrams like state, sequence and class diagrams.
• Have developed skills of testing in the analysis and design phase of system development.
• Be able to test the individual parts of system design.
• Be able to write reports that are understandable for recipients.

• Be able to describe the analysis, design and testing of software systems architecture in a comprehensive
manner in the form of models and results from testing.

Competence

• Be able to state the benefits and drawbacks of various models for system design.

• Be able to state the benefits and drawbacks of integrating various testing methods and practises

• Be able to state the benefits and drawbacks of fitting those models and testing methods into software devel
opment processes.

Course assessment

Final exam in Canvas (Quiz), all teaching material allowed. Mix of multiple-

choice questions, short essay questions, and a practical project. 2 hours.

Course workload

30 hours lectures
18 hours lab sessions
2 hours seminar, 2-hour final exam
25-40 hours group assignments (4 small, 2 larger)
30 hours individual assignments and peer review grading

29.sept 2021

*subject to change

33

10-30 hours homework and exam preparation

Reading Material

UML Distilled Third Edition – a Brief guide to the standard object modeling language

29.sept 2021

*subject to change

34

V-201-RHAG Microeconomics

Credits: 6 ECTS

Year: 2nd year

Semester: Spring semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc in Computer Science-Business Minor

Prerequisites: T-317-CAST Calculus and statistics

Structure: 12-week course, on site, 3 lectures and two hours of problem-solving sessions a week

Lecturer: Axel Hall

Description

In the course, students are introduced to microeconomic tools used by firms in their decision-making. References

are made to the Icelandic economy when appropriate. The main emphasis will be on the following topics of

microeconomics: demand and supply, theories of consumer behavior and cost, market structures, the information

economy, labor market, coping with risk in decision making and the role of the state interventions in markets.

Learning outcomes

Knowledge

At the end of the course the student possesses general knowledge of microeconomics. This is based on the premise

that at the end of the course the student has gained general insight and understanding on the major theories and

concepts covered in the course. This involves among other things that the student

• Has knowledge of the major theories in microeconomics.

• Can descripe the behavior of consumers in the market place.

• Has knowledge of the major theories of the firm, production and cost condtions.

• Has understanding on the functioning of markets.

• Has detailed insights into the operation of firms in the market.

• Understands major welfare economics results of the effects of taxes, tariffs and quotas.

Skills

• Can utilize basic microeconomics in decision making operations.

• Can postulate and solve practical models in microeconomics.

• Can analyse the behavior of consumers and firm in the market.

• Has analytical skills to descripe the pricing policies of firms in view of market conditions.

Competence

• Is in control of techniques to solve practical problems in microeconomics.

• Has the ability to use microeconomics in analysing economic problems.

• Has developed skills and independent work ethic for further study within microeconomics.

Course assessment

Group Assignment: 20%

Midterm Exam: 30%

Final exam: 50%

29.sept 2021

*subject to change

35

V-202-REGR Managerial Accounting

Credits: 6 ECTS

Year: 2nd year

Semester: Spring semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc in Computer Science with minor in business administration

Prerequisites: Financial accounting

Structure: 12-week course-on site

Lecturer: Will be updated

Description

This course offers a comprehensive introduction to designing, interpreting, and using financial and non-financial

information to manage organizations and drive value creation. The tools covered in the course are relevant to most

areas from marketing to operations, to human resources.

With a series of cases, we develop critical concepts and frameworks, discuss their usefulness and limitations, and

practice the relevant tools and techniques. We will take a cross-functional perspective and embed the concepts and

tools of the course within the greater context of the firm, its strategy, its structure, and its stakeholder relations.

The class balances quantitative and qualitative aspects, reflecting the reality of organizations, where managers have

to combine these two perspectives. The quantitative part only requires a good understanding of basic algebra (add,

subtract, multiply and divide) as well as common sense. During class, the relevant numbers will be reviewed to insure

that everybody’s preparation leads to a comparable set of information. But the core of the class will be devoted to

evaluating the management implications of the analysis. The reason is simple, numbers are just an input to

management, and as a leader you need to know how to get the numbers, but more importantly, what do they mean

for the management of the organization.

Managing organizations is about people. While having the right information and knowing how to interpret it is

important, the course emphasizes the behavioral implications of using this information. So, we will devote significant

time to these issues.

The course will be divided in these following three main areas: Financial Reporting, Managerial Accounting and

Management Control

1.The purpose of Financial Accounting is to provide relevant and reliable summary information about the firm to top

managers, directors and outside stakeholders. What can a manager and leader learn from the principal vehicles for

this purpose, the Balance Sheet, the Income Statement, and the Cash Flow Statement?

2.Managerial Accounting serves to deliver granular detail information about the profitability of the firm’s parts:

business segments & units, products & services, and customers. How can a manager use such detail information to

make good business decisions when several operational and strategic alternatives, respectively, are available?

3.The term Management Control covers the formal systems that leaders use to manage people and performance in

the presence of delegation. How can managers design the accounting system and other complementary systems to

control business strategy and its implementation? How do these systems promote goal congruence and achieve that

the decisions of individuals in the firm are aligned with the objectives of the firm? You will cover this part in the

second module of the course.

Learning objectives

Upon completion of this course, students should:

Knowledge:

• K1: Understand the main accounts included in the financial statements (balance sheet, income statement
and CF statement).

• K2: Understand how to record the main transactions in the financial statements.

• K3: Learn how to prepare the three main financial statements.

• K4: Understand the different accounting policies and how these can impact the financial statements.

• K5: Understand the different types of costs (variable, fixed, direct, indirect…).

• K6: Understand how cost behave

https://myschool.ru.is/myschool2/public/default.aspx?Page=Courses&Lang=1&Dept=2&ID=4&Course=V-202-REGR&CourseInst=35956#Info42

29.sept 2021

*subject to change

36

• K7: Understand what are the relevant costs (and revenues) for decision-making.

• K8: Understand the different types of cost systems.

• K9: Understand the mechanics of variance analysis and transfer pricing.

• K10: Understand the main concepts in management control.

Skills:

• S1: Be able to analyze financial statements and do a good diagnosis of the financial health of a company.

• S2: Suggest how companies can improve the quality of the financial statements so that they reflect the true
and fair image of their financial situation.

• S3: Be able to make decisions based on economic information.

• S4: Be able to analyze the profitability of the company as a whole but also of its different business units,
products, customers, etc.

• S5: Be able to perform a variance analysis to evaluate the performance of divisions and managers.

• S6: Be able to suggest the most suitable management control system for a company given its structure,
resources and people.

 Competencies:

• C1: Understand how companies report financial (and non-financial, internal and external) information and
how it can be useful for decision-making. Make a sound interpretation of the information provided.

• C2: Develop criteria to assess the validity of the information reported by the company and critically evaluate
the results.

• C3: Communicate analysis, ideas and recommendations effectively.

• C4: Analyze business problems and decisions from an economic perspective and understand the implications
to the whole organization.

Course assessment

Class participation 10%

Group case report 30%

Individual Midterm 20%

Final exam/report 40%

Reading material

Slides from lecturer

29.sept 2021

*subject to change

37

T-219-REMO Real-time Models

Credits: 6 ECTS
Year: .1st year

Semester: Spring semester

Level of course: N/A

Type of course: Mandatory in BSc in Discrete Mathematics and Computer Science

Prerequisites: T-111-PROG, Programming

Structure: 3. week course

Lecturer: Luca Aceto

Description

Computing systems are everywhere in modern society; they are becoming increasingly sophisticated and they

control key aspects of our lives. In fact, computation is even more widely present in our world than most people

realize! Think, for instance, of embedded computing devices, such as those that control ABS systems in cars, the

temperature of our houses or the functioning of mobile phones. This population of ‘effectively invisible’ computers

around us is embedded in the fabric of our homes, shops, vehicles, farms and some even in our bodies. They help

us command, control, communicate, do business, travel and entertain ourselves, and these ‘invisible’ computers

largely outnumber the desktop or laptop computers we see each day. In light of the increasing complexity of such

computing devices, and of the fact that they control important, when not altogether safety critical, operations, it is

important to adopt high standards of quality in their development and validation. However, when dealing with

software controlled devices, we still accept routinely that such systems crash and must be rebooted. In fact, we

would be surprised if we did not have to send error reports to software manufacturers! Come to think of it, software-

controlled devices are just about the only products we engineer for which we accept this level of brittleness. You do

not enter your car each day expecting it to stop and ready to send an error report to the car manufacturer, do you?

Do software-controlled systems have to be more unreliable than cars, say? A key scientific challenge in computer

science is to design and develop computing systems that do what they were designed to do, and do so reliably. In

order to meet the challenge of building dependable systems, computer scientists are increasingly using model-based

approaches to their design and validation. This means that, before actually constructing a system, one follows the

time-honoured engineering approach of making a model of its design and of subjecting the model to a thorough

analysis, whose ultimate aim is to certify that the design embodied by the model meets its intended specification.The

aim of this course is to introduce the basic ideas underlying the model of timed automata, a graphical formalism for

the description of real-time computing systems due to Rajeev Alur and David Dill. During the course, you will use the

model to describe algorithms, games, scheduling problems and other fun scenarios with relevance to computer

science, and to analyze the behaviour of the systems you have modelled using the automatic verification tool Uppaal.

Uppaal is an integrated tool environment for the description, validation and verification of real-time systems

modelled as networks of communicating timed automata, extended with data types. Summing up, this is a course

in which you will be introduced to a little neat theory with real impact on the practice of the development of

computing systems in a world that increasingly depends on the quality of software-controlled devices. Can you do

without this knowledge?

Learning outcomes

Upon completion of the course, the student should:

Knowledge

• Be able to identify the concepts of parallel and interactive systems.
• Be familiar with systems that are subject to time.
• Be familiar with the modeling tool Uppaal and the logic associated with it.

Skills

• Be able to do Uppaal models of simple systems that do not depend on time.
• Be able to describe simple properties such as systems with associated logic and demonstrate that they hold.

29.sept 2021

*subject to change

38

• Be able to do Uppaal models of simple systems that are subject to time.

Competence

• Be able to understand, analyze and create models of real systems Uppaal and explain that the model is correct
with the help of the tools.

• Be able to understand and use such models as the basis for proper implementation.

• Be able to use their own knowledge and use other similar tools when appropriate.

Course assessment

Projects – 70%

Final exam - 30%

Course workload

TBA

Reading material

Slides from lecturer

29.sept 2021

*subject to change

39

T-301-REIR Algorithms

Credits: 6 ECTS
Year: .2nd year

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory

Prerequisites: T-201-GSKI Data structure

Structure: 12. week course, on site

Lecturer: Dr. Magnús M. Halldórsson

Description

This course introduces the most important types of algorithms and data structures in use today. Emphasis is placed

on algorithms for sorting, searching and graphs. The focus is on developing implementations, analyzing them or

evaluating empirically, and assessing how useful they can be in actual situations.

Learning Objectives

Upon completion of the course, the student should:

Knowledge

• Be able to describe the efficiency of major algorithms and data structures for searching and sorting.

• Be able to describe the problem with exponential growth of brute-force solutions and its consequences.

• Be able to give examples of the use of graphs, trees, and symbol tables.

Skills

• Be able to formulate computational problems from general textual description.

• Be able to apply different search methods on trees and graphs.

• Be able to trace the execution of operations on classic data structures: heaps, binary search trees, red-black
trees, union-find structures, and tries.

• Be able to implement and apply fundamental algorithms for graphs, such as depth-first and breadth-first
search, transitive closure, topological sort, and algorithms for shortest paths and minimum spanning trees.

• Be able to assess the impact of different implementation of abstract data types on the time complexity of
algorithms.

• Be able to use “big-O”, omega and theta notations to give the asymptotic upper, lower and tight limits on the
time and space complexity of algorithms.

• Be able to apply the scientific method to infer the performance behavior of algorithms.

• Be able to implement generic data structures and apply them to different data.

Competence

• Be able to assess, algorithms, choose between possible solutions, justify the choice of method and implement
in programs.

• Be able to solve algorithmic problems in a program by combining appropriate algorithms and data structures.

• Be able to write a comprehensive description of experimentation, outcomes, and their implications

Course Assessment

Small assignments: (7out of 8 best) 21%
Bigger assignments: 3 x 8% = 24%
Final exam 50%
Participation 5%

Course workload

36 hours lecture. 18 hours dæmatími. 3 hours exam. 13 hours exam preparation. 36 hours programming
assignments. 36 hours small assignments. 24 hours lecture preparation.

Reading material

Sedgewick and Wayne: Algorithms, 4th ed.

29.sept 2021

*subject to change

40

T-622-ARTI Artificial Intelligence

Credits: 6 ECTS
Year: .2nd year

Semester: Spring semester

Level of course: 3. First cycle, advanced

Type of course: Elective course

Prerequisites: T-301-REIR Algorithms

Structure: 12. week course, on site

Lecturer: Dr. Stephan Schiffel and Dr. Adín Ramíres Rivera

Description

Artificial intelligence (AI) is devoted to the computational study of intelligent behaviour, including areas such as

problem-solving, knowledge representation, reasoning, planning and scheduling, machine learning, perception and

communication. This course gives an overview of the aforementioned AI subfields from a computer science

perspective and introduces fundamental solution techniques for addressing them. On the completion of the course,

the students should have a good overview of the field of artificial intelligence (AI) and a thorough understanding of

the fundamental solution methods used to attack a wide variety of AI-related problems. In addition, the student

should have gained experience building a small special-purpose AI system.

