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Þór Sigurðsson

May 2011

Abstract

In the energy production sector, planning the production ahead of time is
crucial to the bottom-line of the production facility. In current operations
in Iceland as shown by Sigurðsson, Jónsson, and Rögnvaldsson (2009), the
planning is mostly manual optimisation or ad-hoc planning.
In this report we start by presenting an automatic planner inthe wind-energy
sector using conventional weather forecasts to create a production and main-
tenance plan for the length of the forecast. We show that conventional weather
forecasts are only reliable for up to 3 days. By using ensemble forecasts, we
show that the planner can get better plans. Due to uncertainties in the ensem-
bles, we show that the planner succeeds at variable-length planning where
the length depends on when the uncertainty in the forecast starts increasing
too much (increased spread). We then present a sanity check against the en-
semble version of the planner, and �nally we present the correlation between
the accuracy of the forecast and the quality of the created plan, as well as
why the forecasts must be improved to be able to plan for wind production
on a long-term scale.



Sjálfvirk áætlanagerð í vindorkuframleiðslu með notkun
klasaspáa

Þór Sigurðsson

Maí 2011

Útdráttur

Í orkuframleiðslugeiranum er mikilvægt fyrir framlegð virkjunarinnar að
gera framleiðsluáætlanir fram í tímann. Í núverandi framleiðsluferlum á Ís-
landi, eins og sýnt er í Sigurðsson et al. (2009), er áætlanagerð að mestu
byggð á línulegri bestun eða ad-hoc áætlanagerð.
Í þessarri skýrslu byrjum við á að kynna sjálfvirka áætlanagerð í vindorkuveri
sem nýtir hefðbundnar tölvureiknaðar veðurspár til að búa til framleiðslu- og
viðhaldsáætlun eins langt og veðurspáin ley�r. Við sýnum aðhefðbundin
veðurspá nýtist til áætlanagerðar allt að 3 daga fram í tímann. Með því að
notast við klasaspár sýnum við fram á að hægt er að búa til betri áætlanir.
Sökum óvissu í spánum sýnum við að áætlanagerðin ræður aðeins við áæt-
lanir þar sem lengd spárinnar er upp að þeim tímapunkti þar sem óvissan
verður of mikil í spánni (aukin drei�ng). Við kynnum síðan prófun á áæt-
lanagerðinni þar sem prófaður er klasapárhlutinn. Að lokumkynnum við
tengsl milli gæða spárinnar og nákvæmni áætlunarinnar og svo hversvegna
spárnar verða að verða betri til að áætlanagerð í vindorkugeiranum sé mögu-
leg fyrir lengri tímabil.
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Chapter 1

Introduction

In energy production and sales, planning ahead is one of the most crucial elements in

operations. Energy sales are typically done ahead of time and thus energy producers must

guarantee the delivery of energy. If there is a change that makes a producer unable to

comply with production numbers promised, energy must be bought on a “spot market”,

at a price many times (up to 45 times the regular market price is not unusual (Landsnet

Spot-Market prices, 2011)) that of a planned purchase.

In Chapter 2 we present the background for this project and our motivation to do so.

In Chapter 3 we present a planner written for wind power plants with the notion of be-

ing able to make production and “maintenance” (recurrent events) plans as needed. We

then create plans against conventional weather forecasts.We show that the conventional

weather forecasts can support plans for up to 3 days, and thatthese forecasts are not the

best candidates for planning since they lack necessary quantitative information about the

uncertainty of the weather system. We show that by using ensemble forecasts we can pro-

duce better plans, as well as predict the quality of the forecasts, allowing us to selectively

plan for more certain periods, or stop the planner from planning further when the forecast

becomes too unreliable. In Chapter 4 we present the model andthe helper applications.

First we present an overview of the model. Next we describe the data converter used to

retrieve the weather forecasts, followed by a detailed description of the planner and runner

and its parts. Finally, we describe the baseline tests used to sanity-check the planner. In

Chapter 5 we present the results of the simulations where we show how well the heuristics

handle the planning, and especially how detrimental bad input data can be to the planner.

In Chapter 6 we present the conclusions of this research, as well as what is being done to

improve the ensemble forecasts beyond what they offer today.
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Chapter 2

Background and Motivation

In 2008-2009, we did a research project for Reykjavik Energy(Orkuveita Reykjavíkur,

OR) Environment and Energy Research Fund (UOOR). In the project Sigurðsson et al.

(2009) we examined the state of the energy industry in Iceland, in particular with respect

to which methods were used in production planning.

Our �ndings were that where plans are created, a specialist uses manual optimization

based on the current state of the system (fed into an Excel model showing the trends

for the changes in the system) and a weather forecast which isinput into a �ow model

(containing historical weather data 1985-2006 (Sigurðsson et al., 2009, p. 7)) to create

the plan. This manual approach limits severely what optionsmay be explored, since each

iteration is time consuming and only a single, or very few options may be examined.

Previously, conventional weather forecasts were used as input to the �ow models, but

recently, ensemble forecasts have been used.

Previous work done in planning for complex projects, includes The Mars Rover project,

where Bresina, Jónsson, Morris, and Rajan (2005) created plans for extremely time-

sensitive and complex situations and presented in human-readable form for veri�cation

and acceptance. The LORAX project, where Jónsson, McGann, Pedersen, Iatauro, and

Rajagopalan (2005) used automatic planning to create action plans in an autonomous

droid in Antartica. And the research on Short-Term Multiperiod Optimal Planning of

Utility Systems Using Heuristics and Dynamic Programming,where Kim and Han (2001)

used non-linear and dynamic programming to create plans forsteam-based power plants.

We considered the possibility of using automatic planning for creating production plans

for Icelandic power plants, using wind farms as our target since they are the most volatile

(giving us a chance of seeing results on a relatively short timeframe compared with
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geothermal or hydro power) and to see if we can improve the base results by using en-

semble forecasts which should provide us with the uncertainty measure we need.

There are three domains which affect the end result of this research as shown in Figure

2.1.

!"#$%&'()$*#+

!"#$%&'()$*#+
,-.+'()$*#+
/.",0(-+1."

2#)+3#$'4.$#/),+1"%

56)""1"%

Figure 2.1: The three domains

2.1 Weather forecasting

A numerical weather model is a system of differential equations (called Euler equations1)

that describe the atmospheric motion and represent conservation of mass (continuity),

momentum and energy (see Figure 2.2). These equations are also known as the primitive

equations, and are derived from the basic laws of physics. There are no known analytical

solutions and in order to solve the equations, one must either use �nite difference or spec-

tral methods. Most regional atmospheric models use �nite difference while most global

atmospheric models rely on spectral methods to integrate the equations forward in time.

Predictability

Weather forecasts are computed as initial value problems. They require realistic models

and accurate initial conditions of the system being simulated in order to generate ac-

curate forecasts. Lorenz (1965) showed that even with a perfect model and essentially

1 Named after Leonhard Euler, this is a set of equations governing inviscid �ow. They correspond to the
Navier-Stokes equations with zero viscosity and heat conduction terms.
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Figure 2.2: Numerical weather models use systems of differential equations based on
the laws of physics and �uid motion, and use a coordinate system which divides the
planet into a 3D grid. Winds, heat transfer, solar radiation, relative humidity, and surface
hydrology are calculated within each grid cell, and the interactions with neighboring cells
are used to calculate atmospheric properties in the future.
Wikimedia: Picture of Weather Model(2011)

perfect initial conditions, the fact that the atmosphere ischaotic2 causes forecasts to lose

all predictive information after a �nite time. He estimatedthe “limit of predictability” for

weather as about two weeks. As an estimate that still stands,it is generally considered not

possible to make detailed weather predictions beyond two weeks based on atmospheric

initialization alone. Lorenz's discovery was initially only of academic interest since, at

that time, there was little quality in operational forecasts beyond two days, but in re-

cent decades forecast quality has improved, especially since the introduction of ensemble

forecasting. Useful forecasts now extend to the range of 5 to10 days.

