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Abstract

In the energy production sector, planning the productiomadhof time is
crucial to the bottom-line of the production facility. Inrcant operations
in Iceland as shown by Sigurdsson, Jénsson, and Régnvald2669), the
planning is mostly manual optimisation or ad-hoc planning.

In this report we start by presenting an automatic plannérerwind-energy
sector using conventional weather forecasts to createduption and main-
tenance plan for the length of the forecast. We show thaterdranal weather
forecasts are only reliable for up to 3 days. By using enserfurecasts, we
show that the planner can get better plans. Due to unceesintthe ensem-
bles, we show that the planner succeeds at variable-ledgtimipg where
the length depends on when the uncertainty in the forecaids sShcreasing
too much (increased spread). We then present a sanity chaaksaithe en-
semble version of the planner, and finally we present theetadion between
the accuracy of the forecast and the quality of the creatad, @s well as
why the forecasts must be improved to be able to plan for whodyaction
on a long-term scale.



Sjalfvirk asetlanagerd i vindorkuframleidslu med notkun
klasaspaa

Por Sigurdsson

Mai 2011

Utdrattur

I orkuframleidslugeiranum er mikilveegt fyrir framlegd kjunarinnar ad
gera framleidsluaaetlanir fram i timann. [ naverandi fraddeiferlum & Is-
landi, eins og synt er i Sigurdsson et al. (2009), er asetEndagd mestu
byggd a linulegri bestun eda ad-hoc aaetlanagerd.

[ pessarri skyrslu byrjum vid & ad kynna sjalfvirka aaetlarég vindorkuveri
sem nytir hefébundnar télvureiknadar vedurspar til ad bdieaimleidslu- og

vidhaldsaeetlun eins langt og vedurspain leyfir. Vid synumhadbundin
vedurspa nytist til asetlanagerdar allt ad 3 daga fram i timdwed pvi ad
notast vid klasaspar synum vid fram a ad haegt er ad bua til deetilanir.

So6kum Gvissu i spanum synum vid ad aeetlanagerdin reedursaddideet-
lanir par sem lengd sparinnar er upp ad peim timapunkti par ®assan
verdur of mikil i spanni (aukin dreifing). Vid kynnum sidanofun & aeet-
lanagerdinni par sem profadur er klasaparhlutinn. Ad lokgymnum vid

tengsl milli geeda spéarinnar og ndkveemni asetlunarinnar odvgersvegna
spéarnar verda ad verda betri til ad aeetlanagerd i vindonkargem sé mogu-
leg fyrir lengri timabil.
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Chapter 1
Introduction

In energy production and sales, planning ahead is one of the¢ onucial elements in
operations. Energy sales are typically done ahead of tirdérars energy producers must
guarantee the delivery of energy. If there is a change th&ema producer unable to
comply with production numbers promised, energy must beggbban a “spot market”,
at a price many times (up to 45 times the regular market psiceot unusuall(@andsnet
Spot-Market prices2011)) that of a planned purchase.

In Chapter 2 we present the background for this project andmativation to do so.
In Chapter 3 we present a planner written for wind power glavith the notion of be-
ing able to make production and “maintenance” (recurreehts) plans as needed. We
then create plans against conventional weather forecd&show that the conventional
weather forecasts can support plans for up to 3 days, andhiése forecasts are not the
best candidates for planning since they lack necessarnytitptawe information about the
uncertainty of the weather system. We show that by usingneblesforecasts we can pro-
duce better plans, as well as predict the quality of the fsts; allowing us to selectively
plan for more certain periods, or stop the planner from glagfurther when the forecast
becomes too unreliable. In Chapter 4 we present the moddhanidelper applications.
First we present an overview of the model. Next we describadtita converter used to
retrieve the weather forecasts, followed by a detailedri@san of the planner and runner
and its parts. Finally, we describe the baseline tests wsedrtity-check the planner. In
Chapter 5 we present the results of the simulations wherdaw Bow well the heuristics
handle the planning, and especially how detrimental badtidata can be to the planner.
In Chapter 6 we present the conclusions of this researchebg&swvhat is being done to
improve the ensemble forecasts beyond what they offer today






Chapter 2
Background and Motivation

In 2008-2009, we did a research project for Reykjavik Endf@skuveita Reykjavikur,
OR) Environment and Energy Research Fund (UOOR). In theepr@igurdsson et al.
(2009) we examined the state of the energy industry in Icglemparticular with respect
to which methods were used in production planning.