Learning Objectives

Upon completion of the course, the student should:

Knowledge

• Be able to name methods for modeling and reasoning with imperfect information, such as Bayesian networks.

• Be able to describe problems and possible solutions for acting in continuous, partially observable and dynamic
environments.

• Be able to describe different types of machine learning methods.

Skills

• Be able to classify autonomous agents and environments that agents operate in.

• Be able to compare and implement different search methods and optimizations for problem solving in single-
agent and adversarial environments.

• Be able to use logic for knowledge representation and problem solving.

Competence

• Be able analyze a problem, select a well-suited AI method and create an agent to solve that problem.

Course assessment

Assignments , quizes and labs 20%

2 X 20% projects

Final exam 40%

Course workload

54 hours in class (lectures, lab classes),

3 hour exam,

20 hour exam preperation,

25 hour homework assignments,

50 hour programming assignments.

Reading material

Artificial Intelligence: A Modern Approach, Stuart Russell and Peter Norvig, 3rd edition - 2010

29.sept 2021

*subject to change

41

T-302-HONN Software Design and Implementation

Credits: 6 ECTS

Year: .2nd year

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc in Software engineering

Prerequisites: T-201-GSKI, Data Structures

Structure: 12. week course

Lecturer: Þórður Friðriksson

Description

The main objective of the course is to show how to design and implement software enterprise solutions. To realize

this, the focus is on object oriented architecture and module design. Many known design patterns are discussed and

evaluated. The focus is on layered Internet systems and web APIs. The course covers how to build flexible system

that are easy to adapt, maintain, and operate. Options facing architects and how to recognize important key design

goals is covered. Topics like performance and scalability of enterprise solutions are also covered. The course uses

the Java programming language along with several open source libraries, APIs, and open source tools.

Learning outcomes

Upon completion of the course, the student should:

Knowledge

• Be knowledgeable in the basics of design software.
• Understand the different software architecture and what options are available.
• Have gained insight into how the software is organized in today´s software sector.

Skills

• Know how to design software with different patterns.
• Be trained in professional practices in software development.

Competence

• Be able to build a software framework such that generic units are reused.

• Be able to design and build flexible software.

• Be able to design and build fast scalable solutions.

Course Assessment

Projects – 30%

Labs – 30%

Final exam – 40%

Course workload

36 hours lectures

7.5 hours labs

113.5 projects and reading

20 hours examp prep

3 hours final exam

Reading material

Head First Design Patterns, Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra 1st/2nd ed.

29.sept 2021

*subject to change

42

T-302-TOLF Statistics I

Credits: 6 ECTS

Year: 1st year

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc in Software Engineering and BSc in Discrete Math. and Computer Science

Prerequisites: T-101-STA1, Calculus I

Structure: 12. week course

Lecturer: Andrei Manolescu

Description

The course aims to provide students with a good understanding of basic probability theory and practical statistics.

The students will be confident in applying statistics in data analysis, will perform testing hypotheses using a computer

software, and will be able to evaluate results of experiments were the outcome is a complex data set. The course

covers: Probabilities, conditional probabilities, random variables, error analysis, common distributions, confidence

intervals, hypothesis testing, correlation, simple and multiple regression.

Learning outcomes

Upon completion of the course, the student should:

Knowledge

• Basics of probability and statistics
• Samples and random variables.
• Uncertainty and propagation of errors.

• Most common probability distributions and the processes they model.
• Central limit theorem.
• Confidence intervals.
• Hypothesis testing and p-value.
• Correlation.
• Simple and multiple regression.

Skills

• Find out whether statistical events are dependent or independent.
• Compute random variables corresponding to basic distributions.

• Compute uncertainties and confidence intervals.
• Compute random variables corresponding to basic distributions.
• Use computer software to do statistical tests and interpret the results (Excel, R, Matlab, or other options).
• Perform hypothesis testing using computer software.
• Use computer software to obtain correlation and regression coefficients and their standard errors.

Competence

• Decide which probability distribution is appropriate to describe the data.

• Select the most appropriate hypothesis testing in different situations.

• Understand when the tested hypothesis should be rejected or not.

• Understand the output of a computer software used for statistics.

• Decide what particular options of the software to use for a specific test.

• Be able to reproduce with mathematical formulas the results shown by the software.

Course Assessment

Assignments– 50%

Final exam – 50%

Reading material

Statistics for Engineers and Scientists by William Navidi (McGraw - Hill).

29.sept 2021

*subject to change

43

T-303-HUGB Software Engineering

Credits: 6 ECTS

Year: .2nd year

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc in Computer Science, BSc in Discrete Mathematics and Computer Science, BSc in

Computer Science-Business minor

Prerequisites T-111-PROG Programming and T-216-GHOH Software requirements ans design

Structure: 12. week course, On-site

Lecturer: Dr. Grischa Liebel

Description

T-303-HUGB will cover the essentials of the term Software Engineering (SE): Process models, Requirements

Engineering, Software Modelling, Architecture, Design and Testing. This coverage of basic SE knowledge is

complemented with several recent trends in SE. Knowledge in Requirements Engineering and Software Modelling is

only provided in addition to the material covered in T-216-GHOH. The course is intended as an introduction course,

thus covering basics in many topics, all of which could be deepened in the form of additional courses.

Learning outcomes

Upon completion of the course, the student should:

Knowledge

• Contrast software engineering techniques required for different types of software systems.
• Discuss ethical issues arising in the context of modern software engineering projects.
• Explain what software engineering is and why it is needed.
• Illustrate the term stakeholder in relation to different types of software systems.
• Summarise different techniques for performing requirements validation.
• Discuss how system modeling can be used in different ways to address the needs of modern software syste

ms.
• Discuss the need for systematic processes in software engineering.
• Compare plan-driven and agile processes in relation to different types of software systems.
• Explain several common agile practices.
• Discuss the issues of applying agile processes in large-scale and regulated environments.
• Explain the different stages and scopes of testing.
• Discuss different testing coverage criteria.
• Discuss how architectural decisions can affect different system qualities.
• Illustrate key architectural patterns.
• Explain key design patterns of object-oriented design.
• Contrast security and safety in the context of software systems.
• Summarise design guidelines to achieve security in software systems.
• Illustrate the key ideas of model-based engineering.
• Summarise recent trends in software engineering.

Skills

• Classify different kinds of requirements needed in software engineering.
• Apply system modeling to provide an overview of a software system.
• Demonstrate understanding of different parts of the Scrum process.
• Conduct unit and system testing in a test-first matter.
• Make use of architectural styles/patterns to create a basic system architecture.

Competence

• Formulate functional and quality requirements using different techniques.

29.sept 2021

*subject to change

44

• Adapt a process to the specific needs of a software system.
• Examine the role of human factors in the development of software systems.

Course assessment

Theoretical part 50% and practical part 50%:
50% through group work (several rubric-based pass/fail grades leading to a five-step grade), 30% through three
quizzes (2 open essay questions each; each quiz counts 10%), one final written exam (essay-style questions, 20%).

Course workload

Reading: 1 hr/week
Watching recordings: 1.5hrs/week
Live stream: 1.5 hrs/week
Labs: 1.5 hrs/week
Group work: 5 hrs/week

Reading material

Software engineering by Ian Summerville (9th edition)

29.sept 2021

*subject to change

45

T-315-IUPP Introduction to experience design

Credits: 6 ECTS

Year: .2nd year

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Elective

Prerequisites: None

Structure: 3. week course, On-site, Lectures and problem-solving lessons

Lecturer: Margrét Dóra Ragnarsdóttir

Description

The course will be comprised of three interrelated parts. Part one covers user research, the second part covers

experience design and the third one covers interaction design. The students will build on one product idea

throughout the course and that way each part builds on the next Part 1: User Research This part of the course

examines what can be learned from those that are supposed to be use the product/service that we are designing

and how we can use that information to create a product/service that is useful. We will cover various techniques for

user research such as interviews, observations, ethnography, usability testing, web statistics, focus groups, surveys

and others. We will discuss the strengths and weaknesses of each technique and what information they can glean,

when they are appropriate to use and how to incorporate the results into the product development. Students will

build skills in setting up and executing user research and recognize which technique to use when. Part 2: Experience

design When designing a product/service it is not enough just to consider the digital aspect of the service (the

app/website). In order to give great service you have to understand all the touch points with the customers

throughout their journey. This is what we call experience design. In this part of the course we‘ll discuss how to define

the beginning and end of a customer journey and how we define how the organization interfaces with its customers

depending on where they are in the journey, whether it is in person, over the phone, or through a digital interface.

Students will build skills in understanding and defining an experience through a journey map. Part 3: Interaction

design The last part of the course covers interaction design. We will discuss how to create wireframes, what tools

to use, how to iterate and test all the way from a rough sketch on paper until you have a fully designed interface in

the appropriate branding. Topics include wireframes, tools (including Sketch, Invision, some Adobe products), grids

for layout, call to action, copy, color and fonts. Students will build skills in sketching a digital user interface and

iterating on it until it is ready for development.

Learning outcomes

Upon completion of the course, the student should:

Knowledge

• Explain the basic concepts and methodology of user research.

• Explain the basic concepts and methodology of experience design.

• Explain the basic concepts and methodology of interaction design

Skills

• Apply experience design methods in product development.

• Evaluate which user research technique will give them the information they need.

• Setting up and executing user research effectively

• Communicate the user research and design effectively to the team that will execute the development

• Create a journey map

• Create wireframes

Competence

• Know the benefits and drawbacks of various methods of experience design

• Execute and incorporate user research into product development.

Course assessment

Attendance: 15%
Participation in class: 15%

29.sept 2021

*subject to change

46

Assignment and Report (group): 50%
Presentation of assignment (group). 20%

Course workload

36h of lectures

24h exercise classes

90h projects and reading

Total 150 h

Reading material

Slides from lecturer

29.sept 2021

*subject to change

47

T-316-UPPL The Information and Technology Society

Credits: 6 ECTS

Year: 2nd year

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Elective

Prerequisites: None

Structure: 12. week course

Lecturer: Ásrún Matthíasdóttir

Description

This course exams the social, legal and ethical topics related to information and communication in modern society.

The main themes of the course will be: Privacy and security, Intellectual wealth, Computer crime and other legal

issues, Computers and risk, Ethical base, instructions and warranty, Effects of computerization on the workplace,

work practices, teamwork and professional culture, E-commerce and E-government, Society, internet culture and

the impact on health and education Emphasis will be placed on training students to write reports with their projects.

Learning outcomes

Upon completion of the course, the student should:

Knowledge

• Be able to describe the advantages and disadvantages of the information society
• Be aware of the social, ethical and philosophical impact of computerization.
• Be able to understand the impact of information and communication technology in homes, schools,

workplaces, recreation, health and education.

• Be able to identify key moral questions relating to computers and who is responsible when working with
computers.

• Know the legal environment, information technology and legal issues such as privacy and security, intellectual
wealth and computer crime.

Skills

• Be able to write reports and articles on topics related to computers.

Competence

• Be able to follow the development of the information society and be able to evaluate it critically.

• Be able to articulate a vision of the desired effect of computerization.

Course Assessment

Theme project– 50%

Reading diary – 40%

Report – 10%

Course workload

150-180 hours per semester

Reading material

Books, research papers, online presentations

29.sept 2021

*subject to change

48

T-317-CAST Calculus and Statistics

Credits: 6 ECTS

Year: 1st year

Semester: Fall semester.

Level of course: N/A

Type of course: Elective

Prerequisites: None

Structure: 12. week course

Lecturer: Dr. Henning Ulfarsson and Dr. María Óskarsdóttir

Description

The main objective of the course is to show how to design and implement software enterprise solutions. To realize

this, the focus is on object oriented architecture and module design. Many known design patterns are discussed and

evaluated. The focus is on layered Internet systems and web APIs. The course covers how to build flexible system

that are easy to adapt, maintain, and operate. Options facing architects and how to recognize important key design

goals is covered. Topics like performance and scalability of enterprise solutions are also covered. The course uses

the Java programming language along with several open source libraries, APIs, and open source tools.

Learning outcomes

Upon completion of the course, the student should:

Knowledge

• Know basic properties of functions of one variable, such as polynomial, rational, logarithmic, exponential and
trigonometric functions.

• Be familiar with the basic concepts of calculus, such as continuity and differentiability.

• Know the derivatives of common functions of one variable, such as polynomial, rational, logarithmic,
exponential and trigonometric functions.

• Understand integration and know integrals for common functions of one variable. Be familiar with integration
by substitution and integration by parts.

• Know what a differential equation is and have seen some examples of differential equations.

• Be familiar with discrete probability and some basic methods for its calculation, in particular permutations
and combinations.

• Be familiar with discrete probability distributions, in particular the binomial distribution, and know how to
compute their expected value and standard deviation.

• Know continuous probability distributions, in particular the normal distribution and the t-distribution.

• Be familiar with confidence intervals and hypothesis testing.

• Be familiar with correlation and regression.

Skills

• Be able to differentiate functions of one variable, such as polynomials, rational, logarithmic, exponential and
trigonometric functions.

• Be able to use differentiation to sketch the graphs of various functions of one variable. Be able to integrate
various functions of one variable, for instance using integration by substitution or integration by parts.

• Be able to solve various practical problems by constructing a function and using differentiation to find its
maximum or minimum value.