2 Chaotic systems are governed by precise deterministic evolution equations, but have unpredictable
and seemingly random behavior. Chaos can occur when these equations are both non-linear and unstable to
small perturbations.
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Ensemble forecasts

In addition to imperfect initial condition, a second sourceof forecast error exists. The

imperfection of the atmospheric models themselves. These two sources of uncertainties

limit the usefulness of a single weather forecast. One way toovercome these problems

is to run many forecasts, instead of a single deterministic one, where initial conditions

have been nudged and/or the stochastic physics of the atmospheric model itself. This

way, an ensemble of forecasts is created from which a probability density function in the

atmosphere's phase space can be determined for individual forecast parameters.

An overview of ensemble forecasting and ensemble data assimilation is given in Zhang

and Pu (2010). The usefulness of forecasts also depends on what weather parameter is in

Figure 2.3: Evolution of ECMWF forecast skill for varying lead times (3 days in blue; 5
days in red; 7 days in green; 10 days in yellow) as measured by 500-hPa height anomaly
correlation. Top line corresponds to the Northern Hemisphere; bottom line corresponds
to the Southern hemisphere. Large improvements have been made, including a reduction
in the gap in accuracy between the hemispheres.
Evolution of ECMWF forecast skill for varying lead times(2011)

question. Figure 2.3 shows that great improvements have been made over the past three

decades to forecast the height of the 500-hPa pressure level. It is more dif�cult to produce

accurate long-term prediction of parameters that are heavily in�uenced by interaction

between the atmosphere and topography.

Horizontal resolution of the most advanced global weather models ranges from approxi-

mately 16.5 km (ECMWF, anno 2011) to 28 km (GFS, anno 2011). Even at a resolution

of 16.5 km, many topographic features still remain poorly, or completely, unresolved by

the model. Consequently, if the model does not resolve the topography, it will not resolve
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accurately the effects the topography has on the atmospheric �ow. Due to this, it can be

very dif�cult to produce accurate wind forecasts in complextopography.

Weather forecasts are a set of estimates of variables (wind,precipitation, etc.) for a se-

lected area provided by an atmospheric model like WRF Skamarock et al. (2008) or MM5

Grell, Dudhia, and Stauffer (1995). In this paper, we do not consider weather forecast-

ing in detail and suf�ce with using output data from atmospheric models as input data

for our model. We use deterministic forecasts as well as ensemble forecasting to provide

estimates of the statistical distribution of future weather conditions. In our case, we use

the GFSNOAA GFS Webpage(2011) ensemble data provided by NCEP (National Center

for Environmental prediction). The ensemble consists of a deterministic forecast based

on a "true" analysis of the atmosphere and 20 additional forecasts that are based on initial

conditions that are slightly perturbed relative to the "true" analysis.

The weather station used for the experiment is an automatic weather station located at

Kirkjubæjarklaustur airport (see Figures 2.4 and 2.5). Themodel then uses the nearest

data point from the ensemble forecast as its point of calculation.

Figure 2.4: The location of the weather station is just east-south-east of the yellow marker
- Kirkjubæjarklaustur airport

The Icelandic Meteorological Of�ce has an automatic weather station at Kirkjubæjar-

klaustur Airport (Stjórnarsandur), designated the number6272 in the Reiknistofa í veðurfræði—

DataMarket weather portal ( http://portal.belgingur.is ). The weather station stores mea-

sured values and calculated mean-values once per hour, and these values are stored in a

database at the Icelandic Meteorological Of�ce.

In our model, we use the weather forecast de�ned by a single member (called the base

member - “gec00”) from the ensemble forecast for a given location. In the model, the

location for the calculated values is grid-point 410 from a 32-by-32 point grid where each
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Figure 2.5: The airport at Kirkjubæjarklaustur is indicated by the red arrow. It's location
is 63� 47'28"N 18� 00'06"W

point is 9KM away from the next point. The geological location of the calculated point is

within a few a few kilometers from the physical weather station.

The calculated weather is a model simulation of the weather as we may expect it to be.

The weather forecast describes this future estimate of events in a single timeline, while

the ensemble forecast has several timelines, each calculated by a separate cluster node

in a computing cluster. This is very different from the measured values which are actual

measurements on site at the time of the observation.

2.2 The Icelandic energy market, consumption estima-

tion and power production

In the Icelandic energy market there are certain rules aboutpurchase and distribution of

energy. Energy orders have to be placed for a 7-day period a week ahead of time. This

leaves power producers to the mercy of the spot-market if they don't plan well enough

ahead. Spot-energy, although usually cheaper than in the European market [see Zachmann

(n.d., p. 3.1) versusLandsnet Spot-Market prices(2011)], is still more than 46 times as

expensive as planned purchasesLandsnet Spot-Market prices(2011). In power markets

with stable energy production, like geothermal production, spot-market purchases can be

expected to be rare, but in production like wind-power farms, it becomes increasingly

relevant to have good planning systems available to predictwhen power purchases are

necessary. In this research, we will neither look at the energy market in whole, nor will

we look at the complexity behind the power curves of wind power plants, since research
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in that area is plentiful (see e.g. Nielsen et al. (2006), Kimand Han (2001)) and is outside

the scope of the planning problems.

2.3 Automatic Planning Using AI

In todays demand for ef�ciency and return of investment (ROI), automatic planning is

being used more and more. It is being used in �elds like the carindustry for production

lines, warehouses, the space industry and autonomous scienti�c applications. In light

of the results of the UOOR project, where it became apparent that automatic planning

was not being used in the Icelandic energy production sector, and the success of using

automatic planning in complex systems like the Mars Rover and Lorax, we saw an op-

portunity to see if planning could indeed be used in the energy production sector. Since

we also have access to the meteorology sector, we have interest in seeing if the current

practices can be improved, and if by using better forecasts,we could improve the planning

even further.
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Chapter 3

Overview

In 2008-2009 we conducted research for the Environment and Energy Research Fund

Sigurðsson et al. (2009) where we examined the main Icelandic energy producers and

their environment, looking for areas which would be affected by environmental factors

and how automatic planning might help in solving the problems the producers might face.

While conducting this research it became apparent that automatic planning wasn't being

used at all. There were a number of questions raised.

When exmining work already done in the �eld of ensemble forecasts and power plants,

work done by Nielsen et al. (2006) presents a method of converting the ensemble wind

metrics to an estimated power output of a wind farm and Yamaguchi and Ishihara (2008)

adds to that a multi-timescale parameter. Although Nielsenet al. (2006) do not use auto-

matic planning, their method may be used as an intermediate step in this model to convert

the wind metrics directly to power curve metrics. It has however for the purpose of this

research, been chosen not to implement it since it will complicate the model and will

have little if any effect on the results. No references were found on the use of automatic

planning using ensemble forecasts in wind-energy production, but one company,Garrad-

Hassan Webpage(2011), may have implemented such planning without releasing public

information about it.

The current state of the art in the Icelandic power production planning involves getting

metrics through measurements and manually weighing them against a perceived best solu-

tion based on subjective professional experience. In situations where uncertainty is high,

the time to �nd an acceptable solution may be long and the solution chosen may be far

from the best available. Factored into the selection process are recurrent events like regu-

lar maintenance, planning in what might be unforseen events(like distribution �aws due
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to weather, failing distribution system, etc.), coordination of several power plants each

different from others and each with its own recurrent events.

The planning/atmospheric model combination can be illustrated as in Figure 3.1. The

state of the art, marked by the mark on the left, is moving in the direction of the solid line.

This research will look into the use of automated planning instead of manual optimisation

and whether such a solution does better by using ensemble forecasts, as signi�ed by the

broken line.

Figure 3.1: The current state and path, proposed path

The focus

In this research, we will use a wind power plant as our target.