Our findings were that where plans are created, a speciaés mmanual optimization
based on the current state of the system (fed into an Excekhstabwing the trends
for the changes in the system) and a weather forecast whidpus into a flow model
(containing historical weather data 1985-2006 (Sigurdsstoal., 2009, p. 7)) to create
the plan. This manual approach limits severely what optioag be explored, since each
iteration is time consuming and only a single, or very fewiamt may be examined.
Previously, conventional weather forecasts were usedmag o the flow models, but
recently, ensemble forecasts have been used.

Previous work done in planning for complex projects, inelsidhe Mars Rover project,
where Bresina, Jonsson, Morris, and Rajan (2005) creatmaks for extremely time-
sensitive and complex situations and presented in hunedabde form for verification
and acceptance. The LORAX project, where Jonsson, McGasderBen, latauro, and
Rajagopalan (2005) used automatic planning to createrapleEns in an autonomous
droid in Antartica. And the research on Short-Term MultipdrOptimal Planning of
Utility Systems Using Heuristics and Dynamic Programmingere Kim and Han (2001)
used non-linear and dynamic programming to create planstéam-based power plants.
We considered the possibility of using automatic plannirgcreating production plans
for Icelandic power plants, using wind farms as our targatesihey are the most volatile
(giving us a chance of seeing results on a relatively sharefliame compared with
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geothermal or hydro power) and to see if we can improve the besults by using en-
semble forecasts which should provide us with the unceytameasure we need.

There are three domains which affect the end result of tlsisaieh as shown in Figure
2.1.

Weather forecasting Energy market

Energy market
spot market
consumption

Planning

Figure 2.1: The three domains

2.1 Weather forecasting

A numerical weather model is a system of differential edquretti(called Euler equatiols
that describe the atmospheric motion and represent catgarvwof mass (continuity),
momentum and energy (see Figure 2.2). These equationssarkradwn as the primitive
equations, and are derived from the basic laws of physicsteTare no known analytical
solutions and in order to solve the equations, one mustraigefinite difference or spec-
tral methods. Most regional atmospheric models use finfferdnce while most global
atmospheric models rely on spectral methods to integratediations forward in time.
Predictability

Weather forecasts are computed as initial value problerhsy Tequire realistic models
and accurate initial conditions of the system being sinealah order to generate ac-
curate forecasts. Lorenz (1965) showed that even with &geniodel and essentially

1 Named after Leonhard Euler, this is a set of equations gawgimviscid flow. They correspond to the
Navier-Stokes equations with zero viscosity and heat cotialuterms.
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Figure 2.2: Numerical weather models use systems of diffedeequations based on
the laws of physics and fluid motion, and use a coordinateesysthich divides the

planet into a 3D grid. Winds, heat transfer, solar radigtretative humidity, and surface
hydrology are calculated within each grid cell, and theraxt&ons with neighboring cells
are used to calculate atmospheric properties in the future.

Wikimedia: Picture of Weather Modg011)

perfect initial conditions, the fact that the atmospherehigotié causes forecasts to lose
all predictive information after a finite time. He estimatéd “limit of predictability” for
weather as about two weeks. As an estimate that still stansigienerally considered not
possible to make detailed weather predictions beyond tweks/éased on atmospheric
initialization alone. Lorenz’s discovery was initially lgnof academic interest since, at
that time, there was little quality in operational foresabeyond two days, but in re-
cent decades forecast quality has improved, especialtg sive introduction of ensemble
forecasting. Useful forecasts now extend to the range ofl®tdays.