• Be able to solve very simple differential equations, for example for exponential growth or exponential decay.

• Be able to calculate discrete probability using techniques such as permutations and combinations. Be able to
calculate expected value and standard deviation for discrete probability distributions, such as the binomial
distribution.

• Be able to compute probabilities for continuous variables, using for example the normal distribution or the t-
distribution. Be able to compute confidence intervals and test hypotheses. Be able to compute the correlation
coefficient and find a regression line.

Competence

• Be able to analyze various problems and apply the methods of the calculus of one variable to solve them.

• Be able to apply hypothesis testing to analyze sets of measured data.

29.sept 2021

*subject to change

49

Course Assessment

Final exam 50%

Weekly assignment: 24%

Post lecture short quiz: 26%

Course workload

36 hours lecture

16 hours exercise sessions

3 hours final exam

25 hours exam preparation

48 hours homework

20 hours lecture preparation

20 hours Post lecture short quiz

Reading material

Active Calculus.

Bluman: Elementary Statistics, 9th edition

29.sept 2021

*subject to change

50

T-333-HFOV - Software Processes and Project Management

Credits: 6 ECTS

Year: 2nd year

Semester: Fall semester.

Level of course: 1. First cycle, introductory

Type of course: Mandatory in Bsc in Software Engineering

Prerequisites: Upplifunarhönnun notendaviðmóta og kerfisgreining og kerfishönnun

Structure: 3. week course, on-site

Lecturer: Björn Brynjar Jónsson

Description

In the course various project management processes will be described in detail and discussed. The history of
software development processes will be covered and the emphasis in each of the discussed. Additionally, supportive
processes and methods will be covered, such as estimating the size of each activity in the software development
and prioritising the activities.
Particularly students will gain skills in using the agile process Scrum, defining roles, artifacts and cerimonies and
understanding the challenges and benefits of each of them. Other agile processes will be described and discussed.
Professionals from industry will describe their challenges and experiences.

Learning outcomes

Upon completion of the course, the student should:

Knowledge

• Be familiar with the different software development phases and the main software development processes
that are used for software development.

• Be familiar with how to state the vision for a software development project.
• Be familiar with how to state requirements and work with those in a structured way.
• Be familiar with how to estimate the workload of each activity in the project and how to keep track of the e

stimations.

Skills

• Have gained skills in analysing different types of requirements and work with those in a structured manner.
• Have gained skills in estimating the workload and size of requirements and make project plans.
• Have gained skills in using the roles, artifacts and cermonies in the Scrum development process.

Comptetence

• Be able to state the benefits and drawbacks of Scrum in contrast to other development processes.

• Can choose the appropriate process to manage a software development project.

Course Assessment

3 assignments that count as 1/ for the final grade each

Course workload

36h of lectures

 24h exercise classes

 90 - 120h projects and reading

 Total 150 – 180 hours

Reading material

Software Project Managament, Bob Huges and Mike Cotterell

User Story Mapping, Jeff Patton

Agile Estimation and Planning, Mike Cohn

https://myschool.ru.is/myschool2/public/default.aspx?Page=Courses&Lang=1&Dept=1&ID=64&Course=T-333-HFOV&CourseInst=35522#Info27

29.sept 2021

*subject to change

51

V-307-GARS Design and Analysis of Ann. Fin. Statem.

Credits: 6 ECTS

Year: 3rd year

Semester: Fall semester

Level of course: 2. First cycle, intermediate

Type of course: Mandatory in BSc in Computer Science – minor in Business

Prerequisites: None

Structure: 12. week course

Lecturer: Halldór Ingi Pálsson

Description

Introduction to annual financial statement´s laws and regulations about its presentation and contents. Students get
practice in making financial statements. The annual financial accounts of some companies will be distributed or and
discussed in class. Rules about share investments and other securities will be studied, taking laws about annual
financial account and IAS into consideration. Shareholder´s equity accounts and disposable possibilities of single
accounts will be studied with reference to the laws. Rules about income tax bookkeeping in statements of accounts
will be introduced. The cash flow statement and analytics concerning the statement. A lecturer will come and discuss
methods of assessing value of companies. Introduction of the buying right of shares (options) in the statement of
account along with the main analytics in the annual financial account. A short presentation about pension and
guaranteed obligation, intangible assets and the difference between finance lease agreements and other lease
agreements. The main thinking about consolidation accounting will also be studied.

Learning outcomes

Upon completion of the course, the student should:

Knowledge

• Knowledge on the main accounting theories and the main rules in the icelandic financial statement laws,
selected paragraphs in International Financial Reporting Standards (IFRS), the rules of the Icelandic
accounting board and selected paragraphs from the Icelandic tax code..

• That students acquire the knowledge of the most common financial ratios derived from financial statements.
• That students acknowledge the fact that good excecutives have knowledge of financial accounting and

acknowledge the importance of this knowledge to be able to make informed business and investing decisions
based on financial statements.

Skills

• That students acquire the skills to be able to prepare simple financial statements and perform simple tax
calculations.

• That students aquire skills in understanding the information that are presented in the financial statements
and can take advantage of these information to make decisions and perform analytics of companies.

Comptetence

• That students are able to use the accounting policies introduced in the course to understand and evaluate
financial statements.

• That students understand in that context, news and coverage about financial statements and use the
knowledge aquired thereof.

• That students can discuss both orally and in writing, financial statements, accounting policies and simple tax
matters.

Course Assessment

Assignments – 40%

Mid-term exam – 10%

Final exam – 50%

Course workload

48h of lectures,
24h exercise classes,
60 – 90h projects and reading
15h for exam prep. and

29.sept 2021

*subject to change

52

3 hours for the exam.
 Total 150 – 180 hours

Reading material

Kieose, Weygandt og Warfield. Intermediate Accounting IFRS edition, 4th ed.

29.sept 2021

*subject to change

53

V-311-OPMA Operations Management

Credits: 6 ECTS

Year: 3rd year

Semester: Fall semester

Level of course: N/A

Type of course: Mandatory in BSc in Computer Science – minor in Business

Prerequisites: None

Structure: 12. week course

Lecturer: Reynir Kristjánsson

Description

The activities of operations management and the role of the operations function in achieving strategic success. The
development of operations management and process management. The volume - variety effect on process design,
layout, process technology, and job design. Configuring the supply network. The activities of supply chain
management. Types of relationships in supply chains. Supply chain behavior. The location of capacity. Forecasting
demand. Planning and control activities. Measuring demand and capacity. The alternative capacity plans. The use of
OEE in capacity calculations. Inventory management. The volume decision - how much to order. The timing decision
- when to place an order. JIT planning and control. The maser production schedule and MRP. Enterprise resource
planning (ERP). Project management. Performance measurements, benchmarking and the balanced scorecard.
Quality control and how quality problems can be diagnosed. Business improvement and improvement methods.
Improvement priorities. Breakthrough vs. continuous improvement. Business process reengineering (BPR). Strategy
and operations strategy. Organizations and the importance of an end-to-end process focus when it comes to
strategic planning and organizational design. The process concept and the process focused organization.
Management systems: The Lean management system. TQM and Six Sigma.

Learning outcomes

Upon completion of the course, the student should:

Knowledge

• Explain the meaning of concepts used in operations management.
• Describe the interconnections of concepts used in operations management.
• Use the methods introduced in the course to solve problems.

• Participate in discussions on issues realated to operations management.

• Explain the different management systems introduced in the course and explain their differences.

Course Assessment

Assignments – 50%

Finam exam – 50%

Course workload

48h of lectures,
24h exercise classes,
60 – 90h projects and reading
15h for exam prep. and
3 hours for the exam.
 Total 150 – 180 hours

Reading material

Operations Management 9th ed. by Nigel Slack and Alistair Brandon-Jones

29.sept 2021

*subject to change

54

E-402-STFO Mathematical Programming

Credits: 6 ECTS

Year: 2nd year

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc in Computer Science and Discrete mathematics

Prerequisites: Calculus I, Discrete Mathematics for engineering and Algortithms or Calculus and statistics, Discrete

Mathematics I and Algorithms.

Structure: 3-week course, on-site

Lecturer: Arnar Bjarni Arnarson

Description

Mathematics is generally discovered through experiments. Traditional tools for such experiments are pen and paper,

and, of course, the mind. A (historically) recent addition to these tools is the computer. We will look at problems

from several areas of mathematics and, in particular, how programming can be used as a means to better

understand and ultimately solve those problems. This will involve designing and implementing algorithms,

experimentation to make conjectures, and deductive/formal mathematics to prove conjectures. For programming

we will use python/sage (https://cloud.sagemath.com).

Learning objectives

Upon completion of the course, the student should:

Knowledge:

• Know how computers and algorithms are used in research, both in mathematics and computer science.

• Recognize linear programming as a method for solving problems.

• Recognize dynamic programming as a method for solving problems.

• Recognize search methods as a method for solving problems.

• Recognize brute force and other common solution methods for solving problems.

• Know when writing code is better, or worse, than trying to prove a problem by hand.

• Know several objects from discrete mathematics, such as permutations, graphs, games (like the Game of Life)
and finite surfaces (tori and the Klein bottle).

• Know several objects from continuous mathematics, such as the critical points of functions of several
variables.

Skills

• Be able to use a computer to test conjectures and run simulations.

• Be able to use dynamic programming to solve problems.

• Be able to use linear programming to solve problems.

• Be able to use search and other common methods to solve problems.

• Be able to choose an appropriate method to deal with different problems.

• Be able to prove certain problems by hand, where running simulations is to time-consuming.

Competence

• Be able to use the Sage computer algebra system to assist them in other courses.

• Be able to recognize which kind of problems can be solved with the solution methods treated in the course.

Course assessment

Projects 80%

Final exam 20%

Course workload

48h of lectures,
24h exercise classes,
60 – 90h projects and reading
15h for exam prep. and
3 hours for the exam.

29.sept 2021

*subject to change

55

 Total 150 – 180 hours

Reading material

Slides from lecturer

29.sept 2021

*subject to change

56

T-403-FORC Programming in C++

Credits: 6 ECTS

Year: 2nd year

Semester: Spring semester

Level of course: 1. First cycle, introductory

Type of course: Elective

Prerequisites: Calculus I, Discrete Mathematics for engineering and Algortithms or Calculus and statistics, Discrete

Mathematics I and Algorithms.

Structure: 3-week course, on-site

Lecturer: KYeari Halldórsson

Description

The course is intended for students to increase their knowledge and training in general programming and to learn

the programming language C++ in preparation for courses and projects that demand use of C++ or related

programming languages. Students will learn differences between compiled and scripted programming languages,

the difference between loosely and strongly typed programming languages and different methods of memory

allocation and argument passing. Students will finish several assignments where they will use pointers and dynamic

memory allocation, multithreading, object orientation, inheritance and polymorphism in their C++ programs.

Students will also learn to use the C++ standard template library for data storage and manipulation in their programs.

Furthermore, they will practice some specific programming methods such as function pointers or bit-shifting and

design patterns such as the singleton design pattern or other similar methods.

Learning outcomes

Upon completion of the course, the student should:

Knowledge

• Students understand the main differences between compiled languages and scripting languages.

• Students understand the main differences between loosely and strongly typed programming languages.

• Students know and understand different argument passing methods.

• Students know and understand different methods of memory allocation in programs.

Skills

• Students can write code in C++ and compile and run the programs using standard C++ compilers.

• Students can utilize both call-by-value and call-by-reference correctly in C++ programs.

• Students can write programs in C++ using pointers and dynamic memory allocation.

• Students can write multithreaded programs in C++.

• Students can write programs that use the standard.

Competence

• Students can write, compile and run programs, written in the C++ language, utilizing C++ specific methods
and various general programming methods to solve diverse computational problems.

Course Assessment

Programming assignments (5x10%): 50%

Participation: 5%

Quizzes: 5%

Final exam: 40% (Students have to pass final exam with 48 points or more for other grades to count)

Course workload

36 hours lectures and quizzes,

10-20 hours practice exercises,

60-100 hours programming assignments,

20 hours exam preparation,

3 hours exam.

29.sept 2021

*subject to change

57

Reading material

Slides from lecturer.

29.sept 2021

*subject to change

58

T-404-LOKA Final Project

Credits: 12 ECTS

Year: 3rd year

Semester: Fall and spring semester

Level of course: 2. First cycle, intermediate

Type of course: Mandatory in all programmes

Prerequisites: T-216-GHOH, Software Requirements and Design, T-220-VLN2, Semester Project 2, T-303-HUGB,

Software Engineering

Structure: 15. week course

Lecturer: Hallgrímur Arnalds

Description

The Final Project consists of software development in collaboration with a customer and users outside the university.

The purpose of the final project is to give students experience of working independently on specification, design and

implementation of software and to use accepted methods in the development cycle. Normally 2 to 4 students work

together in a project group. While working on the project, students gain practical experience of analysis, design,

programming and testing. The projects are evaluated by the project supervisor and two other internal examiners.

The grade is based on evaluation at various stages of development and considers all aspects of the development

work. The projects conclude with a public presentation. To be able to register for a final project, students need to

have finished at least 78 ECTS credits.

Learning outcomes

Upon completion of the course, the student should:

• Present the work to different audiences with or without technical backgrounds.

• Have gained experience working on a mid-sized software project with a team.

• Use a version control system in software development.

• Organize the team, define a schedule, and work according to defined schedule in making a software system.

• Have gained pra-4ctical training in project management.

• Design, analyze and implement software.