The choice of a wind power plant is based on two factors

� The simplicity of the wind power plant parameters and the possibility of simplifying

the model without losing relevant accuracy

� The short-term nature of wind forecasts1

In this research, we will answer the following two questions, and describe our �nd-

ings:

� Can we use an automatic planner to plan for a wind power plant using conventional

weather forecasts?

� If we replace the conventional forecast with an ensemble forecast, do we get better

results?

To which the answers are:

� We can use an automatic planner to plan for a wind power plant on a short term basis

(up to 3 days), but on a long term base it will not be helpful to use conventional

1 Since direct effects of weather on hydro and geothermal power plants can be expected to be primarily
of long-term nature, the direct dependence of production inwind power plants on weather was deemed
more relevant for examining the effectivness of a planner for power production systems, as well as for
investigating the qualitative difference between ensemble forecasts and traditional weather forecasts
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weather forecasts since there is no quantitative information in the forecast to tell

about the quality of the forecast itself which may in turn derail the plan.

� If we replace the conventional forecast with an ensemble forecast, it will provide

us with better results. It is not quite on the scale we expected. The base range is

still up to 3 days, but we now have the bene�t of actually beingable to track some

forecasts for a longer time with higher con�dence than we could in the conventional

forecast, since the ensembles work as a measure on the uncertainty of the forecast,

and therefore on the quality and probability of the outcome.The ensemble forecasts

may also be used to �nd periods of certainty in the timeframe and create plans

for these, even if there is a large uncertainty on both ends (that is, given a period

of uncertainty, if we have a period at the end of that which all/mosts members

of the ensemble agree upon, we can plan for that part even if wecan't plan for

the preceding uncertainty). That means we can maken partial plans for the given

period and end up with a set of plans that may aid us through in the best fashion

possible, considering the lack of a complete plan. The problem is however that the

ensemble data does not present us with a pro�le of the wind system in �ne enough

granularity for us to predict with any certainty how the weather system will behave

beyond a “mean value” (10-minute mean wind in a 6-hour period). In Chapter 6,

we present suggestions to what needs to be examined next in terms of improving

the ensemble forecasts in such a way that they may prove bene�cial to the wind

power production industry.

If we are able to show that automatic planning in wind power production systems is pos-

sible using the methods we propose, then these methods may beapplied to other temporal

systems like hydropower and geothermal power, both of whichare more stable systems

than wind power, with at least equal long-term bene�ts. Since the weather model for hy-

dropower and geothermal power plants changes less rapidly and with fewer variations than

the wind model, and as such, long-term planning may be of evenbigger bene�t on a larger

(national) scale, while the wind power will show bene�ts on ashort-term scale.

The second question comes into play on the quality of the plans. For the producer, this

is important since a plan needs to be very accurate if it is going to keep the producer in

positive productivity. Once the plan accuracy drops below agiven percentage (depending

on time of day and year since spot-market prices �uctuate greatly), the producer becomes

less of a producer and more of an energy reseller. When running our simulations, we esti-

mated a spot-market price of 4x the standard purchace price.That implies a plan accuracy

of approximately 80% (not taking into account that the producer may sometimes sell into

the spot-market as well). Since the experiements were done,Landsnet has updated their
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website, publicing actual historical data on spot-market prices as well as current market

prices. This newly publicized information suggests that weunderestimated the highest

spot-market prices 12-fold and overestimated the lowest spot-market prices 2-fold. This

information was not available when the system was written.

Automatic planning using AI

In automatic planning there are many diverse planning methods available, each with its

own merits. Planning based on a temporal datastream like a weather forecast is a �xed

depth search problem. We have a �xed number of steps our plan must have (the number

of time steps in the weather model in the base case, and the number of steps there are

from the start of the plan until the uncertainty of forecast becomes too great - in either

case, the number between the end-points is �xed, that is – we cannot add or omit any steps

to/from the data stream). The implementation of the plannerrequires us to implement a

problem area that represents the recurrent issues that trouble the energy industry in one

way or another, like maintenance, �uctuations of other energy production facilities and

even recurrent weather-connected events. We chose to implement one recurrent event per

production plant where an event had to occur within a certainwindow of opportunity.

This window of opportunity is then reset so the event has to take place again. We call the

event “maintenance”, but in reality it can take place of any time-sensitive recurrent event

as needed. The presence of the recurrent event means we cannot use linear optimization

to create a plan for our facility. Since the problem is a sequential temporal problem, we

claim that a search (e.g. A� 2 Russell and Norvig (2003)), with some modi�cations to

make it more benign in terms of speed and resource usage, willsuf�ce to �nd the best

plan.

In the planner we test a variety of heuristics, where the differences between heuristics have

to do with the way we interpret the ensemble data. Since thereis an arbitrary number

of members in the ensemble, and they are not necessarily sequential (since a member

may fail in its attempt to create the forecast), several interpretations of the ensembles are

attempted and found to give suboptimal results - midvalue and midrange, the mean for

grouped data, the modal for grouped data Bluman (2008), �tting the baseline to the trend

in the ensemble and �nally the con�dence level of the ensemble (where we check if a

certain percentage of the members land within the set production range) with and without

a deviation check for early exit.

When purchasing energy, an estimate is created on an hourly basis for a full week - both

for production and consumption. All failures in production(energy already sold but not

produced) have to be purchased and this is done through energy wholesale retailers. While

2 A � is a tree-based search method which can be applied in planning problems
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it is essential for the company to create such purchase plans, productionmayfail (due to

malfunctions, lack of resources etc.) and when that happens, the company must purchase

the energy on a spot market at a price over four times the regular purchase price (depend-

ing on supply and demand). The producer of energy bene�ts from good planning as he

may conduct maintenance when production would otherwise beat a low.

As we show in Chapter 5, we �nd that planning for wind production using conventional

weather forecasts works somewhat well for a up to 3 days. Longer periods are however

affected by the forecast diverging from the real weather, causing the plan to fail due

to the input data. When upgrading to ensemble forecasts, we show that the planning

period does in many cases extend itself further than the 3 days of the conventional weather

forecast, it handles better than the conventional forecastin terms of being able to see

when the uncertainty is low, and create plans for those periods, and bail out on periods

where uncertainty is very high, thus not wasting resources on plans that cannot with any

guarantee hold against the real world.

We also perform a basline test on the planner to sanity test the plannning functions.
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Chapter 4

Methods and Model

In this chapter, we start by giving an overview of the model that the planning process

operates within. We then go on to describe the tools we created to handle the data and the

planner and the variations that we have tested in this research.

4.1 The Model

The model is a description of a wind-power plant consisting of 0 < n � 6 windmills,

a repository (batteries) for short-term energy storage, a de�nition of recurrent events

(“maintenance”), a consumption of energy and a weather system as shown in Figure 4.1.

Consumption in the model is preset at 12MW per hour. The production capability is

user settable per windmill as are the repositories and maintenance periods of each wind-

mill. The weather system consists of data from the environmental weather model WRF

(Skamarock et al., 2008) which creates weather forecasts for a region based on initial and

boundary conditions. Part of the boundary conditions are static (i.e. the terrain maps)

while atmospheric boundary and initial conditions come from global atmospheric mod-

els, in our case the GFS (NOAA GFS Webpage, 2011) model. In addition to the simulated

weather from the forecasting model, observational data fora speci�c location was used in

the runner phase. For this purpose, measured data for a location within the ensemble grid

was acquired from the Icelandic Meterological Of�ce. The observational measurements

cover 1477 hourly measurements.
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Figure 4.1: The Model

4.2 The Data converter

The data converter is the �rst step of the planning process.

The origin of the ensemble data is from the WRF weather model.The model stores

the data in a binary format called netCDF. This format is specially designed for storing

scienti�c data and is very effective as a storage format, butas a query format it is not.