2 Chaotic systems are governed by precise deterministizigonl equations, but have unpredictable

and seemingly random behavior. Chaos can occur when thaséi@ts are both non-linear and unstable to
small perturbations.
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Ensemble forecasts

In addition to imperfect initial condition, a second souafeforecast error exists. The
imperfection of the atmospheric models themselves. Thesesburces of uncertainties
limit the usefulness of a single weather forecast. One wayw&ycome these problems
is to run many forecasts, instead of a single determinisie;, avhere initial conditions
have been nudged and/or the stochastic physics of the atmiespodel itself. This
way, an ensemble of forecasts is created from which a prbtyatensity function in the
atmosphere’s phase space can be determined for indivioigalest parameters.

An overview of ensemble forecasting and ensemble data #agon is given in Zhang
and Pu (2010). The usefulness of forecasts also dependsairwehther parameter is in

Anomaly correlation (%) of ECMWF 500hPa height forecasts

- = Northern hemisphere ——— Southern hemisphere
Day 3
85
-m-
T
e
€5 80
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" i
H
~ /A ;
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&0 /”fw ~ Day 10

) LA fube _H'J} ”\'Jﬁ\/‘
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Figure 2.3: Evolution of ECMWF forecast skill for varyingalé times (3 days in blue; 5
days in red; 7 days in green; 10 days in yellow) as measure®@®h®a height anomaly
correlation. Top line corresponds to the Northern Hemisphleottom line corresponds
to the Southern hemisphere. Large improvements have bege, inaluding a reduction
in the gap in accuracy between the hemispheres.

Evolution of ECMWF forecast skill for varying lead tim@911)

question. Figure 2.3 shows that great improvements have in@ele over the past three
decades to forecast the height of the 500-hPa pressure liegahore difficult to produce
accurate long-term prediction of parameters that are heafluenced by interaction
between the atmosphere and topography.

Horizontal resolution of the most advanced global weathedets ranges from approxi-
mately 16.5 km (ECMWF, anno 2011) to 28 km (GFS, anno 2011gnEat a resolution
of 16.5 km, many topographic features still remain poortyc@ampletely, unresolved by
the model. Consequently, if the model does not resolve thegi@phy, it will not resolve
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accurately the effects the topography has on the atmospit@si. Due to this, it can be
very difficult to produce accurate wind forecasts in compégography.

Weather forecasts are a set of estimates of variables (\whedjpitation, etc.) for a se-
lected area provided by an atmospheric model like WRF Skackaat al. (2008) or MM5
Grell, Dudhia, and Stauffer (1995). In this paper, we do rutsider weather forecast-
ing in detail and suffice with using output data from atmosghmodels as input data
for our model. We use deterministic forecasts as well asrehkeforecasting to provide
estimates of the statistical distribution of future weatb@nditions. In our case, we use
the GFSNOAA GFS Webpag@011) ensemble data provided by NCEP (National Center
for Environmental prediction). The ensemble consists oé&mninistic forecast based
on a "true" analysis of the atmosphere and 20 additionat&sts that are based on initial
conditions that are slightly perturbed relative to the étranalysis.

The weather station used for the experiment is an automagather station located at
Kirkjubaejarklaustur airport (see Figures 2.4 and 2.5). Toaelel then uses the nearest
data point from the ensemble forecast as its point of cdicula

Vedurstddvar

K s LR RSy L5
& ! 7 X ¥ ‘:h
A7 A Fl
I i3 "
= 3
?
LN

FowRREnEY L g
coc%le Map data 2011 Google = T of i

Figure 2.4: The location of the weather station is just sasith-east of the yellow marker
- Kirkjubeejarklaustur airport

The Icelandic Meteorological Office has an automatic weaasi&tion at Kirkjubaejar-
klaustur Airport (Stjérnarsandur), designated the nune&2 in the Reiknistofa i vedurfreedi—
DataMarket weather portal ( http://portal.belgingur.i§he weather station stores mea-
sured values and calculated mean-values once per hourhesel Yalues are stored in a
database at the Icelandic Meteorological Office.