• Choose and justify the choice of an approved method of software development.

• Define and carry out the user, unit and system testing.

• Analyze user needs and implement the software necessary to fulfill the user needs.

• Explain the status of the project, what the project was created to perform, what is left, and give a project
status based on schedule.

Course Assessment

Final presentation, three status meetings during semester, final report, Graded by instructor and evaluator

Course workload

300 – 360 hours, students log hours

Reading material

Slides from lecturer.

29.sept 2021

*subject to change

59

I-406-IERP Introduction to ERP Systems (ERP)

Credits: 6 ECTS

Year: 3rd year

Semester: Fall semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in BSc in Computer Science-Business minor

Prerequisites: T-111-PROG, Programming

Structure: 12. week course, on-site

Lecturer: Sigríður Jónsdóttir and Þórdís Magnúsdóttir

Description

The largest investment companies make in information technology is Enterprise Resource Planning, ERP. ERP is

another way to describe the interaction between the processes and technologies in operation. The processes and

technologies that are included are planning, procurement and product management, human resources, finances,

inventory and sales. In recent years there has been a lot of change in this sector with systems becoming more

versatile and powerful than before, and extends into the activity of companies. According to a recent survey by

Gartner´s, companies investment in information technology business systems will continue to increase in the coming

years. The main obstacle for growth in this sector relates to the lack of personnel with expertise in this area, which

is a combination of sustained knowledge of information technology and major business processes. The largest

players in this market are SAO, Oracle and Microsoft, and the working environment is global. This course seeks to

create a good base of knowledge for anyone who wants to further study the function and development of ERP

systems. In the course different ways of implementation and the impact ERP systems have on business operaions

will be discussed. The teaching in this course will be based on Microsoft Dynamics NAV. By the end of the course

students will be able to understand the function and main features of ERP systems. During the course we will also

"look under the hood" and give students the opportunity to work in the technology environmentother programming

and mathematical courses, for testing conjectures, drawing graphs, etc.

Learning outcomes

Upon completion of the course, the student should:

Knowledge

• Be able to describe the functions and use of ERP systems and their development over time

• Be able to define key components of ERP systems and describe their context.

Skills

• Be able to work with the main system components in Microsoft Dynamic NAV

• Competence Be able to program simple functionality with the ERP system.

Competence

• Be able to design processes within the ERP system

Course assessment

Group assignment: 20%

Assignments: 35%

Final project/essay: 15%
Small assignments and quizzes: 25%
Group project in GIT: 5%

Course workload

36h of lectures
24h exercise classes
90h projects and reading
Total 150 hours

29.sept 2021

*subject to change

60

Reading material

Material from lecturers, Dynamics 365 Business Central (BC)Windows Client.

29.sept 2021

*subject to change

61

T-409-TSAM Computer Networks

Credits: 6 ECTS

Year: 3rd year

Semester: HaustSemester Fall semester

Level of course: 2. First cycle, intermediate

Type of course: Mandatory

Prerequisites: T-201-GSKI Data structures

Structure: 12. week course, on-site

Lecturer: Jacqueline Clare Mallet og Stephan Schiffel

Description

The course will focus on teaching methods for analysing, designing and evaluating software systems anticipating the

users aspects in software development. Students will gain skills in using particular methods for analysis, design and

evaluation of user interfaces. Furthermore, other methods for analysing, designing and evaluating user interfaces

will be described. Research on user centred software development methods will be described, when it is best to use

each method and how practitioners have ranked the methods. The integration of user centred software

development methods into Scrum will be discussed, and the integration of user experience into lean software

development. Furthermore, experiences from industry will be a part of the course. The methods taught in this course

supplement those taught in the course Software Requirements and Design.

Learning outcomes

Upon completion of the course, the student should:

Knowledge

• Be familiar with several methods for analysing the user needs for software systems.

• Be familiar with evaluation with and without the participation of users.

• Be familiar with guidelines for good user interface design.

• Be familiar with the integration of user-centered design methods in the Scrum software process.

Skills

• Be able to make a vision (ie, Visioning) for a software project and explain it.

• Be able to analyse the context of use for software systems.

• Be able to perform contextual inquiries and derive the results using an affinity diagram.

• Be able to design an interface that is based on the relationship schema and test it with users.

• Be able to perform formal user evaluations.

Competence

• Assessment Be able to choose which user-centered design methods are suitable in different cases.

• Know the advantages and disadvantages of user centred design methods.

Course assessment

Weekly quizzes: 10%

Home assignments: 15% (3x5%)

Programming assignments: 25% (5%+10%+10%)

Final exam: 50%

Bonus points for questions and answers on Piazza: 5%

Bonus point for „excellent code quality“: 5%

Course workload

48 hours lecture,

24 hours problem sessions,

12 hours weekly quiz,

80 hours homework

20 hours exam preperation

29.sept 2021

*subject to change

62

Reading material

Computer Networks Andrew Tannenbaum Pearson (New International Edition/5th)

29.sept 2021

*subject to change

63

T-414-AFLV Effective programming and probem solving

Credits: 6 ECTS

Year: 2nd/3rd year

Semester: Spring

Level of course: 1. cycle, advanced

Type of course: Elective

Prerequisites: T-111-PROG Programming, T-110-VERK, Problem Solving, T-301-REIR, Algorithms
Structure: Three-week course

Lecturer: Arnar Bjarni Arnarsson

Description

Computer scientists often have to deal with challenging tasks requiring both fast algorithmically linear solutions and

efficient coding. This is one of the reasons why programming puzzles and oral exams are used so often in job

interviews when applying to the strongest companies or graduate schools. The goal of this course is to make students

better in solving algorithm tasks and acquire skills in a fun competition environment. The training exercises include

challenges from international competitions, such as the ICPC and ToCoder. Other main tasks is to make decisions

under strict time limits. Training will also be done in cooperation and dialogue, and by utilizing scarce resources (e.g.

, one computer for each team with a limited time). The course is intended to be informative, but at the same time

fun. The material that will be covered includes much of the material in the algorithm’s courses (e.g., data structures,

dynamic programming, network search, and share-and-rule), but the emphasis will be different: how we perceive

what solution method is applicable, the choice of design decisions when project is brought into the framework of

solution method, and how this is implemented in the code. Students will tackle with applying and refining the core

methods of transferring demonstration solutions into a programming solution.

Learning Objectives

On completion of the course, students should be able to:

Knowledge

• Be able to describe algorithms, data structures and projects in a clear manner.

Skills

• Be able to develop the correct implementation of a well-defined algorithm or data structure.

• Be able to compare the difficulty of different tasks.

• Be able to report on the effectiveness of different solution approach for the given task to determine which
methods are effective enough for the given conditions.

• Be able to apply various types of algorithms, such as greedy methods, dynamic programming, share-and-rule
and Heuristic to solve given tasks.

• Be able to communicate and work in a group setting to solve problems under time pressure.

Competence

• Be able to develop solutions to projects that have not been seen before.

Course assessment

Problem sets:70%

Problem sessions:10%

Final exam: 20%

Course workload

36 hours lecture,

80-120 hours exercises and programming assignments,

20 hours exam preparation,

3 hours exam.

Reading material

Slides from lecturer.

29.sept 2021

*subject to change

64

T-417-TOOR Computer Security

Credits: 6 ECTS

Year: 2nd/3rd year

Semester: Fall

Level of course: 1. cycle, advanced

Type of course: Elective

Prerequisites: T-215-STY1, Operating systems, T-409-TSAM, Computer networks

Structure: Three-week course

Lecturer: Níels Ingi Jónasson

Description

This course covers the section of information security that covers software and hardware and their use. We will dive

into common vulnerabilities in software and web services, how attackers exploit them, and how it is possible to

defend systems against such attacks. We will also cover network security, and many other attacks used by hackers

today. The goal of this course is for students to gain a deep understanding of the core fundamentals of cyber and

information security and understand the mindset of the hacker well enough to prevent attacks.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Can explain the ideas and implementations of common programs used to exploit vulnerabilities in well
protected software systems to obtain some privileges

Skills

• Can explain the most common vulnerabilities of today, both within software and networking.

• Can identify vulnerabilities within real world software

Competence

• Can write programs to exploit vulnerabilities within vulnerable systems.

• Can explain in detail methods to prevent common vulnerabilities and their exploitation within software and
networking

Course assessment

Assignments and final project.

Course workload

48 hours lecture,

24 hours lab classes,

24 hours lecture preparation,

72 hours self-study and practical assignments,

12 hours exam preparation and exam.

Reading material

Slides from lecturer.

29.sept 2021

*subject to change

65

T-419-STR2 Discrete Mathematics II

Credits: 6 ECTS

Year: 2nd year

Semester: Spring

Level of course: 1. cycle, advanced

Type of course: Mandatory in Computer Science and Computer Science – minor in business

Prerequisites: Discrete Mathematics I
Structure: Twelve- week course

Lecturer: Antonios Achilleos

Description

This course is the follow-up of Discrete Mathematics I. It covers the basics of three topics in discrete mathematics

that are of fundamental importance in the theory and practice of computer science: grammars and finite automata

as models of languages and computation, respectively; linear algebra and its applications in computer science, with

emphasis on solving systems of linear equations using Gaussian elimination. matrix algebra and matrix

transformations, operations on vectors (scalar multiplication, dot product and cross product) and equations for lines

and planes; discrete probability, with focus on assigning (conditional) probabilities, Bayes´ Theorem and expectation.

Learning Objectives

On completion of the course, students should be able to:
KnowledgeOn completion of the course, students should be able to:

• Understand recursive definitions and their associated proof techniques.

• Understand finite automata, grammars, regular expressions and their relationships.

• Understand the concepts of cardinality, countably infinite sets and uncountable ones.

• Be aware that the halting problem is algorithmically unsolvable.

• Understand the basic notions in linear algebra related to matrices, vectors and linear transformations.

• Know how to use linear algebra in computer graphics.

• Understand probability and conditional probability.

• Understand Bayes' rule.Understand the concept of expectation.

• Be familiar with the binomial distribution.

• Be familiar with the definitions of trigonometric functions, including addition formulas.

Skills

• Be able to formulate inductive definitions of discrete structures, such as strings and trees, and construct
proofs by structural induction over those structures.

• Be able to argue whether an infinite set is countable or uncountable.

• Be able to design grammars generating some simple languages and finite automata accepting them.

• Be able to write regular expressions denoting some simple regular languages.

• Be able to solve systems of linear equations using Gaussian elimination.

• Be able to use matrix algebra and geometric transformations in computer graphics.

• Be able to use operations on vectors (scalar multiplication and dot product) and to write equations for lines
and planes.

• Be able to assign probabilities to events over finite probability spaces.

• Be able to calculate conditional probabilities.

• Be able to apply Bayes´ Theorem to estimate probabilities based on partial evidence.

• Be able to calculate the expected value of a discrete random variable.

• Be able to use trigonometric functions for rotations in computer graphics

Competences

• Have the knowledge to use automata, grammars and regular expressions in computer science applications,
such as compiler design, software engineering and testing.

• Have the knowledge to search for applications of linear algebra in computer science.

• Know when and how to use the tools of discrete probability, conditional probability and Bayes' rule.

Course assessment

3 projects 15%

29.sept 2021

*subject to change

66

5 smalles projects. 15%

Mid term exam 30%

Final exm 40%

Course workload

48 hours lectures

24 hours of practice exercises

25 total hours for the assignments

5 hours exam

15 hours exam preparation

Reading material

Discrete mathematics and Its Applications, (aðalbók)

Höfundur: Kenneth H. Rosen

Útgefandi: McGraw-Hill

Útgáfa: Seventh Edition (Global Edition)

ÚtgáfuYear: 2013

29.sept 2021

*subject to change

67

 T-419-CADP Concurrent and distributed programming

Credits: 6 ECTS

Year: 3rd year

Semester: Spring semester

Level of course: 1. cycle, intermediate

Type of course: Mandatory in BSc in Software Engineering

Prerequisites: T-215-STY1, Operating Systems, T-301-REIR, Algorithms
Structure: 12. week course, on-site

Lecturer: Marcel Kyas

Description

Multi-Core machines, networks of interconnected computers and heterogeneous computing environments have

become ubiquitious. Writing programs that utilize these systems ‘s resources to its fullest involves writing multi-

threaded and distributed programs. In this course, participants learn to write such programs in C using the pthreads

API and in the Go programming language. The Go programming language is a concurrency-oriented programming

language developed by Google for concurrent and distributed applications. They learn to avoid unintended

nondeterministic effects and deadlocks and they learn to structure concurrent and distrbibuted programs. The

basics of threads, processes, semaphores and mutexes will be repeated. Then, patterns are described to structure

common algorithms for concurrent execution and understand the basic architectures. Programming with monitors

and with transactional memory will be considered. Distributed message passing systems and middleware will be

discussed. Participants learn to structure distributed applications and understand their architecture.

They will also consider coordination methods that describe how the activities of the processes in a distributed system

achieve a common goal. At the end, participants are able to demonstrate a concurrent application, understand the

way it is constructed and be able to justify the functional and nonfunctional properties of the application.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Be able to describe the need for concurrency for programs.

• Be able to explain the challenges of concurrency (non-determinism, combinatorial explosion, problems of
testing).

• Be able to explain the difference between processes and threads.Be able to explain conditions that lead to
deadlock.

• Be able to explain strategies for deadlock avoidance.

• Be able to enumerate memory models, describe their purpose and how they work, and write programs that
are data-race-free consistent.