The data was therefore extracted from the netCDF �les by means of a program written

speci�cally for the purpose, and injected into a PostgreSQLdatabase (see Figure 4.2 and

Table 4.1 for explanation). The resulting data, shy of 70 million rows describing the

ensemble forecasts for up to 21 members in a roughly 2 month period, was used as input

into the planner.
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TABLE SOURCE DESCRIPTION
msc_ensemble calculated weather forecasts based on GFS data
wind measured data from Icelandic Meterolog-

ical Of�ce
measured wind data for select
weather stations

precip measured data from Icelandic Meterolog-
ical Of�ce

measured precipitation for se-
lect weather stations

msc_series local de�nition A key value that identi�es the
series (member) by name

latlongs A keying table which binds together a cer-
tain coordinate and a grid-point number

this value is used in INDEX10

in Table 4.2

Table 4.1: The declaration of the database and its source of data

The data conversion program reads the netCDF data �les whichare created by the weather

forecast model. Selected data from the netCDF �les is inserted into the database – in our

case time of calculation, time of target, member id, wind strength and location of the grid

points. Some of the data (e.g. wind, stored in north-south and east-west component form

asU10 andV10) is converted to a usable value (e.g., of wind speed -
q

U2
10 + V 2

10)

Figure 4.2: The structure of the stored data in the database

4.3 The Planner / Runner

The planner/runner is a single two-phase program. It is con�gured by editing two con-

�guration �les and by command-line parameters where the user can set the constants for

the power plants, the period to plan for, which heuristic to use, if and when to use early

commitment and other parameters which control the �ow of theplanning process. The

�rst version of the planner used pure A� to plan. It became apparent very soon that al-

though the growth of the plan-space is very slow when production is possible (the best
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plan is easy to �nd since production always gives the best result — the real problem be-

comes selecting the timing of the maintenance periods) the plan-space grows by4d when

no production is possible, since all other possibilities atthe same and previous level in the

search tree become candidates once a counter–productive choice has to be made.

To counter this growth, the next iteration of the planner hadthe possibility of planning

only a few (user-selectable number of) steps (early commitment), commiting to the plan

and continue searching from that point on an equal number of steps. That ment that a

plan of 360 hours could e.g. be planned in 10 segments of 36 steps - or 36 segments of

10 steps. The growth problem was however still in the plannerand even 10-step searches

through a time serie with no possible production led to search times far exceeding the

actual period being searched.

This lead to the third iteration of the planner where early commitment was added. The

early commitment works by keeping a count of how many nodes have been expanded

and once the set amount has been reached, the planner examines the current node being

expanded, takes note of its level and goes upn levels in the tree (user selectable). In this

previous level, the best node is selected -both from the OpenList and ClosedListfor the

particular selected level, since the best node is very likely to have already been expanded.

The planner then commits to this node as the best solution, purges the OpenList and re-

sumes planning from that point in time. This method solved the growth problem in the

n-step early commitment planner described above. Care must however be taken that if

a too small number of nodes is set as early commitment – or too large backtracking of

levels — a loop may be created when the planner backs up to the source of the expansion

problem. A problem with early commitment may arise if the planner commits to a period

where nothing is done when it should commit to maintenace where a future production

may be compromised by a bad early commitment. This may be countered by examining

the plan structure and not allowing early commitment to commit to the last step before

production.

4.3.1 Determining if production will be available a state

The wind strength is the determining factor, as well as the previous state the windmill is

in. Since it does take some amount of time to start up the windmill as well as to shut it

down, this is simulated in the decision process by separate states with their own action

sets. We store information about the production plant in a data structure like the one

de�ned by Table 4.2. The data structure is the set of initial values for the power-plant, and

should be considered constant. It is only used in initializing the �rst state of the search

tree.
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INDEX Name Description
00 type Plant Type (0=wind, 1=water, . . . )
01 genprodcap Production Capacity in % (0-1)
02 maxprodcap Production Capacity in MW
03 serviceinterval Maximum interval in timesteps
04 servicestoplength Number of timesteps each service

interval must last
05 startupprodcap Production capacity in % for the

startup phase
06 shutdownprodcap Production capacity in % for the

shutdown phase
07 res_max Maximum allowed storage of re-

serve power
08 res_min Minimum allowed storage of re-

serve power
09 res_lvl Current storage level of reserve

power
10 location (DataPoint) The grid-location of the power plant
. . . Reserved Reserved (not used)
18 prod_above Production Trigger (Lower Bound)
19 prod_below Production Trigger (Upper Bound)

Table 4.2: The data structure that stores facts about the power plant

All the � n variables are such thatn is the index to Table 4.2.

These are the formulae for wind production (a1 is the previous action anda2 is the current

one,� is the estimated/measured wind strength):

Calculate the MW multiplier to use if there is wind available:

�1 = ( � 18 � � � � 19)� 1� 2 (4.1)

Calculate the MW multiplier to use if there is no wind available:

�2 = (( � 18 < � ) _ (� > � 19)) � 1� 2 (4.2)

If there's wind:

P = �1(a1 ^ 3)(a2; 4)� 6 + �1(a1; 2)(a2; 4)
� 6

2
+ �1(a2; 3) + �1(a2; 2)� 5 (4.3)
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And if there's none:

P = �2(a2; 4)� 6 (4.4)

For �1 and�2 in Equations 4.1 and 4.2, we check if the wind (� ) is within the produc-

tion boundaries (� 18 : : : � 19) and them multiply it with the general production capabil-

ity (� 1, current capability,0: : : 1) and maximum production capability (� 2, megawatts,

> 0).

For P, if there's wind, only one of the four segments in Equation 4.3 will return a value

(since the logical-and creates a multiply-by-zero condition). Thea1 anda2 variables of

the formula de�ne the current action (a2) and the previous action (a1) of the state machine

(see Section 4.3.2). The checks for actions and/or action-pairs return a value, 0 or 1. This

value is multiplied with�1/�2 and then with a variable representing the production value

for said situation (e.g.� 6 for production under shutdown)

The value ofP is then used to evaluate the “quality” of the state (the production of energy

under the estimated or observed circumstances).

4.3.2 The state machines

Both the planners and the runners selection process are based on state machines. These

state machines control what actions are available at any given state, based on the weather

(for the planner) and based on the previous action taken, along with conditions given

by the resource calculation formula presented in Section 4.3.3. The state machine for the

planner is shown in Figure 4.3, and the transition table is shown in Tables 4.3 and 4.4. The

planner is a Finite State Machine (FSM). If there is too little wind to allow production, the

number of options available as actions to leave the state arereduced to the set indicated

by the broken lines. If there is wind, the number of actions isrepresented both by the

broken lines as well as the solid lines. From the options available the planner chooses an

action to take, based on the heuristic (see Section 4.5).

The method used to implement the state machine is similar to that of the Europa plan-

ning system written by NASA (EUROPA pso Platform for AI Planning, Scheduling, Con-

straint Programming and Optimization(2011)). That is, the state machine is de�ned and

designed before-hand, and then converted to a translation table where we can translate the

knowledge of the current state to an action that leads to a newstate.
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Figure 4.3: The state machine used in the planner

The state translation table for the given state machine in Figure 4.3 would thus be as seen

in Tables 4.3 and 4.4.

action
a1 a2 a3 a4 a"1 a"2

S Maintenance (S1) - - - - S1 S2

t Idle (S2) - - - - S1 S2

a Start up (S3) - - - S5 - -
t Production (S4) - - S5 - - -
e Shut down (S5) - - - - S1 S2

Table 4.3: Transition table for state machine in planner - nowind

action
a1 a2 a3 a4 a"1 a"2

S Maintenance (S1) - S3 - - S1 S2

t Idle (S2) - - S3 - S1 S2

a Start up (S3) S4 - - S5 - -
t Production (S4) S4 - S5 - - -
e Shut down (S5) - S3 - - S1 S2

Table 4.4: Transition table for state machine in planner - with wind
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e.g. in a given stateS4 (production), the planner takes an action depending on the heuristic

and the weather. In stateS4 according to the transition table for no wind (Table 4.3), in

stateS4 we have the only option ofa3, since that is the only action that provides a state

transition. That is, regardless of the heuristic, if there is no wind to power the turbine,

and the turbine was in a production phase, it will transitionto the shutdown phase which

returns the value� 6. However, if there is wind, according to Table 4.4, in stateS4 we have

the option ofa1 (keep producing) anda3 (shutdown). The heuristic would provide which

action would be preferable.
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Figure 4.4: The state machine used in the runner

In the �rst iterations of the system, these are the state machines. In the iteration where

we added the penalty, we added a sixth state in the runner taking care of the additional

maintenance under penalty - basically the same state as state "0", except with a higher

penalty value.