In our model, we use the weather forecast defined by a singtebme(called the base
member - “gec00”) from the ensemble forecast for a giventlona In the model, the
location for the calculated values is grid-point 410 fronRal®/-32 point grid where each
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© 2011 Cnes/Spot imagf
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Figure 2.5: The airport at Kirkjubaejarklaustur is indicht®y the red arrow. It’s location
is 6347°'28"N 18°00°06"W

point is 9KM away from the next point. The geological locatf the calculated point is
within a few a few kilometers from the physical weather stati

The calculated weather is a model simulation of the weath@veamay expect it to be.
The weather forecast describes this future estimate oftewera single timeline, while
the ensemble forecast has several timelines, each cadubgta separate cluster node
in a computing cluster. This is very different from the measuwalues which are actual
measurements on site at the time of the observation.

2.2 The Icelandic energy market, consumption estima-
tion and power production

In the Icelandic energy market there are certain rules aporghase and distribution of
energy. Energy orders have to be placed for a 7-day periode& aieead of time. This
leaves power producers to the mercy of the spot-market yf tlom’t plan well enough
ahead. Spot-energy, although usually cheaper than in tftopEan market [see Zachmann
(n.d., p. 3.1) versukandsnet Spot-Market pricé2011)], is still more than 46 times as
expensive as planned purchatesdsnet Spot-Market pric2011). In power markets
with stable energy production, like geothermal produgtspot-market purchases can be
expected to be rare, but in production like wind-power farinbecomes increasingly
relevant to have good planning systems available to prediein power purchases are
necessary. In this research, we will neither look at thegynararket in whole, nor will
we look at the complexity behind the power curves of wind poplants, since research
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in that area is plentiful (see e.g. Nielsen et al. (2006), Kmd Han (2001)) and is outside
the scope of the planning problems.

2.3 Automatic Planning Using Al

In todays demand for efficiency and return of investment (R&itomatic planning is
being used more and more. It is being used in fields like théncaustry for production
lines, warehouses, the space industry and autonomoudiciapplications. In light
of the results of the UOOR project, where it became appakaitautomatic planning
was not being used in the Icelandic energy production seatwt the success of using
automatic planning in complex systems like the Mars Rover laorax, we saw an op-
portunity to see if planning could indeed be used in the gnprgduction sector. Since
we also have access to the meteorology sector, we havesniereeeing if the current
practices can be improved, and if by using better forecaggould improve the planning
even further.
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Chapter 3
Overview

In 2008-2009 we conducted research for the Environment aredgy Research Fund
Sigurdsson et al. (2009) where we examined the main Icedagiergy producers and
their environment, looking for areas which would be affdcby environmental factors
and how automatic planning might help in solving the proldéne producers might face.
While conducting this research it became apparent that@atto planning wasn’t being
used at all. There were a number of questions raised.

When exmining work already done in the field of ensemble fasessand power plants,
work done by Nielsen et al. (2006) presents a method of ctingethe ensemble wind
metrics to an estimated power output of a wind farm and Yarolaigand Ishihara (2008)
adds to that a multi-timescale parameter. Although Nietteal. (2006) do not use auto-
matic planning, their method may be used as an intermedegarsthis model to convert
the wind metrics directly to power curve metrics. It has hesvdor the purpose of this
research, been chosen not to implement it since it will cocapd the model and will
have little if any effect on the results. No references weratl on the use of automatic
planning using ensemble forecasts in wind-energy prodaochut one compangarrad-
Hassan Webpag@011), may have implemented such planning without rehggsublic
information about it.

The current state of the art in the Icelandic power producgilanning involves getting
metrics through measurements and manually weighing themsig perceived best solu-
tion based on subjective professional experience. Intgoswhere uncertainty is high,
the time to find an acceptable solution may be long and thdisnlashosen may be far
from the best available. Factored into the selection paes recurrent events like regu-
lar maintenance, planning in what might be unforseen eV@ikésdistribution flaws due
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to weather, failing distribution system, etc.), coordioatof several power plants each
different from others and each with its own recurrent events

The planning/atmospheric model combination can be illdstt as in Figure 3.1. The
state of the art, marked by the mark on the left, is moving éxdinection of the solid line.
This research will look into the use of automated plannirsggad of manual optimisation
and whether such a solution does better by using ensemigeafsts, as signified by the
broken line.

