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Abstract

In the energy production sector, planning the productiomadhof time is
crucial to the bottom-line of the production facility. Inrment operations
in Iceland as shown by Sigurdsson, Jonsson, and Régnvald2669), the
planning is mostly manual optimisation or ad-hoc planning.

In this report we start by presenting an automatic plannérerwind-energy
sector using conventional weather forecasts to createduption and main-
tenance plan for the length of the forecast. We show thaterdranal weather
forecasts are only reliable for up to 3 days. By using enserfurecasts, we
show that the planner can get better plans. Due to unceesintthe ensem-
bles, we show that the planner succeeds at variable-ledgtimipg where
the length depends on when the uncertainty in the forecaids sShcreasing
too much (increased spread). We then present a sanity chadkstaithe en-
semble version of the planner, and nally we present theadation between
the accuracy of the forecast and the quality of the creatad, @s well as
why the forecasts must be improved to be able to plan for wiodyaction
on a long-term scale.



Sjalfvirk asetlanagerd i vindorkuframleidslu med notkun
klasaspaa

Por Sigurdsson

Mai 2011

Utdrattur

I orkuframleidslugeiranum er mikilveegt fyrir framlegd kjunarinnar ad
gera framleidsluaaetlanir fram i timann. [ naverandi fraddiferlum & Is-
landi, eins og synt er i Sigurdsson et al. (2009), er asetEndagd mestu
byggd a linulegri bestun eda ad-hoc aaetlanagerad.

[ pessarri skyrslu byrjum vid & ad kynna sjalfvirka azetlarég vindorkuveri
sem nytir hefébundnar télvureiknadar vedurspar til ad bdeainleidslu- og

vidhaldsaeetlun eins langt og vedurspain ley r. Vido synumbheddbundin
vedurspa nytist til asetlanagerdar allt ad 3 daga fram i timdwied pvi ad
notast vid klasaspar synum vid fram a ad haegt er ad bula til &estilanir.

So6kum dvissu i spanum synum vid ad aeetlanagerdin reedursaddideet-
lanir par sem lengd sparinnar er upp ad peim timapunkti par ®assan
verdur of mikil i spanni (aukin drei ng). Vid kynnum sidandfun & aeet-
lanagerdinni par sem profadur er klasaparhlutinn. Ad lokgymnum vid

tengsl milli geeda spéarinnar og ndkveemni asetlunarinnar odvgersvegna
sparnar verda ad verda betri til ad aeetlanagerd i vindorargem sé mogu-
leg fyrir lengri timabil.
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Chapter 1
Introduction

In energy production and sales, planning ahead is one of thet onucial elements in
operations. Energy sales are typically done ahead of tirderars energy producers must
guarantee the delivery of energy. If there is a change th&ema producer unable to
comply with production numbers promised, energy must beggbban a “spot market”,
at a price many times (up to 45 times the regular market psiceot unusuall(@andsnet
Spot-Market prices2011)) that of a planned purchase.

In Chapter 2 we present the background for this project andnativation to do so.
In Chapter 3 we present a planner written for wind power glavith the notion of be-
ing able to make production and “maintenance” (recurreehts) plans as needed. We
then create plans against conventional weather forecd&show that the conventional
weather forecasts can support plans for up to 3 days, andhiése forecasts are not the
best candidates for planning since they lack necessarytitptase information about the
uncertainty of the weather system. We show that by usingneblesforecasts we can pro-
duce better plans, as well as predict the quality of the fsts; allowing us to selectively
plan for more certain periods, or stop the planner from glagfurther when the forecast
becomes too unreliable. In Chapter 4 we present the modeianielper applications.
First we present an overview of the model. Next we describadtita converter used to
retrieve the weather forecasts, followed by a detailedrg@san of the planner and runner
and its parts. Finally, we describe the baseline tests wsedrtity-check the planner. In
Chapter 5 we present the results of the simulations wherdawe Bow well the heuristics
handle the planning, and especially how detrimental badtidata can be to the planner.
In Chapter 6 we present the conclusions of this researchebgswvhat is being done to
improve the ensemble forecasts beyond what they offer today






Chapter 2
Background and Motivation

In 2008-2009, we did a research project for Reykjavik Endfgskuveita Reykjavikur,
OR) Environment and Energy Research Fund (UOOR). In theepr@igurdsson et al.
(2009) we examined the state of the energy industry in Icglemparticular with respect
to which methods were used in production planning.

Our ndings were that where plans are created, a speciadiss unanual optimization
based on the current state of the system (fed into an Excekhstabwing the trends
for the changes in the system) and a weather forecast whidpus into a ow model
(containing historical weather data 1985-2006 (Sigurdsstoal., 2009, p. 7)) to create
the plan. This manual approach limits severely what optioag be explored, since each
iteration is time consuming and only a single, or very fewiamt may be examined.
Previously, conventional weather forecasts were usedmg o the ow models, but
recently, ensemble forecasts have been used.

Previous work done in planning for complex projects, inelsidhe Mars Rover project,
where Bresina, Jonsson, Morris, and Rajan (2005) creatmuaks for extremely time-
sensitive and complex situations and presented in hunedrlde form for veri cation
and acceptance. The LORAX project, where Jonsson, McGasderBen, latauro, and
Rajagopalan (2005) used automatic planning to createraplEns in an autonomous
droid in Antartica. And the research on Short-Term MultipdrOptimal Planning of
Utility Systems Using Heuristics and Dynamic Programmimgere Kim and Han (2001)
used non-linear and dynamic programming to create plarstéam-based power plants.
We considered the possibility of using automatic plannirgcreating production plans
for Icelandic power plants, using wind farms as our targetesihey are the most volatile
(giving us a chance of seeing results on a relatively sharefliame compared with
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geothermal or hydro power) and to see if we can improve the besults by using en-
semble forecasts which should provide us with the unceytaneasure we need.