In our model, there are 5 actions. These are, as seen in Table 4.5.

Action Description
ID Idle - do nothing
MA Go into Maintenance mode
SU Start Up - prepare for production
P Produce - produce energy
SD Shut Down - stop production

Table 4.5: The possible states of the planner

The states the planner can take are likewise 5, but the numberof actions out of the state

depends on the environment (weather) as seen in Table 4.6. There are limits set to the
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actions, such that if� designates the number of steps left until recurrent action is forced,

then at step� � 1, if state is Production or Start Up, theonly option is Shut Down. If at

step� and state is Shut Down or Idle, Enter Maintenance is the only action.

State Weather No Weather
Maintenance Enter Maintenance Enter Maintenance

Enter Idle Enter Idle
Enter Start Up

Idle Enter Idle Enter Idle
Enter Maintenance Enter Maintenance
Enter Start Up

Start Up Enter Shut Down Enter Shut Down
Enter Production

Production Enter Shut Down Enter Shut Down
Enter Production

Shut Down Enter Idle Enter Idle
Enter Maintenance Enter Maintenance
Enter Start Up

Table 4.6: The States and the Actions possible in each state

The search space is a tree structure, where the number of actions available as exit-actions

out of a state are designated by the state and environment (weather). The root of the tree

is at the start of the weather/ensemble forecast and the end (the physical goal state) is at

the end of the forecast.

4.3.3 Calculating resources

We make an estimate on the value of a state, by means of Equation 4.7. The equation takes

resource values from the previous state and the production of the current state, along with

limits for resources and values for consumption. The outputof the formula is basically

how much energy is produced by the mill, how much is purchasedand how much is put

into or taken out of storage. Thep, c, r , rmax , rmin , po andb are state- and calculated

values, the rest are user-supplied.

r +
�  rmax � r (4.5)

r �
�  r � rmin (4.6)
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Legend Description
p Production
c Consumption
rmax Maximum allowed reservoir level
rmin Minimum allowed reservoir level
r Reservoir level
r +

� Difference betweenr andrmax

r �
� Difference betweenr andrmin

po Overproduction (after consumption and reservoir)
b Purchased (bought) energy (after insuf�cient reservoir and production)

Table 4.7: Resource-Production-Consumption Legend

Resource calculation formula:
8
>>>>>><

>>>>>>:

c � p ) c  c � p; p  0;

8
<

:

r �
� � c ) r  r � c; c  0

r �
� < c ) c  c � r �

� ; r  rmin ; b  c; c  0

c < p ) p  p � c; c  0;

8
<

:

p � r +
� ) r  rmax ; po  p � r +

� ; p  0

p < r +
� ) r  r + p; p  0

(4.7)

Equation 4.7 along with Equations 4.5 and 4.6 describes a setof requirements for the

value function when calculating resource usage;c is the consumption,p is the production

and so on (see Table 4.7).

The goal of the formula is to leave us with how much must be purchased, how much is

overproduction, how much is saved for later and how much is taken from reservoirs.

4.3.4 The Runner

The second phase of the program (the runner) takes the plan which was created in the �rst

phase and runs the plan on actual measured meteorological data.

Once the runner has read the plan and executed it against actual measure weather, both

the plan and the result are output in tabular form.

The output of the planner is twofold. Internally in the program, the return of the planner

is a list of plan actions which the runner then can utilise to perform its task. Externally

however, a table is printed in human-readable form. The columns of the planner output

are shown in Table 4.8.

In the runner, the only output is in machine-readable form (internally). The output is then

converted to human readable form on standard-out at the end of the run. The columns
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INDEX () Description
00 line number
01 step number
02 action taken in this step
03 action taken in previous step
04 node-ID
05 previous node-ID
06 produced energy
07 purchased energy
08 Not used
09 reservoir status
10 Not used
11 Not used
12 total value
13 state value
14 maintenance countdown 1
15 maintenance countdown 2
16 maintenance countdown 3
17 maintenance countdown 4
18 maintenance countdown 5 / debug item
19 maintenance countdown 6 / debug item
20 debug item
21 wind (min value < current value < max value)

Table 4.8: Planner/Runner output tables

of the runner output are the same as those of the planner, except that there is no debug

output.

4.4 Postprocessing

Postprocessing is done by taking the output data from the planner/runner and convert it to

graphs using shell scripts and gnuplot/matplotlib.

The log �les are copied from the host running the simulation,and are split into separate

log�les for the plan and run. Then, from each set, the value columns (planned and actual),

wind (measured and estimated), action and planned action are collected into graphable

data �les.

Once this is done, each dataset is plotted based on the speci�c features each graph is

intended to have (see the three main types of graphs used). Then, �nally, a PDF is created,

containing all the graphs.
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4.5 Heuristics, statistics and search methods

A heuristic is a value function with wich we measure the distance to our goal. In A� , the

heuristic is the h(n) part of the value function f(n)=g(n)+h(n). The function g(n) is the

value of the current state and h(n) is the heuristic (estimated future value).

In the planner we tried a variety of value functions. The value functions break up into

three parts. These are:

� Weather evaluation

We need to take the input from the weather forecast and somehow evaluate the

state. In conventional weather forecasts, the evaluation is done by evaluating the

wind strength against min and max values for the production curve of the wind

turbine. In ensemble forecasts we use the same evaluation, but before that, we

use the ensembles to get an estimate of what might be the rightvalue. In weather

applications, the midvalue is commonly used, so it was natural for us to start with

the midvalue and other statistical methods like it (� 0:::3 as shown in Table 4.9). We

then gradually added others like the con�dence level and early exit. As can be seen

in Figure 4.5, the four metrics are very close in their estimate of the wind strength

based on the outcome of the members of the ensemble forecast.That means that of

the four metrics, it makes little difference which one we choose – we need to add

other elements to improve our estimate since a wrong estimate from any of the four

metrics will have the same incorrect effect on the distance estimate as any of the

other three.

We then added a con�dence level – instead of examining what the actual wind

strength value was estimated at, we examined how many of the members said that

production would be within the range de�ned by the wind turbine as production

range. By tuning the con�dence level we can affect how optimistic or pessimistic

the planner is. It turns out that the planner is less optimistic than before while having

a slightly better correlation between production estimates and actual production.

Lastly we add an early exit so that the planner exits the planning phase when the

ensemble forecasts become too erratic. This means that plans are generally much

shorter than the timespan of the weather forecast, but instead we have a plan that we

have more trust in, rather than one that covers forecasts with too high uncertainty.

� Resource usage

The power plant may or may not be de�ned with resources (batteries). The re-

sources must be considered both for underproduction as wellas overproduction.
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Figure 4.5: Correlation between the four �rst heuristics tested - y axis is wind strength, x
axis is time slot from start of forecast, all four heuristicsran against the same forecast.

� Future evaluation

Since the ensemble data is constant i.e. once the world estimate has been produced

it will not change, all of the above may be used both to create an estimate of cur-

rent and future productivity. To estimate the implied future value of the facility,

we examine the timeline of the weather and divide it into two sets - timeslots of

production and timeslots of purchase. We use grouping to an extent so that we try

to take into account that single timeslots of production arenever full timeslots (i.e.

to gain full production, at least two adjacent timeslots of production are needed).