• Be able to explain the problems of shared variable concurrency and how they are addressed in a distributed
model.

• Be able to describe the need for coordination and some coordination methods.

• Be able to describe models for fault-tolerance and resilience.

• Be able to explain the actor model and apply it in applications.

Skills

• Be able to write a multi-threaded program using semaphores, mutexes, and read-write locks.

• Be able to write concurrent programs using monitors.

• Be able to write concurrent programs using transactional memory.

• Be able to structure distributed applications with a client-server, 3-tier, n-tier, peer-to-peer, and space based
architecture.

• Be able to write distributed applications with message passing.

Competence

• Assessment Be able to design a concurrent and fault-tolerant application.

• Be able to critique the essence of a concurrent programming solution and its expression with language
elements.

29.sept 2021

*subject to change

68

Course assessment

Quizzes: 12%

Group assignments:36%

Programming assignments:18%

Final exam: 34%

Course workload

30 hours lecture

30 hours lab classes

45 hours self-study

30 hours assignment

30 hours programming project

12 hours exam preparation and exam

Reading Materialmaterial

Principles of Concurrent and Distributed Programming, 2/E

M. Ben-Ari, Addison-Wesley, Second Edition, 2005

Go in Practice, Matt Butcher and Matt Farina, Manning Publications,2016

29.sept 2021

*subject to change

69

T-427-WEPO Web-Programming II

Lecturer: Arnar Leifsson

Year: 2nd or 3rd year

Semester: Spring semester

Level of course: 1. cycle, intermediate

Type of course: Elective

Prerequisites: T-213-VEFF, Web-Programming
Structure: 12. week course, on-site

Lecturer: Arnar Leifsson

Description

Web programming II is an advanced course on developing for the web. It embarks upon subjects such as JavaScript,

CSS3, React and more. In an ever-changing world of web development there is a constant need for individuals which

have mastered the skills of web development. This course will provide you with the material you will need to start

the journey of mastering those skills.

Learning outcomes

Upon completion of the course, the student should:

Knowledge

• Student knows the difference between SPA applications and server-side rendering technologies such as
MVC.

• Student knows the HTML5 standard, and APIs provided.

• Student knows various client-side libraries and their differences.

• Student knows JavaScript on a deep level and difference between JavaScript and other object-oriented
programming languages.

• Student knows when Redux is useful and when it is not.

Skills

• Student can write complex JavaScript code.

• Student can use CSS3 to create complex styles.

• Student can use CSS Grid and Flexbox to create complex layouts.

• Student can write a React application from start to end.

• Student can use REST APIs to retrieve data in their React application.

• Student can use Redux for state management in their React application.

• Student can integrate Socket.io in their React application.

Competence

• Assessment Know what to consider when building a website in order for it to be accessible on multiple
devices.

• Know what the advantages and disadvantages are for websites that have custom made client
applications/apps.

Course assessment

Small assignments: 15%

Large assignments: 45%

Final assignment: 40%

Extra assignments: 4%

Course workload

36 hours lectures – approximately 3 hours per week,

8 hours individual small assignments (4 in total),

30 hours large assignments (3 in total),

6 hours code demonstration lectures (6 total),

15-20 hours final assignment – individual.

29.sept 2021

*subject to change

70

Reading Material material

David Flanagan, JavaScript: The Definitive Guide, 2011, O'Reilly

ÚtgáfuYear: 2011 og,

Fullstack React, Anthony Accamazzo, og fl., Fullstack.io

29.sept 2021

*subject to change

71

T-430-TOVH Developing Open-Sourced Web Solutions/Software

Credits: 6 ECTS

Year: 2nd and 3rd year

Semester: Fall semester

Level of course: 1. cycle, intermediate

Type of course: Elective

Prerequisites: T-201-GSKI, Data Structures, T-213-VEFF, Web-Programming and T-303-HUGB, Software Engineering

Structure: 3. week course

Lecturer: Hilmar Kári Hallbjörnsson

Description
In the course Developing Open-Source Web Software we’re going to dip our toes into the open source community

and see how it works.

We will discover why choosing open source web software can be a better choice than starting from ground up. Why

belonging to a community of tens of thousand, hundreds of thousand or even a million skilled professionals in the

same profession as yourself will strengthen you as a developer. And also why it’s so great that you don’t need to

write yet another authentication function!

We also take a look at how errors are reported and how they are handled. We will investigate previously reported

errors and try to fix them, therefore putting our weight in to improve the software. Finally we will take a look at how

various parts of the software are documented and what we can do to make it better.

We’re going to take a look at the Drupal CMS (Content Management System) and research it to the bone. Both in

how the system works itself and also how the Drupal community is built up and how each and every member in the

community has a voice.

Learning outcomes

Upon completion of the course, students should be able to:

Knowledge

• Have knowledge of the basic definition of open source software.
• Have knowledge of the programming standards that are put forth in each and every software project.
• Have knowledge of different types of software licenses.

Skills

• Report bugs in open source software.
• Participate in discussion on bug solutions and extensions.
• Improve software that was written by others.
• Adapt to the standards and work procedures that was chosen by the project.

Competence

• Estimate and propose changes on open source software.
• Write his/hers own solution. Either a bug fix or an extension to a functionality of an open source software.
• Estimate and describe pros and cons of an open source software.
• Accept code from others, analyze it and improve.

Course assessment

Assignments and oral exam

Course workload

TBA

Reading Material material

Drupal 9 Module Development - Daniel Sipos

https://myschool.ru.is/myschool2/public/default.aspx?Page=Courses&Lang=1&Dept=1&ID=12&Course=T-430-TOVH&CourseInst=35872#Info20

29.sept 2021

*subject to change

72

T-431-HANE Practical Networks

Credits: 6 ECTS

Year: 2nd/3rd year

Semester: Fall

Level of course: 1. cycle, introduction

Type of course: Elective

Prerequisites: T-107-TOLH, Computer Architecture, T-215-STY1 Operationg systems

Structure: Three-week course

Lecturer: Not defined

Description

The importance of networks is much more than most people realize. If everything is okay no one knows of their

existence, but in the event of failures and problems in networks this can affect one’s work and play that is involved

online. Knowledge of how the network works and is structured is missing, even for those who use it the most, like

programmers and system administrators. The evolution of technology means that the importance of networks is

increasing, we now see communications being moved to the network and internet. The network is thus becoming

more part of our security and coordination. The foundation of all communications is networks and is therefore

essential to have an understanding and thorough knowledge of the functionality and possibilities. This course seeks

to create a solid foundation that will be useful for anyone intending to establish themselves in information

technology. The course is part lecture but mostly it is project based, which utilize the knowledge gained from the

lecture. The objective is to teach design and implementation of networks, how requirements of performance and

accessibility influence implementation of networks. We go over what is necessary to design and implement a

network. This is broken into three parts: 1. Wired communication: Network equipment (Routers, switches), X area

networks and protocols 2. Wireless communication: UMTS, 802.11, communications, antennas, wireless security 3.

Security: L2/L3 Security, communications, VPN, encryption/decryption, firewalls and IPS/IDS. At the end of the

course students have created a coherent network which include all previously mentioned parts.
Learning Objectives

Upon completion of the course, students should be able to:

Knowledge:

• Be able to describe the importance of networks and good installation for their business operations.

• Be able to describe the structure of networks and the equipment that the network consists of.

• Be able to describe what the trend has been in network systems and how they are likely to develop in the
future

Skills

• Be able to design and set up a simple network, both wired and wireless.

• Be able to define and apply basic safety methods for networks

Competence

• Be able to identify the needs for performance and security of networks.

• Be able to report common defects and faults in networks and improved them.

Course assessment

TBA

Course workload

TBA

Reading material

Slides from lecturer

https://reykjavik.instructure.com/courses/4460

29.sept 2021

*subject to change

73

T-445-GRTH Graph Theory

Credits: 6 ECTS

Year: 2nd or 3rd year

Semester: Spring semester

Level of course: N/A

Type of course: Mandatory in Discrete Mathematics and Computer Science

Prerequisites: T-101-STA1 Calculus, T-301-REIR Algorithms

Structure: 12. week course

Lecturer: María Óskarsdóttir

Description

The course provides a foundation in statistical inference and computational thinking using a hands-on approach

with Python using real-world data-mining applications. It also discusses social and privacy issues surrounding data

analysis.

Learning Objectives

Upon completion of the course, students should be able to:

• Be familiar with discrete and continuous probability and probability distributions.

• Be familiar with confidence intervals and hypothesis testing.

• Be familiar with correlation and regression in multiple dimensions.

• Be familiar with fundamentals of data mining, including preprocessing, visualizing and, modelling of
data. Be familiar with fundamental predictive analytical modelling techniques.

• Be able to calculate discrete probability using techniques such as permutations and combinations.

• Be able to calculate expected value and standard deviation for discrete probability distributions

• Be able to compute probabilities for discrete and continuous variables, using for example the binomial,
normal and the t-distributions.

• Be able to compute confidence intervals and test hypotheses. Be able to compute the correlation coefficient.

• Be able to do regression in multiple dimensions using data mining tools.

• Be able to do classification on nominal and numerical data using data mining tools.

• Be able to apply hypothesis testing to analyze sets of measured data.

• Be able to build and visualize predictive models from noisy real-life data sets using modern data analysis tools
and libraries.

Course assessment

Assignments (15%)

Midterm (15%)

Topic presentations (20%)

Topic quizzes (10%)

Final project (40%)

Course workload

30 hours lectures

16 hours exercise sessions

2 hours midterm exam

16 hours midterm exam preparation

24 hours work on assignments

25 hours work on topic presentation

5 hours work on topic quizzes

50 hours work on final project

Reading material

Python for data analysis, Wes McKinney

Learning predictive analytics with Python, Ashish Kumar

29.sept 2021

*subject to change

74

T-488-MAPP Mobile App Development

Credits: 6 ECTS

Year: 3rd year

Semester: Fall semester

Level of course: N/A

Type of course: Elective

Prerequisites: T-201-GSKI, Data Structures, T-213-VEFF, Web-Programming

Structure: 3. week course

Lecturer: Arnar Leifsson

Description

This course introduces app software development for mobile devices. The concepts studied are applied in a
practical group project taking an application through a complete development cycle.

Learning outcomes

Upon completion of the course, students should be able to:

Knowledge

• Know the fundamentals of app development, including an app’s life-cycle.
• Know best app design and implementation practices.
• Know how to program graphical user interfaces and touch screen interactions.
• Know different ways for apps to retrieve, store and share data.
• Know how to program responsive apps using asynchronous flow.

Skills

• Be able to use a selected app software development environment effectively.
• Be able to make interactive apps that handle all aspects of the life-cycle, run gracefully on different sized

devices, e.g. smartphones and tablets, and that effectively retrieve, store and share data..
• Be able to work in groups on developing non-trivial apps.

Competence

• Be able to develop robust and responsive non-trivial interactive apps for different sized devices that behave
in accordance with relevant standards and guidelines.

Course assessment

First week - 30%

Second week – 30%

Third week – 30%

Video demonstration 10%

Course workload

28 hours lectures

75 hours assignments

Reading Material

Slides from lecturer

29.sept 2021

*subject to change

75

T-498-GAGR Data Analysis

Credits: 6 ECTS

Year: 3rd year

Semester: Fall semester

Level of course: N/A

Type of course: Elective

Prerequisites: T-201-GSKI, Data Structures, T-213-VEFF, Web-Programming

Structure: 3. week course

Lecturer: Arnar Leifsson

Description

This course introduces app software development for mobile devices. The concepts studied are applied in a
practical group project taking an application through a complete development cycle.

Learning outcomes

Upon completion of the course, students should be able to:

Knowledge

• Know the fundamentals of app development, including an app’s life-cycle.
• Know best app design and implementation practices.
• Know how to program graphical user interfaces and touch screen interactions.
• Know different ways for apps to retrieve, store and share data.
• Know how to program responsive apps using asynchronous flow.

Skills

• Be able to use a selected app software development environment effectively.
• Be able to make interactive apps that handle all aspects of the life-cycle, run gracefully on different sized

devices, e.g. smartphones and tablets, and that effectively retrieve, store and share data..
• Be able to work in groups on developing non-trivial apps.

Competence

• Be able to develop robust and responsive non-trivial interactive apps for different sized devices that behave
in accordance with relevant standards and guidelines.

Course assessment

First week - 30%

Second week – 30%

Third week – 30%

Video demonstration 10%

Course workload

28 hours lectures

75 hours assignments

Reading Material

Slides from lecturer

29.sept 2021

*subject to change

76

T-501-FMAL Programming languages

Credits: 6 ECTS

Year: 2nd year

Semester: Spring

Level of course: 1. cycle, introduction

Type of course: Mandatory

Prerequisites: T-201-GSKI, Data Structures, T-419-STR2, Discrete Mathematics II

Structure: Twelve-week course

Lecturer: Dr. Tarmo Uustalo

Description

This course has a twofold purpose. On the one hand, it gives a short introduction to functional programming on

the example of the F# programming language, a modern ML-like language. On the other hand, it gives an overview

of the central concepts of programming languages, both functional and imperative, in general. These concepts

include: concrete and abstract syntax, lexing and parsing, programs vs abstract machines, interpretation vs

compilation, expressions, types, names and environments, higher-orderness, polymorphism, type inference,

commands, stores, pointers and arrays, memory management, garbage collection. These concepts are explained

on the examples of (fragments of) ML and C and illustrated with implementations in F#.