Ensemble forecast

Linear optimisation

Bujuueld apewoiny

Weather forecast

Figure 3.1: The current state and path, proposed path

The focus
In this research, we will use a wind power plant as our target.

The choice of a wind power plant is based on two factors

e The simplicity of the wind power plant parameters and thesfimisty of simplifying
the model without losing relevant accuracy

e The short-term nature of wind forecalsts

In this research, we will answer the following two questioaad describe our find-
ings:

e Can we use an automatic planner to plan for a wind power pEingwconventional
weather forecasts?

¢ If we replace the conventional forecast with an ensemblectst, do we get better
results?

To which the answers are:

e We can use an automatic planner to plan for a wind power plaatshort term basis
(up to 3 days), but on a long term base it will not be helpful $e gonventional

1 Since direct effects of weather on hydro and geothermal pplats can be expected to be primarily
of long-term nature, the direct dependence of productiowiitd power plants on weather was deemed
more relevant for examining the effectivness of a plannempfawver production systems, as well as for
investigating the qualitative difference between enserfdrlecasts and traditional weather forecasts
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weather forecasts since there is no quantitative infolonat the forecast to tell
about the quality of the forecast itself which may in turnadethe plan.

¢ If we replace the conventional forecast with an ensemblecfst, it will provide
us with better results. It is not quite on the scale we expkeclde base range is
still up to 3 days, but we now have the benefit of actually baibig to track some
forecasts for a longer time with higher confidence than wédtimthe conventional
forecast, since the ensembles work as a measure on theaintyedf the forecast,
and therefore on the quality and probability of the outcofirtee ensemble forecasts
may also be used to find periods of certainty in the timeframe @eate plans
for these, even if there is a large uncertainty on both erd# (§, given a period
of uncertainty, if we have a period at the end of that whichradlsts members
of the ensemble agree upon, we can plan for that part even dan# plan for
the preceding uncertainty). That means we can magartial plans for the given
period and end up with a set of plans that may aid us throughdrbest fashion
possible, considering the lack of a complete plan. The prabs however that the
ensemble data does not present us with a profile of the wirtdrayis fine enough
granularity for us to predict with any certainty how the weatsystem will behave
beyond a “mean value” (10-minute mean wind in a 6-hour p@ridal Chapter 6,
we present suggestions to what needs to be examined nextria t§ improving
the ensemble forecasts in such a way that they may prove bahéd the wind
power production industry.

If we are able to show that automatic planning in wind powedpiction systems is pos-
sible using the methods we propose, then these methods nagpbed to other temporal

systems like hydropower and geothermal power, both of whrehmore stable systems
than wind power, with at least equal long-term benefits. &the weather model for hy-

dropower and geothermal power plants changes less rapidiyih fewer variations than

the wind model, and as such, long-term planning may be of biggrer benefit on a larger

(national) scale, while the wind power will show benefits ahart-term scale.

The second question comes into play on the quality of thespl&or the producer, this
IS important since a plan needs to be very accurate if it ingtd keep the producer in
positive productivity. Once the plan accuracy drops bel@iwan percentage (depending
on time of day and year since spot-market prices fluctuatlgjethe producer becomes
less of a producer and more of an energy reseller. When rgrminsimulations, we esti-
mated a spot-market price of 4x the standard purchace griwd.implies a plan accuracy
of approximately 80% (not taking into account that the paunay sometimes sell into
the spot-market as well). Since the experiements were d@mglsnet has updated their
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website, publicing actual historical data on spot-marketgs as well as current market
prices. This newly publicized information suggests thatumeerestimated the highest
spot-market prices 12-fold and overestimated the lowesttsfarket prices 2-fold. This
information was not available when the system was written.