By estimating the future value in this way, our future estimate makes the heuristic

admissable since we get a fairly good estimate from the weather metrics, we will

attemt to underestimate, not overestimate, the cost of getting from n to the goal

state.

The heuristic is the “Future Evaluation” part, with the “Weather Evaluation” function as

the evaluator of the quality of the future state. In the heuristic, gains from using resources

are not considered. Only the number of production days, witha number of maintenance

days subtracted. To make the heuristic admissable, the maintenance days are planned into

the production days to make sure that the future is constantly underevaluated.

The choice of heuristics is shown in Table 4.9.

For both conventional weather forecasts (gec00) and ensemble forecasts, the heuristics

count periods (productive and non-productive in the futureseen from the timepoint of the

planner in the forecast) and creates a future estimate (using � n for interpretation of the

ensemble). They then estimate how many service periods are forthcoming and decrement
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Algorithm Description
� 0 Midvalue From the set ofn sorted val-

ues, the value in the middle is
selected

� 1 Midrange The midrange is selected as
such:MR = � high + � low

2
� 2 Mean for grouped data The ensemble data is grouped

into sizeable groups. See
Bluman (2008, p. 106)

� 3 Modal class for grouped data See Bluman (2008, p. 110)
� 4 Con�dence level A state is valued productive

if a certain percentage of the
members are within the pro-
duction level

� 5 Baseline This creates a �ctional set of
full-production weather situ-
ations to run agains a certain
measured weather system

� 6 gec00-�t This uses the members of the
ensemble to �t the base mem-
ber to the most likely sce-
nario according to the ensem-
ble forecast

� 7 Con�dence level with early exit When the ensemble deviates
more than a maximum setting
for the standard deviation at
1m/s with a user-settable fail-
ure assesment count and devi-
ation slant

Table 4.9: Available heuristics/algorithms

�rst positive days, and if that's not possible, then the negative days. This forces the

planner to never overestimate the value of a state (admissable heuristic).

Since the base weather forecast only has a single serie of data (points in time/space), none

of � n may be of use and only the resource usage and future evaluation are used.

4.6 Variations on A�

In this section, the different search methods considered throughout the project are dis-

cussed and explained. The reasoning behind selecting EC-A� are made clear, as well as

why IDA � and Greedy-A� are inef�cient when using weather data.
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4.6.1 Improving time ef�ciency while keeping (most) of the search

accuracy

Although the greedy algorithm of A� will be providing the best result within the bounds

of the heuristic, it will still, under circumstances out of the control of the user, expand mil-

lions and millions of nodes. In testing, at depth 10 it had already expanded over 2 million

nodes. The problem with A� is however that its growth rate is in the worst casebd (where

bis the number of options at each point in time at any given branch in the search tree, and

d is the depth of the search tree - in our case the number of time steps), which quickly be-

comes very large as A� keeps track of all expanded states — it quickly becomes memory

bound. Since the possible number of nodes isbd 1, the search space is prohibitively large.

One of the improvements may be to use A� -Early Commitment (A� -EC). We added in the

planner an early commitment function where we could select the search depth at runtime.

Adding to the complexity, since the problem is temporal (a �xed depth search) the so-

lution will only be found at the leaf of the search tree – neverinside a branch, which

means that memory-saving modi�cations of A� like the IDA� 2 are also infeasible. Early

commitment (EC) is used to commit to a certain level in the search tree. If we consider

searching through a binary tree, at level 10 we will have210 = 1024 options, at the 11th

level we have211 = 2048 options, and so on. If we decide to commit to a certain level,

say level 10, the best value we have found so far there, then wekeep the node at level 10,

purge the open list which contains our “next in line” nodes, expand the level 10 node and

insert the children into the open list and put the level 10 node in the closed list. We have

now committed to a partial solution, and reduced our search space from 1024+ options

to a set of mere two options (for our imaginary binary tree). This, of course has an even

greater impact as the branching factor in the tree is greater(e.g. 511 = 48828125possi-

bilities).

This leads to A� in our case having a search space size ofO(4360) (4 is the average number

of options, 360 is the max number of time steps) in the worst case, which is completely

unsolvable in the timeframe required for the problem, usingtoday's technique, were we

to search all of the search space. This means that we must �nd an admissable heuristic

which inhibits branching as much as possible, without beingdetrimental to the results.

The method we will be using is a modi�ed version of A� , since if we are able to conduct

1 Horizontal transpositions means everything under will change as well, so the number of options is still
the same. Since the timeline is �xed, vertical transpositions are not allowed.

2 IDA � is an incremental-depth variation of A� which expects to �nd the solution inside the search tree.
If the algorithm will have to search the whole tree, it will take twice time of the regular A�
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the search in such a way that it searches only a small part of the search space, and yet

reaches an acceptable conclusion, it has done what we intended.

The function of EC is that when we decide to commit to a certainsolution while still

searching for the goal state. Since we are dealing with a temporal data stream, the starting

state is always at the beginning of the stream and the goal state is always at the end. This

means that in our case, any decision we take has a limited effect in terms of when the

effect starts and how long it lasts. The effect a decision canhave is: �nancial (we make

an unsound decision that requires us to purchase energy forn steps more than neccessary)

and suboptimal planning (we plan on maintenance in a bad spot, requiring plan alterations

or clashes between production and maintenance, both of which can be costly).

Once we have decided that we need to commit to a certain solution, the node we are

exmining at that moment is not the node we wish to save since that node may be far from

being the best one available. What we do is, we back up a few steps to a level where we

have already expanded a portion of that level. We search for the best node for that level

in both the open and the closed lists in case we already expanded and discarded the node.

Once found, we purge the open list and expand the found node and put its descendants on

the open list, and the node itself on the closed list. Once done, we have limited the search

tree to only the descendants of the speci�c new root node.

In the �rst iteration of using A� -EC, we simply committed to a solution when the branch-

ing of nodes had become suf�ciently great, e.g. at 50000 nodes expanded. This however

did not prove to be satisfactory. Examining our solution showed a �aw in our logic. When

using A� -EC, it is not enough to �nd a satisfactory node in the open list. We also need to

search through the closed list, and we need to search for a node that exists at a speci�c

level. That meant for us to add to the node knowledge about which level it was expanded

in, and to the search function to be able to search for most/least expensive node at given

leveln in both the open and closed lists.

Given the function of A� -EC at a given amount of node expansions, we made it possible

to search through the search space in much less time and stillreach a good result.

4.6.2 Optimistic and pessimistic planners

When the original planner was written, one of the problems wenoted was that the plan-

ning phase was so overly optimistic that the plans resulted in continuous loss. To make

the loss more visible, we added a runtime penalty simulatingthe spot energy market. This

resulted in the losses to become even clearer. We realized that the planner had to use a

narrower range (higher con�dence value) to make its predictions. When we experimented
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with the con�dence values, we noted that a too high con�dencevalue did have the oppo-

site effect — the planner became overly pessimistic. The sweet-spot seems to lie between

65% and 75%.

The loss is because the planner is getting false positives and false negatives from the

heuristic, resulting in the planner missing production periods it could use and planning

production in periods where it should have planned for energy purchases as may be seen

in Figure 5.1b.

Analyzing this behaviour of incorrect detection shows thatthis is partially due to un-

certainty in the ensemble forecast (see Figure 5.6a, but we also see that the part of the

problem is that the resolution of the data is much too coarse.At the moment, the fore-

casts are made in a 9km grid with a temporal resolution of 6 hours per step. This means

that for every hour we need to decide whether to produce or buyenergy, we are making

our decision based on a calculated average for a six-fold length of our planning period.