Learning Outcomes

Upon completion of the course, students should be able to:

Knowledge, skills and competence.

• To be able to program in F# on an elementary level, taking good advantage of recursion, higher-orderness
and polymorphism, datatypes and pattern-matching

• To understand the difference of concrete vs abstract syntax, to know the basics of lexing, parsing and pretty-
printing

• To understand programming languages vs abstract machines, interpretation vs compilation, what compiler
correctness means

• To understand the difference of expressions vs commands, to know the distinguishing characteristics of
functional vs imperative programming

• To understand scoped names, environments, interpretation of an expression language, compilation to stack
machine code

• To understand first-order vs higher-order, eager vs lazy evaluation, static vs dynamic scope rule, closures,
interpretation of a simple ML-like functional language

• To understand the differences of static vs dynamic typing, explicit type annotations vs type inference

• To understand the basics of ML-style polymorphic type inference, to be able to apply it

• To know the basics of untyped, simply typed and polymorphically typed lambda-calculus, to be able to
normalize lambda-terms, infer types

• To understand l- and r- expressions, pointers, states as an environment and a store, interpretation of a simple
C-like imperative language with pointers, activation records, compilation to a stack machine

• To understand the basics of explicit heap allocation / deallocation and basic safe heap use mechanisms vs
automatic allocation / garbage collection

• To know which important modern programming languages, have which features and what they are good for

Course assessment

Assignments 40 pct

exam 60 pct

Course workload

24 x 2 hrs lectures, 12 x 2 hrs practical sessions, independent study, work on assignments, preparation for exam

Reading Material

Peter Sestoft. Programming Language Concepts, 2nd ed. Springer, 2017

29.sept 2021

*subject to change

77

T-504-ITML Introduction to Machine Learning

Credits: 6 ECTS

Year: 3rd year

Semester: Fall

Level of course: 1. cycle, introduction

Type of course: Selection

Prerequisites: T-301-REIR, Algorithms, T-317-CAST, Calculus and Statistics, T-419-STRA2, Discrete Mathematics II

Structure: Twelve-week course

Lecturer: Dr. Stephan Schiffel

Description:

This course presents an overview of the field of machine learning, which deals with finding patterns and rules in

large datasets. Such rules can then be used to predict outcomes of future events, for example with the aim of

improving decision making in a wide range of business and manufacturing disciplines. In this course we will study

machine learning techniques for classification, clustering, and association analysis as well as other selected

techniques. In addition to introducing the underlying theory the methods will be used to solve practical problems.

Learning outcomes:

After completion of the course the student will hold a knowledge, skills and competence of:

Knowledge:

• Know how data mining is carried out.

• Recognize different types of training data and how to deal with common problems that arise, such as
incomplete data.

• Be familiar with key algorithms and models used for classification, including decision trees, set of rules, Naïve
Bayes, neural networks and support vector machines.

• Know the basic algorithms used with clustering, including K-means.

• Know the basic algorithms used to find relationships in data (e.g., association analysis).

• Be familiar with basic ideas behind evolutionary and reinforcement learning.

Skills:

• Be able to use software tools and programming libraries for data mining to categorize and cluster data.

• Be able to set up problems and apply data mining techniques to solve them.

Competences:

• Be able to determine the mechanical data mining strategies best suited to the solution of various practical
problems, and be ready ro use data mining tools and libraries to their solution

Course assessment:

Homework assignments and in-class quizzes 25%

Two projects 30%

Final exam 45%

Course workload:

54 hours in class (lectures, lab classes),

3 hours exam,

20 hours exam preparation,

5 hours quizzes,

20 hours homework assignments,

50 hours programming assignments.

Reading Material:

Lecture notes provided by teacher.

29.sept 2021

*subject to change

78

T-505-ROKF Logic in Computer Science

Credits: 6 ECTS

Year: 2nd year

Semester: Spring semester

Level of course: N/A

Type of course: Capstone in BSc in Discrete Mathematics and Computer Science

Prerequisites: T-117-STR1, Discrete Mathematics I or T-419-STR2, Discrete Mathematics II

Structure: 12. week course

Lecturer: Anna Ingólfsdóttir

Description

Logic has been called "the calculus of computer science". The argument is that logic plays a fundamental role in

computer science, similar to that played by calculus in the physical sciences and traditional engineering disciplines.

Indeed, logic plays an important role in areas of Computer Science as disparate as architecture (logic gates), software

engineering (specification and verification), programming languages (semantics, logic programming), databases

(relational algebra and SQL), artificial intelligence (automatic theorem proving, multi-agent systems, knowledge and

belief), algorithms (complexity and expressiveness), and theory of computation (general notions of computability).

See, for instance, the slides available at http://www.ru.is/faculty/luca/SLIDES/logic-and-cs.pdf for more information.

This course provides the student with a thorough introduction to computational logic, covering the topics of syntax,

semantics, decision procedures and formal systems for various logics that play a crucial role in applications in

computer science, namely propositional and first-order logic, and modal and temporal logics. The material is taught

from a computer science perspective, with an emphasis on the use of logic as a specification language and general-

purpose problem-solving tool in computer science. As part and parcel of the course, we shall introduce various logic-

based software tools and the algorithms and data structures underlying them; examples include BDD-based tools,

SAT solvers and model checkers. The goal is to prepare the students for using logic as a formal tool in computer

science.

Learning outcomes

After completion of the course the student will hold a knowledge, skills and competence of:

Knowledge

• To use suitable logical languages (such propositional and first-order logic as well as modal and temporal
logics)

• To model computer science related problems

• To solve problems using techniques from logic and tools embodying those techniques

• To apply logic to formalize reasoning in their own fields of interest within computer science.

Course assessment

Home assignments – 50%

Oral exam – 50%

Course workload

36h of lectures

24h exercise classes

90 - 120h projects and reading

Total 150 – 180 hours

Reading material

 Slides from lecturer

29.sept 2021

*subject to change

79

T-511-TGRA Computer Graphic

Credits: 6 ECTS

Year: 3rd year

Semester: Fall

Level of course: 1. cycle, introduction

Type of course: Elective

Prerequisites: T-301-REIR, Algorithms

Structure: Twelve-week course

Lecturer: KYeari Halldórsson

Description:

Computer graphics is an increasing part of the projects of today´s programmer. The first part of this course covers

the use of the OpenGL library, vector tools for graphics, transformations of objects and polygonal meshes. The

second part deals in more detail with three-dimensional drawing with emphasis on perspective, depth, light and

colour. Finally, several issues regarding the implementation of a renderer are presented, in addition to curve and

surface design. During the course students build several programs related to the course material.

Learning outcomes:

After completion of the course the student will hold a knowledge, skills and competence of:

Knowledge:

• Be familiar with the algorithms and calculations used when three-dimensional images are drawn on screen
in real time (pipeline graphics), including, model transformations, perspective transformations, lighting,
shading, clipping and rasterization.

• Be familiar with methods in OpenGL that implement these algorithms and calculations and how they are used
in graphics applications such as computer games (OpenGL pipeline).

• Know how the flow in a graphical real-time application (i.e. computer game) is implemented, with respect to
input, movement and drawing.

Skills:

• Be able to use the OpenGL standard to draw a three-dimensional image on a screen.

• Be able to implement a drawing loop which draws a motion picture, frame by frame, in real time.

• Be able to implement a programming loop that receives input and output, moves things, makes decisions and
draws each frame with respect to camera angles and objects in a three-dimensional space.

Competences:

• Be able to implement three-dimensional video games and real time animations with the OpenGL standard.

Course assessment:

Hand in assignment 10%

Programming assignments 50%

Final exam 40%

Course workload:

18 hours lectures

24 hours practice and exercises

10 hours homework

50-80 hours programming assignments

20 hours exam preparation

3 hours exam

Reading Material:

Lecture notes provided by teacher.

29.sept 2021

*subject to change

80

T-513-CRNU Cryptography and Number Theory

Credits: 6 ECTS

Year: 3rd year

Semester: Fall semester

Level of course: N/A

Type of course: Mandatory in Discreta Mathematis and Computer Science

Prerequisites: T-101-STA1, Calculus I, T-103-STST, Discrete Mathematics for Engineering, T-301-REIR, Algorithms, T-

317-CAST, Calculus and Statistics, T-419-STR2, Discrete Mathematics II

Structure: 12. week course

Lecturer: Christian Bean

Description

This course covers the basics of cryptography and number theory, starting with classical ciphers and the tools from

number theory necessary for doing cryptography. Symmetric and asymmetric ciphers will be covered. Some topics

from groups, rings and fields will be introduced and used, especially when looking at elliptic curve cryptography.

There will be some programming exercises in addition to standard mathematical homework. The

programmlanguage Sage will be used.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Know the purpose of cryptography and its uses throughout history.

• Know the basics of number theory, especially relating to cryptography.

• Know the Sage programming language, especially how to implement algorithms from number theory and
cryptography.

• Know the most common algorithms used in cryptography, e.g. the RSA public key system.

• Know the basics of information theory.

• Know the basics of finite fields and how they are used in cryptography.

• Know the basics of elliptic curves and how they are used in cryptography.

• Know how cryptography is applied, e.g. in multi-party computation, zero knowledge proofs, digital cash and
voting systems.

Skills

• Know how to use simple cryptographic methods to encrypt short texts by hand.

• Be able to write code in Sage to use powerful cryptographic methods to encrypt text.

• Be able to solve number theoretic problems, with pencil and paper, as well as with Sage.

• Be able to implement common algorithms in cryptography, e.g. Euclids algorithm for the greatest common
divisor and Diffie-Hellman key exchange.

Competence

• Recognize where to apply the methods of cryptography and which methods are breakable.

• Be able to apply their knowledge of number theory to solve problems in other mathematical courses,
especially where algebra is needed.

• Be able to use Sage as a tool in other programming and mathematical courses, for testing conjectures,
drawing graphs, etc.

Course assessment

Problem sessions – 30%

Programming assignments - 20%

Final exam - 50%

Course workload

36 hours lecturer,
16 hours exercise sessions,
3 hours final exam,
25 hours final exam,

29.sept 2021

*subject to change

81

68 hours homework,
20 hours lecture preparation.

Reading Material

Hoffstein, Pipher and Silverman’s Introduction to Mathematical Cryptography 2nd edition.

29.sept 2021

*subject to change

82

T-514-VEFT Web Services

Credits: 6 ECTS

Year: 2nd year / 3rd year

Semester: Fall

Level of course: N/A

Type of course: Elective

Prerequisites: T-202-GAG1, Databases and T-213-VEFF, Web-Programming

Structure: 12. week course

Lecturer: Arnar Leifsson

Description

This course focuses on the subjects associated with web services. It will embark on subjects such as: Web services

(WS) in general, HTTP, RESTful WS, RPC WS, .NET Core Web API, NodeJS, ExpressJS, Authentication, Authorization,

Microservices, GraphQL and more. The course will provide you with both knowledge and skills to start diving in to

the world of web services.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Student knows how the HTTP protocol works.

• Student knows the difference between RPC and REST.

• Student knows how to setup REST APIs using .NET.

• Student knows how to communicate with a database using an Object Relation Mapper (ORM).

• Student knows how to setup REST APIs using NodeJS.

• Student knows how to communicate with a NoSQL database.

• Student knows the difference between a NoSQL and SQL database.

• Student knows how to setup a GraphQL layer using JavaScript.

• Student knows what microservices are and are not.

• Student knows when microservices are useful and are not.

• Student knows the benefits of using containers for deployment.

Skills

• Student can setup a HTTP message using tools such as Telnet and CURL.

• Student can setup REST APIs with .NET.

• Student can setup REST APIs with NodeJS.

• Student can setup a GraphQL layer with JavaScript.

• Student can setup multiple microservices that communicate with each other using effective strategies such
as event collaboration.

• Student can deploy a containerized web service using Docker.

• Student can deploy a whole microservice structure using Docker.

Reading material

Contextal design, 2nd edition by Karen Holtzblatt, Hugh Beyer.

Course assessment

Class assignments – 12 %
Large assignments – 30 %
Small assignments – 25%
Final assignment – 33%

Course workload

36 hours lecturer – approximately 3 hours per week
8 hours individual small assignments (4 in total)
30 hours large assignments (3 in total)
6 hours code demonstration lectures (6 total)
15 – 20 hours final assignment - individual

29.sept 2021

*subject to change

83

T-515-NOTH User Centred Software Development

Credits: 6 ECTS

Year: 2nd year / 3rd year

Semester: Fall

Level of course: 1. First cycle, advanced

Type of course: Elective

Prerequisites: T-216-GHOH Software Analysis and Design or T-133-UIAD User Interface Analysis and Design

Structure: 12. week course

Lecturer: Marta Kristín LYearusdóttir

Description

The objective of the course is to teach methods for analyzing, designing and evaluating software systems anticipating

the users aspects in software development. Students gain skills in using particular methods for analyzing, design and

evaluation user interfaces. Furthermore, other methods for analyzing, designing and evaluating user interfaces are

described. Research on user centered software development methods is described, concerning for example when it

is best to use each method and how practitioners have ranked the methods.

The focus in the course is on analyzing the digital work environment of users. Methods are used to analyse, design

and evaluate software systems taking the digital work environment into consideration.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Be familiar with several methods for analysing the users´ needs for software systems.

• Be familiar with evaluation with and without the participation of users.