Automatic planning using Al

In automatic planning there are many diverse planning nistlavailable, each with its
own merits. Planning based on a temporal datastream likeaghereforecast is a fixed
depth search problem. We have a fixed number of steps our plahhave (the number
of time steps in the weather model in the base case, and thberurh steps there are
from the start of the plan until the uncertainty of forecastdmes too great - in either
case, the number between the end-points is fixed, that is -amet add or omit any steps
to/from the data stream). The implementation of the plameguires us to implement a
problem area that represents the recurrent issues thaldrthe energy industry in one
way or another, like maintenance, fluctuations of othergneroduction facilities and
even recurrent weather-connected events. We chose torimepteone recurrent event per
production plant where an event had to occur within a ceramdow of opportunity.
This window of opportunity is then reset so the event haske dace again. We call the
event “maintenance”, but in reality it can take place of ametsensitive recurrent event
as needed. The presence of the recurrent event means we oaerimear optimization
to create a plan for our facility. Since the problem is a setjaktemporal problem, we
claim that a search (e.g. *& Russell and Norvig (2003)), with some modifications to
make it more benign in terms of speed and resource usagesuffiite to find the best
plan.

In the planner we test a variety of heuristics, where thedsffices between heuristics have
to do with the way we interpret the ensemble data. Since tisem@ arbitrary number
of members in the ensemble, and they are not necessarilgsggu(since a member
may fail in its attempt to create the forecast), severafrprtations of the ensembles are
attempted and found to give suboptimal results - midvalwkraidrange, the mean for
grouped data, the modal for grouped data Bluman (2008hdithie baseline to the trend
in the ensemble and finally the confidence level of the enseifvidhere we check if a
certain percentage of the members land within the set ptmatu@nge) with and without

a deviation check for early exit.

When purchasing energy, an estimate is created on an haasiy tor a full week - both
for production and consumption. All failures in producti@mergy already sold but not
produced) have to be purchased and this is done throughyenbadesale retailers. While

2 A* is a tree-based search method which can be applied in ppnablems
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it is essential for the company to create such purchase,glanductionmayfail (due to
malfunctions, lack of resources etc.) and when that happe@sompany must purchase
the energy on a spot market at a price over four times theaegurchase price (depend-
ing on supply and demand). The producer of energy benefits ffood planning as he
may conduct maintenance when production would otherwiss bdow.

As we show in Chapter 5, we find that planning for wind produrttising conventional

weather forecasts works somewhat well for a up to 3 days. &opgriods are however
affected by the forecast diverging from the real weatheusitey the plan to fail due

to the input data. When upgrading to ensemble forecasts,haw that the planning

period does in many cases extend itself further than the 8 afayre conventional weather
forecast, it handles better than the conventional foreicastrms of being able to see
when the uncertainty is low, and create plans for those @syiand bail out on periods
where uncertainty is very high, thus not wasting resourceglans that cannot with any
guarantee hold against the real world.

We also perform a basline test on the planner to sanity tegil#nnning functions.
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Chapter 4

Methods and Model

In this chapter, we start by giving an overview of the moddait ttihe planning process
operates within. We then go on to describe the tools we at¢atkandle the data and the
planner and the variations that we have tested in this relsear

4.1 The Model

The model is a description of a wind-power plant consistihg e n < 6 windmills,

a repository (batteries) for short-term energy storageefaition of recurrent events
(“maintenance”), a consumption of energy and a weatheesysts shown in Figure 4.1.
Consumption in the model is preset at 12MW per hour. The proiu capability is
user settable per windmill as are the repositories and eraamice periods of each wind-
mill. The weather system consists of data from the envirartaleveather model WRF
(Skamarock et al., 2008) which creates weather forecastsriegion based on initial and
boundary conditions. Part of the boundary conditions aa@cs{i.e. the terrain maps)
while atmospheric boundary and initial conditions comerfrglobal atmospheric mod-
els, in our case the GFSIQAA GFS Webpag@011) model. In addition to the simulated
weather from the forecasting model, observational data &pecific location was used in
the runner phase. For this purpose, measured data for #logéthin the ensemble grid
was acquired from the Icelandic Meterological Office. Theeadational measurements
cover 1477 hourly measurements.
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Weather Forecasts Measured weather
Ensemble Forecasts conditions

1352964708

Planner

Financial state

Figure 4.1: The Model

4.2 The Data converter

The data converter is the first step of the planning process.