While this may work in weather systems that are “slower” (e.g. accumulated precipi-

tation, snow-melt etc.) it does clearly not work for wind prediction. One remedy may

be to increase the spatial resolution to 1km and/or increasethe temporal resolution to 1

hour. It must also be noted that the measured data is a 10-minute average. This means

that the measured data is not necessarily representative ofreality. The problem with the

measured data may be solved by sampling data with a higher frequency to give a better

wind pro�le.

Also noted was that in an overly pessimistic planner, the search space becomes most of

the search tree, since there “must” always be a better value,while in the overly optimistic

planner, the search space was very small - in some cases a simple path through the tree.

Unfortunately, the overly optimistic planner did not neccessarily �nd the best path. This

meant that we needed the scrutiny of the pessimistic planner, while keeping the small

search space of the optimistic planner — essentially takinga NP-Complete problem and

making it solvable in polynomial time. Since there is no solution for such a conversion

at this time, we need to “�x” the problem. One method we use is early commitment

since this allows us to reduce the search space severely eachtime we commit to a certain

node.

See Appendix A, A.1.1 for the options the planner takes at runtime.
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4.7 Baseline Testing

A test was then done on static data to see how the planner wouldhandle planning on

still weather (wind speed data is 0m/s), constant wind (windspeed data is 15m/s), high

variability (wind speed is repeating 0m/s and 15m/s) and regular variability (�ve times

0m/s followed by �ve times 15m/s, repeated 3 times). The datacontained 30 timeslots,

giving an ample dataset to test the function.

Dataset Result
Still weather (0,0,0,...,0) As expected in all cases as step size ex-

ceeded the window size of the repeated
events

Constant wind (15,15,...,15) As expected in all cases as step size ex-
ceeded the window size of the repeated
events

High variability (0,15,0,15,...,0,15) As expected in all cases as step size ex-
ceeded the window size of the repeated
events

Regular variability
(0,0,0,0,0,15,15,15,15,15,...15)

High variability was detected with subop-
timal plans created for all step sizes below
24 steps, with the exception of 13 steps
being correct for the scenario when future
value was highly discounted and 14 steps
correct in all cases. The correctness of 13
and 14 steps must be considered a �uke
due to the design of the data unless oth-
erwise proven wrong. Further testing will
reveal if these step sizes can be used.

Table 4.10: Tests of different depths of A� -EC

As may be seen in Table 4.10, the �rst three tests went as expected. The fourth test

did however show anomalous behaviour, which may be a result of how the data is de-

signed.

The part a pattern plays in validating the sanity of the planner is such that if the length

of the production period in the pattern allows the recurrentevent to be planned outside

the production period in every instance, the planner is considered to be sane. I.e. for a

recurrent event of max step count of 8 (steps between events,at max) and a pattern of

pause length 4 production length 6, there should be a recurrent event at the beginning and

end of each pause to cover the production periods without cutting off the production. The

simpli�ed sequence for the weather forecast would thus be F={0,0,15,15,15,15,15,15,
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0,0,0,0,15,15,15,15,15,15, 0,0,0,0,15,15,15,15,15,15,0,0} and the resulting plan should

be like P={ ID,MA,SU,P,P,P,P,P,SD,MA, ID,MA,SU,P,P,P,P,P,SD,MA, ID,MA,SU,P,P,P,P,P,SD,MA},

where ID=Idle, MA=Maintenance, SU=StartUp, P=Production, SD=ShutDown. 0 and 15

are meters per second wind strength.
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Chapter 5

Results

In this chapter we present the results of the experiments performed. We start with the

simplest type of planner where we show that it does not perform adequately. We then

go through the different heuristics tested and show our �ndings for each one. At the end

of the chapter we present the �ndings of Yamaguchi and Ishihara (2008) and how they

correlate with our own �ndings. We planned against conventional weather forecasts and

ensemble forecasts to create plans. These plans were then used to simulate the production

using measured wind data. We then evaluated the bottom line of the power plant. We did

this for different periods and different heuristics. We present the results here.

5.1 Planning against a conventional weather forecast

The �rst version of the planner planned against a conventional weather forecast. The fore-

cast used was the baseline member of the ensemble forecast (called “gec00”). The data

stream is a timeline of single estimates of events (wind strength). The function used to

sense to these events is straight forward - if the wind strength is above a certain minimum,

production takes place. As may be seen in Figures 5.1a the planner does not succeed at in-

terpreting the weather well enough to justify planning beyond the �rst few hours, for this

speci�c case. In Figure 5.1b, we see the lack of correlation between the actual measured

weather (jagged green line) and the planned weather (stepwise blue line). The horizontal

red line signi�es the breakout point where production ceases. The lack of correlation, as

seen in timesteps 40-55 and again in 145-165 may happen for a variety of reasons. The

landscape may affect the forecast (solved with a higher resolution weather forecast), or

the member may be interpreting the weather system incorrectly - e.g. unforeseen vertical

changes, temporal variations or spatial variations. Thesevariations are supposedly caught
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to some extent by using a higher spatial resolution, a highertemporal resolution and better

input data (baseline and geographical data).
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(a) Weather Forecast 2009-11-13
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(b) Measured-Interpreted Correlation

Figure 5.1: A plain Weather forecast and the correlation between measured and in-
terepreted values,x-axis is hours

5.2 Planning against an ensemble forecast

The next version of the planner uses ensemble weather forecasts to catch some of the

probabilistic features inherent in weather forecasting. First we added new heuristics -

methods of interpreting the values from the ensemble forecasts. We used midvalue (Figure

5.2a), midrange (Figure 5.2b), mean for grouped data (Figure 5.2c) and modal value for

grouped data (Figure 5.2d). These functions add to the previous simple heuristic, only to

evaluate the multiple points in the ensemble, and return a single point which the simple

heuristic can use.

The planner was run for all four heuristics on both the ensemble forecast and the conven-

tional weather forecast. In all cases but the modal value didthe planner fare better on the

ensemble forecast than the conventional weather forecast.In Figures 5.3a and 5.3b, we

see an example of this.

It is however clear at this point that the planner isn't creating plans that will help the wind

power production facilities - at least not on a long-term basis. Modifying the penalty

to re�ect the actual penalty the power companies face when buying energy on the spot-

market further re�ected the fact that the plans were barely usable on a short term basis,

and not at all on a long-term basis.
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(a) Ensemble Forecast 2009-11-13 (midvalue)
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(b) Ensemble Forecast 2009-11-13 (midrange)
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(c) Ensemble Forecast 2009-11-13 (mean for grouped
data)
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(d) Ensemble Forecast 2009-11-13 (modal value for
grouped data)

Figure 5.2: Results of running the �rst four heuristics,x-axis is hours

We then added a simple con�dence heuristic - ifn% of the values from the ensemble fall

within the production range, we have con�dence of this valuebeing the “right” one. This

solution produced plans similar, better and worse than previous heuristics – depending

on the con�dence value. At 50%-60% con�dence, the plans weretoo optimistic, while

at 85-100% the plans were much too pessimistic (see Figures 5.4a, 5.4b, 5.4c and 5.4d).

In Figures 5.5a and 5.5b, we can compare the number of false positives and false negatives

by the common heuristics.

These results lead to examining the input data for patterns (or lack thereof) which might

be causing the planner to fail - especially after reaching 48hours, where the variability

of the forecast starts manifesting itself. The spread in theensemble forecast is such when



40 Automatic planning in wind-energy production using ensemble forecasts

0 50 100 150 200 250 300
Hourly since log_20091113_1.0_2_-E

� 10000

� 5000

0

5000

10000

15000

N
et

 w
or

th
 o

f s
ta

te

Graph for log_20091113_1.0_2_-E

(a) Ensemble Forecast 2009-11-13
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(b) Weather Forecast 2009-11-13

Figure 5.3: Mean value for grouped data - ensemble forecast vs. conventional forecast,
x-axis is hours

the uncertainty hits that it is almost impossible to detect from 20 members what the most

likely scenario is going to be. Examples of such spread may beseen in Figures 5.6a and

5.6b.