• Be familiar with guidelines for good user interface design.

Skills

• Be able to describe the vision for a software project and explain it.

• Be able to analyse the context of use for software systems.

• Be able to perform contextual iquiries and interpret the results.

• Be able to design an interface that is based on the users needs and test it with users.

• Be able to perform formal user evaluations on the designs.

Competence

• Be able to choose which user-centered design methods are suitable in different cases.

• Know the advantages and disadvantages of user centred design methods.

Reading material

Contextal design, 2nd edition by Karen Holtzblatt, Hugh Beyer.

Course assessment

Individual assignments – 40 %
Group assignments – 50 %
Attendance/in-class assignments – 10%

Course workload

48 hours – mixture of lectures and problem solving sessions with the lecturer coaching the students,
36 – 48 hours – homework on assignments.

29.sept 2021

*subject to change

84

T-519-STOR Theory of Computation

Credits: 6 ECTS

Year: 3rd year or 1st year in Masters program

Semester: Fall

Level of course: 3. First cyvle, advanced

Type of course: Mandatory in BSc in Discrete Mathemetics and Computer Science

Prerequisites: T-103-STST Discrete Mathematics for Engineering Students and T-301-REIR Algorithms or T-419-STR2

Discrete Mathematics II and T-301-REIR, Algorithms

Structure: 12. week course

Lecturer: Antonios Achilleos

Description

The main topic of this course is the theoretical basis of computer science. Various types of finite automata are

introduced and connected to the formal definition of a programming language. Turing machines are introduced as

a theoretical model for computation. Computability is discussed and the classification of solvable and unsolvable

problems. Finally, there is a discussion of complexity classes and the classification of algorithmically hard and easy

problems.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• A number of recurring themes, and a set of general principles that have broad application to the field of
computer science

• The social, legal, ethical, and cultural issues inherent in the discipline of computing

• That software systems are used in many different domains. This requires both computing skills and domain
knowledge.

• Software development fundamentals, including programming, data structures, algorithms and complexity.

• System fundamentals, including architectures and organization, operating systems, networking and
communication, parallel and distributed computation and security.

• Mathematics, including discrete structures, statistics, calculus and optimization

• Software engineering principles, including a thorough understanding of software analysis and design,
evaluation and testing and software quality and correctness.

• Software engineering processes, including management of complex software development projects.

• Application fundamentals, including information management and intelligent applications.

• Multiple programming language, paradigms, and technologies

Skills

• Know how to apply the knowledge they have gained to solve real problems

• Realise that there are multiple solutions to a given problem and these solutions will have a real impact on
people´s lives

• Communicate their solution to others, including why and how a solution solves the problem and what
assumptions were made

• Successfully apply the knowledge they have gained through project experience.

• Encompass an appreciation for the structure of computer systems and the processs involved in their
constructions and analysis

• Understand individual and collective responsibilities and individual limitations as well as the limitations of
technical tools.

• Understand the range of opportunities and limitations of computing.

Competence

• Understand the multiple levels of detail and abstraction

• Recognise the context in which a computer system may function, including its interactions with people and
the physical world.

• Able to communicate with, and learn from experts from different domains throughout their careers.

• Possess a solid foundation that allows and encourages them to maintain relevant skills a sthe field evolves.

29.sept 2021

*subject to change

85

• To be able to manage their own career development, including managing time, priorities, and progress

• Have developed interpersonal communication skills as part of their project experience

• Work effectively both individually and as a member of teams

• Make effective presentations to a wide range of audience about technical problems and their solutions

• Encompass an appreciation of the interplay between theory and practice.

Course assessment

Assignments – 30 %
Quizzes – 10 %
Midterm Exam – 20 %
Final exam – 40 %

Course workload

36h of lectures

24h exercise classes

90 - 120h projects and reading

Total 150 – 180 hours

Reading material

Introduction to Theory of Computation by Michael Sipser, third edition.

29.sept 2021

*subject to change

86

T-533-VIHU Software Maintenance

Credits: 6 ECTS

Year: 1st year

Semester: Spring

Level of course: Not defined

Type of course: Mandatory in BSc in Software Engineering

Prerequisites: None

Structure: 12. week course

Lecturer: TBA

Description

TBA

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Be familiar with various topics in discrete mathematics that are important for an understanding of the
fundamentals of computer science.

• Know basic concepts in propositional logic and predicate logic.

• Have been introduced to logic and formal reasoning.

• Know basic set operations.

• Know basic properties of functions, in particular logarithmic and exponential functions, the floor function and
ceiling function.

• Have learnt introductory matrix algebra.

• Know basic counting techniques.

• Have learnt basic concepts of recurrence relations.

• Be familiar with basic material on relations.

• Know basic concepts in graph theory, for instance Euler and Hamilton paths, shortest path and

graph coloring.

Skills

• Be able to construct truth tables, use basic logical equivalences in propositional logic and use quantifiers.

• Be able to construct direct and indirect proofs.

Competence

• Be able to use logic to analyze statements in the English language.

Course assessment

Participation– 5%
Assignments – 10%
Group assignments - 15%
Mid-term exam - 20%
Final exam - 50%

Course workload

36h of lectures

24h exercise classes

90 - 120h projects and reading

Total 150 – 180 hours

Reading material

TBA

29.sept 2021

*subject to change

87

T-535-CPSY Cyber-Physical Systems

Credits: 6 ECTS

Year: 1st year

Semester: Fall

Level of course: Not defined

Type of course: Mandatory in Software engineering

Prerequisites: T-215-STY1, Operating Systems

Structure: 12. week course.

Lecturer: Marcel Kyas

Description

Cyber-physical systems introduces students to the design and analysis of computational systems that interact with

physical processes. Applications of such systems include medical devices and systems, consumer electronics, toys

and games, assisted living, traffic control and safety, automotive systems, process control, energy management and

conservation, environmental control, aircraft control systems, communications systems, instrumentation, critical

infrastructure control (electric power, water resources, and communications systems for example), robotics and

distributed robotics (telepresence, telemedicine), defense systems, manufacturing, and smart structures. A major

theme of this course is on the interplay of practical design with models of systems, including both software

components and physical dynamics. A major emphasis will be on building high confidence systems with real-time

and concurrent behaviours.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Describe a realtime or hybrid system as a system characterized by a known set of configurations with
transitions from one unique configuration (state) to another (state).

• Describe the distinction between systems whose output is only a function of their input (Combinational)
and those with memory/history (Sequential).

• Derive time-series behavior of a state machine from its state machine representation.

• List capabilities and limitation, like their uncertainties, of robot systems, including their sensors, and the
crucial sensor processing that informs those systems, and in general terms how analog signals can be
reasonably represented by discrete samples and articulate strategies for mitigating these uncertainties.

• Identify physical attacks and countermeasures, attacks on non-PC hardware platforms and discuss the
concept and importance of trusted path.

• Describe what makes a system a real-time system, explain the presence of and describe the characteristics
of latency in real-time systems, and summarize special concerns that real-time systems present, including
risk, and how these concerns are addressed.

• Explain the relevance of the terms fault tolerance, reliability, and availability, outline the range of methods
for implementing fault tolerance, and explain how a system can continue functioning after a fault occurs.

Skills

• Program a robot to accomplish simple tasks using deliberative, reactive, and/or hybrid control architectures.

• Integrate sensors, actuators, and software into a robot designed to undertake
some task.

Competence

• Design and implement an industrial application on a given platform (e.g., using Raspberry Pi).

Course assessment

Assignments – 40 %
Project – 30 %
Final exam - 50 %

29.sept 2021

*subject to change

88

Course workload

48 hours lecture,
24 hours lab classes,
36 hours self-study,
30 hours assignment,
30 hours programming project,
12 hours exam preparation and exam.

Reading material

Embedded Systems Design by Peter Marwedel, Springer, 2021.

29.sept 2021

*subject to change

89

T-542-HGOP Introduction to Quality Management and Testing

Credits: 6 ECTS

Year: 1st year

Semester: Fall

Level of course: Not defined

Type of course: Elective

Prerequisites: T-220-VLN2, Semester Project 2 and T-303-HUGB, Software Engineering

Structure: 3. week course.

Lecturer: Guðlaugur Stefán Egilsson and Hannes Pétursson

Description

The course will cover methods to ensure the quality of software, both the application code, user interface, delivery
process and more. The technologies that were introduced in Software Engineering will be discussed in more detail.
We will discuss the various types of tests and automation connections, such as unit testing, automated acceptance
testing and automated software delivery. Property tests will also be discussed briefly.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Be able to identify which items have the most impact on software quality.

• Be able to identify the main types of tests.

• Know which items need to be present to deliver the software repeatedly and reliably.

 Skills

• Be able to write unit tests that cover the majority of the code system (code coverage). .

• Be able to define and perform other types of tests, such as integration testing, load/performance testing, and
manual testing such as usability testing and exploratory testing.

• Be able to set up a "delivery pipe" for web applications.

Competence

• Be able to determine how much work is required to test a system, and determine what kind of testing to
focus on.

Course assessment

TBA

Course workload

36h of lectures,

45h exercise classes,

60h projects and reading

12h for exam prep. and

3 hours for the exam.

Reading material

Slides from lecturer.

29.sept 2021

*subject to change

90

T-603-THYD Compilers

Credits: 6 ECTS

Year: 3rd year

Semester: Fall

Level of course: Not defined

Type of course: Elective

Prerequisites: T-501-FMAL Programming Languages

Structure: 12. week course.

Lecturer: Yngvi Björnsson

Description

The course defines the function and structure of a compiler. Lexical and syntax analysis is discussed in detail,
including use of regular expressions, finite automata, and top-down and bottom-up parsing approaches. Semantic
analysis and (intermediate) code generation is also covered in some detail. The course also introduces tools for
automatically generating lexers and parsers from formal specifications, both their use and underlying algorithms.
Hands-on construction of a compiler/interpreter is a large component of the course.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Understand the structure and design of compilers.

• Understand the role and function of lexical-, syntax- and semantic-analysis, as well as (intermediate) code
generation.

• Have the necessary theoretical foundation for constructing a simple compiler.

 Skills

• Be able to use regular expressions and finite machines to perform lexical analysis.

• Be able to use formal grammar for describing programming languages and understand how to implement
top-down and bottom-up parsing methods.

• Be able to generate (intermediate) code from an abstract-syntax tree, e.g. for virtual machines.

• Be able to use prevalent software tools that automatically generate lexers and parsers from formal
specifications.

Competence

• Be able to design and build a simple compiler.

Reading material

Introduction to Compiler Design, Torben Ægidius Mogensen

Slides from lecturer.

Course assessment

Homework (written) – 5%

Labs – 10%

Project (programming a compiler) – 45%

Exams (total) 40%

Course workload

30 hours lectures

5 hours exams

30 hours lecture preparation

15 hours exam preparation

10 hours written homework

15 hours labs

60 hours project (programming an interpreter/compiler)

29.sept 2021

*subject to change

91

T-604-HGRE Design and analysis of algorithms

Credits: 6 ECTS

Year: 1st year

Semester: Spring

Level of course: Not defined

Type of course: Mandatory in BSc in Discrete Mathematics and Computer Science

Prerequisites: T-301-REIR, Algorithms and T-419-STR2, Discrete Mathematics II

Structure: 12. week course.

Lecturer: Magnús M. Halldórsson

Description

The course presents leading techniques for developing efficient algorithms (with applications in all areas of
computer science and beyond). Developing solutions goes hand in hand with reasoning about their correctness and
efficiency. Thus a major objective of the course is to develop skills in reasoning and expressing them verbally and in
writing. The course is an excellent preparation for graduate studies.class.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Can describe the workings of the main types of algorithmic strategies, including dynamic programming,
greedy algorithms, network flow, randomized algorithms.

• Have obtained insight into various advanced fields of algorithm theory.

Skills

• Be able to classify algorithm according to complexity, in order to choose between possibilities during design.

• Be able to apply the main algorithmic strategies to the solution of practical problems.

• Be able to analyze the time complexity of algorithms.

• Be able to recognize intractable problems and be able to find workarounds.

• Be able to argue formally the correctness and efficiency of algorithms.

Competence

• Be able to design efficient solution methods to general realistic problems.

Course assessment

Written homework problems – 50%

Exam – 50%

Course workload

36 hours lecture,

18 hours problem sessions,

3 hours exam,

13 hours exam preparation,

72 hours assignments,

24 hours lecture preparation.

Reading material

Kleinberg, Tardos: Algorithm Design. Addison-Wesley.

29.sept 2021

*subject to change

92

T-622-UROP Undergraduate Research Opportunity

Credits: 6 ECTS or 12 ECTS

Year: 3rd year

Semester: Fall semester

Level of course: 3. First cycle, advanced

Type of course: Elective

Prerequisites: None

Structure: On-site

Lecturer: N/A

Description

Students receive training in research by working on research projects within the department in close collaboration

with teachers. Activities can take various forms, all with the objective of increasing the skills and competences of

students in the field of computer science or related fields. Projects can be independent research or development

projects, or a part of a larger project.

Learning outcomes

Að námskeiði loknu er gert ráð fyrir að nemandinn:

Knowledge

• Be able to describe a research project and the area it belongs to.

• Be able to explain research and in particular research in computer science.

Skills
• Be able to define and follow a project schedule.

• Be able to follow the necessary steps to complete the goals set out.

Competence
• Be able to present and defend his/her findings in research to an audience.