The origin of the ensemble data is from the WRF weather modéle model stores
the data in a binary format called netCDF. This format is sdgcdesigned for storing
scientific data and is very effective as a storage formatabud query format it is not.
The data was therefore extracted from the netCDF files by sneha program written
specifically for the purpose, and injected into a Postgre8&thbase (see Figure 4.2 and
Table 4.1 for explanation). The resulting data, shy of 70iamlrows describing the
ensemble forecasts for up to 21 members in a roughly 2 momibdpevas used as input
into the planner.
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| TABLE | SOURCE | DESCRIPTION |

msc_ensemble calculated weather forecasts based on GFS data

wind measured data from Icelandic Meterolggneasured wind data for select
ical Office weather stations

precip measured data from Icelandic Meterolagneasured precipitation for se-
ical Office lect weather stations

msc_series local definition A key value that identifies the

series (member) by name

latlongs A keying table which binds together a certhis value is used in INDEX

tain coordinate and a grid-point numbeyf in Table 4.2

Table 4.1: The declaration of the database and its sourcataf d

The data conversion program reads the netCDF data files \ahéatreated by the weather
forecast model. Selected data from the netCDF files is iedento the database — in our
case time of calculation, time of target, member id, windrsgith and location of the grid

points. Some of the data (e.g. wind, stored in north-southeast-west component form
asU;o andV) is converted to a usable value (e.g., of wind spegdf%o +V3)

msc_ensemble
<2 reiknidags : timestamp
<5 targetdags : timestamp
f latitude : float8
B longditude : float8
<5 series : int4 *
precip : floatd
wind : float8

msc_series

msc_ensemble_series_fkey
bt Bl O ST O H<E series : int4

sname : varchar (10)

latlengs

wind precip &% latlon :int4
< stod : int4 <5 stod : int4 by lathudte i plenisian
<5 dags : timestamp =% dags : timestamp <& longitude : dbl precision
w10 : float8 urk : float8

wlOmax : float8
wmax : float8

Figure 4.2: The structure of the stored data in the database

4.3 The Planner/ Runner

The planner/runner is a single two-phase program. It is gardid by editing two con-
figuration files and by command-line parameters where theaaseset the constants for
the power plants, the period to plan for, which heuristic $e,uf and when to use early
commitment and other parameters which control the flow ofpfla@ning process. The
first version of the planner used puré o plan. It became apparent very soon that al-
though the growth of the plan-space is very slow when pradngs possible (the best
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plan is easy to find since production always gives the besttres the real problem be-
comes selecting the timing of the maintenance periods)ldregpace grows by’ when
no production is possible, since all other possibilitiethatsame and previous level in the
search tree become candidates once a counter—produabive ¢fas to be made.

To counter this growth, the next iteration of the planner ttaelpossibility of planning
only a few (user-selectable number of) steps (early comamtin commiting to the plan
and continue searching from that point on an equal numbetepks That ment that a
plan of 360 hours could e.g. be planned in 10 segments of 6 ster 36 segments of
10 steps. The growth problem was however still in the plaandreven 10-step searches
through a time serie with no possible production led to deéiroes far exceeding the
actual period being searched.

This lead to the third iteration of the planner where earlgnoatment was added. The
early commitment works by keeping a count of how many nodeg l@en expanded
and once the set amount has been reached, the planner egdharairrent node being
expanded, takes note of its level and goes.Ugvels in the tree (user selectable). In this
previous level, the best node is selectdabth from the OpenList and ClosedLfst the
particular selected level, since the best node is verpliteehave already been expanded.
The planner then c