Since the ensembles themselves are not just parameter changes (e.g. amplitude changes)

but also movements in either or both time and space, actual point predictions of wind

are harder than precipitation predictions - the latter has impact over a longer period of

time resulting in a much more foreseeable resource than the former, as well as being a

distributed parameter over a large area, where errors in theforecast are smeared out to

some extent by the size of the forecast area. This leads us to conclude that the ensemble

forecasts require some improvement to use for wind-energy forecasting. When we exam-

ined the graph shown by Yamaguchi and Ishihara (2008) (see Figure 5.7) on rated wind

power, the same as we see in our planner, i.e. a high number of both false positives and

false negatives.

With that in mind, we modi�ed the planner to take into accountthe spread of the ensemble

forecast (� ) and given a maximum spread at 1m/s, increasing byh every m/s, if the en-

semble forecast exceeded that fort consecutive timepoints, the planner stopped planning

at that point. Although this should lead to plans that have a higher con�dence than longer

plans, it can still create plans that have lower con�dence, if then–� –h–t combination isn't

carefully tuned. As may be seen in Figures 5.8a-5.8f, the planner stops planning at differ-

ent time points, depending on the uncertainty in the ensemble forecast. In the simulation

referenced we used no devaluation of future estimates, a 65%con�dence level
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(a) Ensemble Forecast 2009-11-13 (55%)
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(b) Ensemble Forecast 2009-11-13 (65%)
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(c) Ensemble Forecast 2009-11-13 (85%)
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(d) Ensemble Forecast 2009-11-13 (95%)

Figure 5.4: Results from running with different con�dence values,x-axis is hours
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(a) Ensemble Forecast 2009-11-13
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(b) Measured-Heuristic Correlation (midrange) 2009-11-
13

Figure 5.5: Con�dence value at 60/100 with increased and thecorrelation between inter-
preted and measured wind,x-axis is hours
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Figure 5.6: The spread of the ensemble graphs for two periods- less spread is higher
con�dence,x-axis is 6-hour steps
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Figure 5.7: Results from Yamaguchi and Ishihara (2008) showing false positives and false
negatives
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(a) 2009-11-13
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(b) 2009-11-14
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(c) 2009-11-15
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(d) 2009-11-16
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(e) 2009-11-17
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(f) 2009-11-18

Figure 5.8: The plan on ensemble forecasts using early exit on high spread,x-axis is hours
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Chapter 6

Conclusions

In the power production sector, automatic planning is a feasible tool. It gives us the

opportunity to try out a variety of solutions in much greaternumbers than manual planning

allows us. It can also suggest a number of “best solutions” based on search criteria, and

it will avoid mistakes which can happen in manual planning where a bad plan may be

elevated above the good plans.

Once we have the rulesets for how the model is supposed to behave, we can set our

heuristics (see Tables 4.3, 4.4, and Equation 4.7)

We addressed the heuristics problem and ran the model on the conventional weather fore-

cast and showed that such runs in general don't work beyond 0-3 days, depending on

how far into the future the conventional weather forecast actually manages to keep its

accuracy - accuracy that is solely based on a single timelineof events. This is a real

problem for planning, since planning usually works by evaluating the likelihood of an

event taking place, and selecting the best action (according to a heuristic) in light of the

probabilities.

We then did the same for ensemble forecasts, using a variety of heuristics to evaluate the

distribution between members. We did get better results, and we also got a few ideas

worth exploring further in terms of planning techniques.

The weather forecasts were, as mentioned before, fairly accurate for a period of up to 3

days. In that period, plans were somewhat correct (or at least more correct than not). The

problem however persists that the quality of the plans must stay at a relatively high level

for them to be valuable tools to use in planning for power production. Planning against

conventional weather forecasts does not solve that issue.



46 Automatic planning in wind-energy production using ensemble forecasts

This leads us to the ensemble forecasts and how they perform.They don't �x the problem,

but they do perform a little better. Also, by using the con�dence value, the planner may be

terminated or programmed to "ignore" periods of high uncertainty, since such uncertainty

has little value in planning. This uncertainty is clearly visible just by plotting the data sets

(see Figures 5.6a and 5.6b). As can be seen on the �gures, whenthe members get close

to one another, the con�dence level rises, and when they spread out, the con�dence level

decreases.

One of the problems we face is the inaccuracy of the ensemble forecasts. With a high

spread on the members, we have a low con�dence on what is goingto happen. This can be

�xed somewhat by improving the models with high-resolutionspatial data (GalileoCast:

Foreca Consulting Main Page, 2011) and point-in-time weather data using UAVs (Vilhjálmsson,

2010).Reiknistofa í Veðurfræði(2011) has been working on both of these projects as well

as on a method of incorporating high-resolution ASTER data (ASTER: Advanced Space-

borne Thermal Emission and Re�ection Radiometer(2011)) into WRF, gaining increased

accuracy for high-resolution (temporal and spatial) weather forecasts, e.g. for the island of

Utsira in Norway. At Gufuskálar, there has been work underway to collect high-resolution

weather data at several levels (10m, 40m, 100m, 200m, 400m) to be able to pro�le certain

weather events in greater detail than possible before.

The planner can use the information in the ensemble forecasts to gain the advantage of

many partial plans for the period in question, using the con�dence level of the members

to select whether to plan or to ignore. These partial plans may then be combined with

previously made plans for the same period to create a better plan-set for a longer period.

What we do is to make plans for times that are “known” to be stable, and attempt to

�ll in the blanks with older information or search based plans. Even just-in-time (JIT)

planning if that's what we want. Since the wind is the most dif�cult element of the

weather forecasts, we can be sure that since it does work fairly well for shorter periods

of time with the rather vague input data available, it will work much better for systems

that have even greater stability and slower rate of change than wind, e.g. hydropower and

geothermal power (groundwater, rain, melt).
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Appendix A

Appendix

A.1 The Planner

A.1.1 The planner options

>java -jar mscPlanner.jar -?

System options:

-? : This help

-h : This help

-v : Verbose (false)

-y n : Year, 0<n<now (2009)

-m n : Month, 1<=n<=12 (12)

-d n : Day, 1<=n<=(max day of month) (28)

-H n: The heuristic to use for planning, 0<=n<=5 (0)

0: Midvalue

1: Midrange

2: Mean for grouped data

3: Modal class for grouped data

4: Confidence levels

5: BASELINE

6: gec00 best fit

7: Confidence levels using stddev

-MD n: The maximum number of datapoints to consider, regardl ess of the length of the series

-cl n: The confidence level of the data

-cr n: The confidence range of the data

-B n : Break (early commit) if OpenList contains at least n nod es

-smd n: The maximum deviation allowed at 1.0m/s

-ssl n: The slant of the maximum deviation

-sms n: The maximum number of successive 'bad' days

-hD n: The constant to devalue the future heuristic by (defau lt: 1.0, less than 1.0 is devalue)

-ss n: The number of steps to start with (5)

-es n: The number of steps to end with (9)

-E : Use ensemble forecast

-W : Use weather forecast (default)

-eB n: The ensemble breakpoint (default: 0.7)

-f fn: The filename to use for plant definitions (default: De faultFactories.yml)

-c fn: The filename of the system configuration file (defaul t: plannerConfig.yml)

-lf fn: The filename of the logfile to use (default: none)

-L fn: The filename of the debug logfile to use (default: none )

-ll n: The loglevel to use (from 0 through 7, default: 4)

-svx n: the carry of service days between planning sessions w here 0<=x<=4

-RD : Only read the data from the database, and then quit.

-PP n: Production cost when production is planned

-PN n: Production cost when prodiction is planned but fails

-NN n: Production cost when production is not planned

-SC n: Service cost

-wdm n: Weather data multiplier for measured data (warning: will skew results! - default 1.0)
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-SD : Simulate measured data by usung calculated data instea d

-bp n: Backpedal n levels at fork (default is 1)

>

The options available to the user in the planning program
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