Assessment

Reading Material
Reading material depends on project

29.sept 2021

*subject to change

93

T-624-CGDD Computer Game Design & Development

Credits: 6 ECTS

Year: 1st year

Semester: Fall

Level of course: Not defined

Type of course: Elective

Prerequisites: T-301-REIR, Algorithms

Structure: 3. week course.

Lecturer: Steingerður Lóa Gunnarsdóttir

Description

This course covers the theory and practice of designing and developing computer games, from generating initial
concepts to creating a fully playable game. Computer games are interactive environments that serve a specific goal:
some enable player fun, some convey rich emotions, and some change the way that people think about the world.
The emphasis of this course will be on team-based collaboration, with each team working to design and develop a
game from the start to finish. In support of this process, each team will progress through a structured sequence of
challenges during lab time, as guided by the concepts that are discussed and practiced during class.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Be able to describe the formal elements of games and the relationships between them.

• Be able to explain some common game AI techniques.

• Be able to describe common forms and structures of narrative in games.

• Be able to discuss insights gained from games industry practitioners.

• Be able to describe some current directions in computer game research.

 Skills

• Be able to employ focused strategies to generate ideas for computer games.

• Be able to apply some practical paradigms for game design & development.

• Be able to communicate game ideas clearly and concisely.

Competence

• Be able to navigate intellectual property concerns in game development.

• Be able to design and conduct a play-test to evaluate a game.

• Be able to design and develop a game demo in a limited amount of time.

Reading material

Slides from lecturer.

Course assessment

Group work methods, progress and final demo.

Course workload

Group work and presentations throughout course

29.sept 2021

*subject to change

94

T-634-AGDD Advanced Game Design & Development

Credits: 6 ECTS

Year: 2nd and 3rd year

Semester: Spring

Level of course: Not defined

Type of course: Elective

Prerequisites: T-624-CGDD, Computer Game Design & Development

Structure: 12. week course

Lecturer: Steingerður Lóa Gunnarsdóttir

Description

This course expands RU’s prior offerings in game design & development with more advanced topics in game design
as well as delving into useful aspects of interaction and experience design. Through lectures, lab exercises, and
project work, students will learn and gain experience with a variety of game design topics. Working together in
teams, students will design, develop, and critically analyze several smaller games, each focused on applying the
concepts that are discussed in class. Each of these exercises will differ in terms of either the team’s composition, the
game’s scope, or the constraints that the instructors provide to guide the creation process. oning.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Discuss game design, interaction design, player experience.

• Explain different methods for game design.

• Understand the roles and responsibilities required in a game’s production.

 Skills

• Critically analyze given game designs and interaction designs.

• Conduct design sessions involving players.

• Develop focused game prototypes.

• Identify uses for game design outside of the games industry.

Competence

• Assess team health and their effect on it.

• Design game mechanics to achieve an intended experience.

• Analyze and evaluate game prototypes.

• Develop a game informed by past prototypes and research.

Reading material

Slides from lecturer.

Course assessment

Projects, analysis reports and participation.

Course workload

39 hours classes,

19 hours lab,

110 hours estimated for project work.

29.sept 2021

*subject to change

95

T-631-SOE2 Software Engineering II - Testing

Credits: 6 ECTS

Year: 3rd year BSc in Software Engineering

Semester: Spring

Level of course: Not defined

Type of course: Mandatory

Prerequisites: T-303-HUGB, Software Engineering

Structure: 12. week course

Lecturer: TBA

Description

Various studies show that over than 50% of efforts and costs of software development are devoted to activities

related to testing. This includes: test design, execution, and evaluation. This course is an introductory course in

software testing. In which, students will learn quantitative, technical, and practical methods and techniques that

software engineers use to test their software throughout the software lifecycle.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Understand what is software testing and why we need it.

• Understand the concepts and theory related to software testing.

• Learn the different types of formal coverage criteria.

• Differentiate between different techniques that can be used for software testing and when to apply each of

them.

• Understand how software developers can integrate a testing framework into code development in order to

incrementally develop and test code.

Skills

• Identify the test requirements.

• Define a model of the software, then find ways to cover it.

• Derive the test plan and evaluate the test suite coverage.

• Learn to use automated testing tools in order to measure code coverage.

Competence

• Design tests based on structures: graph, logic, and input space.

• Define coverage criterion, define the test requirements for each coverage criterion, and derive the test cases

that satisfy a coverage criterion.

• Apply the coverage criteria and software testing techniques to uncover defects in a large software system.

• Use open-source testing tools such (e.g., JUnit and NUnit) to test a software system.

Course assessment

Assignments – 20 %
Project – 20 %
Labs – 10 %
Final exam - 50 %

Course workload

HW1 1 2 2

HW2 1 2 2

HW3 1 3 3

HW4 1 3 3

Lectures 24 2 48

29.sept 2021

*subject to change

96

Studying Lectures 24 3 72

Lbas 5 3 15

Project 1 15 15

Final 1 20 20

Total 180

Reading Material

No textbook required. Lecture slides or notes will be provided

Optional Textbook: Introduction to Software Testing 2nd Edition, Cambridge University Press, 2016 l ed.

29.sept 2021

*subject to change

97

T-636-SMAT Human Computer Interaction

Credits: 6 ECTS

Year: 2nd/3rd year

Semester: Spring

Level of course: 1.cycle, introduction

Type of course: Selection

Prerequisites: Software requirements and Design or Interactive Design

Structure: 12. week course (not teached yearly)

Lecturer: Marta Kristín Lárusdóttir

Description

The learning material suits students that want to learn about various fields of human-computer interaction,

especially focusing on non-mouse interaction. Students study the characteristics of non-mouse interaction types,

for example: speech, gestures, tangible interaction and brain computer interaction. Students choose one interaction

type and design and evalute a prototype for a software system using that interaction type. The Google Design Sprint

process is used while designing and evaluating the prototype. Additionally, students will learn about research in the

field and the future trends.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Be familiar with the characteristics of various ways of communication (ex. interaction types) for software.

• Be familiar with the characteristics of various interaction types of software, such as virtual reality, wearable
computing, ambient, ubiquitous and mobile computing.

• Be familiar with the research on non-mouse interaction.

• Be familiar with concepts and principles regarding human-computer interaction.

Skills

• Be familiar with the advantages and limitations of various ways of communication (ex. Interactions types).

• Be able to argue for when it is good to apply a particular interaction type.

• Be able to describe the vision for a software project and explain it.

Competence

• Be able to design an innovative computer system interface with user participation.

• Be able to evaluate design examples with users.

Course assessment

48% of the final grade - Individual assignments

22% of the final grade - Group assignments

30% of the final grade – Written exam

To complete the course students have to:

• Get 4.75 or above in the written exam

Course workload

48 hours – mixture of lectures and problem solving sessions

36-48 hours – homework on assignments

Reading Material

Sprint: How to Solve Big Problems and Test New Ideas in Just Five Days by Jake Knapp, John Zeratsky, and Braden

Kowitz, Simon and Schuster, 2016.

29.sept 2021

*subject to change

98

T-637-GEDE Game Engine Architecture

Credits: 6 ECTS

Year: 2nd or 3rd year

Semester: spring

Type of course: Elective course

Necessary Prerequisites: T-211-LINA Linear Algebra, T-511-TGRA, Computer Graphics.

Organization of course: twelve-week course

Teacher: Hannes Högni Vilhjámsson.

Language of teaching: English

Description:

The course covers the theory and practice of game engine software development, bringing together topics that

range from large-scale software architectures and modern game programming paradigms to the design and

implementation of subsystems for memory management, interface devices, resource management, rendering,

collision, physics and animation. Through practical lab exercises and group projects, the students get technical

hands-on experience in C++ game development, including the use and development of supporting tool pipelines.

The course includes visiting talks and Q&A from industry veterans.

Learning outcomes:

After completion of the course the student will hold a knowledge, skills and competence of:

Knowledge:

• Be able to explain game engines and their role in game development.

• Be able to sketch the typical components of a run-time game architecture.

• Be able to explain programming paradigms and data structures that are commonly used in game
development

• Be able to understand what goes on in the rendering pipeline.

• Be able to explain engine sub-systems that deal with start-up/shut-down, memory management, engine
configuration, file system, game resources, game loop, rendering loop and interface devices

Skills:

• Be able to explain game engines and their role in game development.

• Be able to use and extend a C++ graphics engine to develop tech demos.

• Be able to use industry standard C++ development and version control tools.

• Be able to apply 3D math, covering points, vectors and matrices, for solving game world problems. Be able to
import resources from Digital Content Creation tools.

• Be able to read input from game interface devices.

• Be able to program a basic vertex and fragment shader. Be able to use a particle system to create visual
effects.

• Be able to use a physics library for realistic object behavior.

Competence:

• Be able to analyze and compare existing game engines with respect to game development goals and system
requirements.

• Be able to research, design, implement and present a tech demo of a low-level engine feature.

• Be able to design new game engines or engine sub-systems, based on established practices and an insight
into various architectural decisions (pros and cons).

Assessment:

Participation 5%

Labs 8%

Problem sets 12%

Engine Presentation 10%

Final Project 35%

Final Written Exam 30%

Total 100%

29.sept 2021

*subject to change

99

Workload:
36 hours attending lectures

20 hours lecture preparation and study

14 hours lab work

16 hours problem set work

40 hour project work

24 hours final exam preparation.

Reading Material:

Game Engine Architecture by Jason Gregory, CRC Press third ed. (2018).

29.sept 2021

*subject to change

100

I-707-VGBI Business Intelligence

Credits: 6 ECTS

Year: 3. Year

Semester: Spring semester

Level of course: 2. Fyrst cycle, intermediate

Type of course: Mandatory in BSc in Computer Science – minor in business

Prerequisites: T-111-PROG, Programming

Structure: 12. week course

Lecturer: Hinrik Jósafat Atlason

Description

The business environment is constantly changing, and it is becoming more and more complex. Organizations, both

private and public, are under pressures that force them to respond quickly to changing conditions and to be

innovative in the way they operate. Such activities require organizations to be agile and to make frequent and quick

strategic, tactical, and operational decisions, some of which are very complex. Making such decisions may require

considerable amounts of relevant data, information, and knowledge. Processing these, in the framework of the

needed decisions, must be done quickly, frequently in real time, and usually requires some computerized support.

This course is about using business analytics as computerized support for managerial decision making. It

concentrates on the theoretical and conceptual foundations of decision support, as well as on the commercial tools

and techniques that are available. It presents the fundamentals of the techniques and the way these systems are

constructed and used.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Knows the concept Business Intelligence and can discuss it from theoretical, technical and practical
perspectives.

• Understands the structure of Business Intelligence solutions, the importance of Business Intelligence in the
business world and the purpose of the different tools used in Business Intelligence.

Skills

• Can design a data model, digital dashboards and make decisions regarding the presentation of data..

• Can work with Microsoft Azure cloud services to create and manipulate data.

• Can work with Microsoft Azure Data Mining Studio to create data mining models..

• Can work with Microsoft PowerBI to create dashboards.

Competence

• Can define a Business Intelligence Competency Center and form a corporate Business Intelligence strategy.

Course assessment

Group projects - 75%

Status exams – 25%

Course workload

36h of lectures, 24h exercise classes, 90 - 120h projects and reading

Reading Material

Business Intelligence: A Managerial Approach, Global Edition

29.sept 2021

*subject to change

101

X-204-STOF ENTREPRENEURSHIP AND STARTING NEW VENTURES
Credits: 6 ECTS

Year: 2 year

Semester: Spring semester

Level of course: 1. First cycle, introductory

Type of course: Mandatory in all BSc programmes

Prerequisites: No prerequisites

Structure: 3. week course, Lectures, teamwork, 2-3 weeks at the end of term are assigned as teamwork for this

course.

Lecturer: TBA

Description

The course aims at developing business ideas into business opportunities and a comprehensive business plan for the

new company, which is divided into four main areas: (i) business opportunities and sources - the business idea. (ii)

Preparation of a business plan - a reality test. (iii) Making a business plan. (iv) Introduction to business ideas for

investors.

Learning outcomes

On completion of the course, students should be able to:

Knowledge

• Students can identify basic terms such as Business Model, Business Plan, Grants, Seed funding, Business

Angels, VC Investments, Entrepreneurship Center, Incubators, Accelerators and Startups

• Students understand a typical growth path for new startups.

• Students can identify the services available for new startups in Iceland in different stages up until VC

investments.

• Students understand where to find information about the services available for startups on the web

Skills

• Students can pitch a short elevator pitch for an audience

• Students can pitch a business idea to an investor

• Students can draw an example of the growth path of new businesses

• Students can understand media reporting regarding Startups

• Students can talk to possible customers and acquire information regarding their needs and rather the

business idea needs to pivot in order to meet those needs

Competence

• Students are able to understand the effects of political decision making on the Entrepreneurial Eco

System

• Students realise what data gives information about the growth of the Entrepreneurial Eco System

• Students can interpret media news regarding Startup Businesses

• Students know what main documents are needed in founding a business in Iceland and key factors to

think about before doing so

Course assessment

Peer Assessment 20%

Sprint Daily 15%

Sprint Retrospective 5%

Cap table, Vesting and options plan 10%

Business Plan 15%

Final Presentation - Verbal 20%

Final Presentation - Pitch Deck 10%

Elevator Pitches 2 5%

29.sept 2021

*subject to change

102

Course workload

TBA

Reading Material

Slides from lecturers