There are three domains which affect the end result of tlsisaieh as shown in Figure
2.1.

24)+3454.$#/) +1"% I"HS068 () SHH+

I"H#$%E& () $*H#+
;- (S H+
1"0(-+1."

56)"1"%

Figure 2.1: The three domains

2.1 Weather forecasting

A numerical weather model is a system of differential edquregti(called Euler equatiols
that describe the atmospheric motion and represent catgarvwof mass (continuity),
momentum and energy (see Figure 2.2). These equationssarkradwn as the primitive
equations, and are derived from the basic laws of physicsteTare no known analytical
solutions and in order to solve the equations, one mustraige nite difference or spec-
tral methods. Most regional atmospheric models use niteecBnce while most global
atmospheric models rely on spectral methods to integratediations forward in time.
Predictability

Weather forecasts are computed as initial value problerhsy Tequire realistic models
and accurate initial conditions of the system being sinealah order to generate ac-
curate forecasts. Lorenz (1965) showed that even with &geniodel and essentially

1 Named after Leonhard Euler, this is a set of equations gawginviscid ow. They correspond to the
Navier-Stokes equations with zero viscosity and heat cotialuterms.
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Figure 2.2: Numerical weather models use systems of diffedeequations based on
the laws of physics and uid motion, and use a coordinateesysivhich divides the

planet into a 3D grid. Winds, heat transfer, solar radigtretative humidity, and surface
hydrology are calculated within each grid cell, and theraté&ons with neighboring cells
are used to calculate atmospheric properties in the future.

Wikimedia: Picture of Weather Modg011)

perfect initial conditions, the fact that the atmospherehigotié causes forecasts to lose
all predictive information after a nite time. He estimattuk “limit of predictability” for
weather as about two weeks. As an estimate that still stansigienerally considered not
possible to make detailed weather predictions beyond tweks/éased on atmospheric
initialization alone. Lorenz's discovery was initially lynof academic interest since, at
that time, there was little quality in operational foresabeyond two days, but in re-
cent decades forecast quality has improved, especialtg sive introduction of ensemble
forecasting. Useful forecasts now extend to the range ofl®tdays.

2 Chaotic systems are governed by precise deterministizigonl equations, but have unpredictable

and seemingly random behavior. Chaos can occur when theséi@us are both non-linear and unstable to
small perturbations.
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Ensemble forecasts

In addition to imperfect initial condition, a second souafeforecast error exists. The
imperfection of the atmospheric models themselves. Thesesburces of uncertainties
limit the usefulness of a single weather forecast. One wayw&ycome these problems
is to run many forecasts, instead of a single determinisie;, avhere initial conditions
have been nudged and/or the stochastic physics of the atmespodel itself. This
way, an ensemble of forecasts is created from which a prbtyadensity function in the
atmosphere's phase space can be determined for indiviokeaddst parameters.

An overview of ensemble forecasting and ensemble data #agon is given in Zhang
and Pu (2010). The usefulness of forecasts also dependsairwehather parameter is in

Anomaly correlation (%) of ECMWF 500hPa height forecasts
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Figure 2.3: Evolution of ECMWEF forecast skill for varyingalé times (3 days in blue; 5
days in red; 7 days in green; 10 days in yellow) as measure@®h®a height anomaly
correlation. Top line corresponds to the Northern Hemisphleottom line corresponds
to the Southern hemisphere. Large improvements have bege, inaluding a reduction
in the gap in accuracy between the hemispheres.

Evolution of ECMWEF forecast skill for varying lead tim@911)

question. Figure 2.3 shows that great improvements have in@ele over the past three
decades to forecast the height of the 500-hPa pressure lieggahore dif cult to produce
accurate long-term prediction of parameters that are heavuenced by interaction
between the atmosphere and topography.

Horizontal resolution of the most advanced global weathedets ranges from approxi-
mately 16.5 km (ECMWF, anno 2011) to 28 km (GFS, anno 2011gnEat a resolution
of 16.5 km, many topographic features still remain poortygc@mpletely, unresolved by
the model. Consequently, if the model does not resolve thegi@phy, it will not resolve
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accurately the effects the topography has on the atmosplogri Due to this, it can be
very dif cult to produce accurate wind forecasts in complegography.

Weather forecasts are a set of estimates of variables (\phedjpitation, etc.) for a se-
lected area provided by an atmospheric model like WRF Skackaat al. (2008) or MM5
Grell, Dudhia, and Stauffer (1995). In this paper, we do rwtsider weather forecast-
ing in detail and suf ce with using output data from atmospbenodels as input data
for our model. We use deterministic forecasts as well asrehkeforecasting to provide
estimates of the statistical distribution of future weatb@nditions. In our case, we use
the GFSNOAA GFS Webpag@011) ensemble data provided by NCEP (National Center
for Environmental prediction). The ensemble consists oé&mninistic forecast based
on a "true" analysis of the atmosphere and 20 additionat&sts that are based on initial
conditions that are slightly perturbed relative to the étranalysis.

The weather station used for the experiment is an automagather station located at
Kirkjubaejarklaustur airport (see Figures 2.4 and 2.5). Troaelel then uses the nearest
data point from the ensemble forecast as its point of cdicula

Vedurstddvar

K s LR RSy L5
& ! 7 X ¥ ‘:h
A7 A Fl
I i3 "
= 3
?
LN

FowRREnEY L g
coc%le Map data 2011 Google = T of i

Figure 2.4: The location of the weather station is just sasith-east of the yellow marker
- Kirkjubeejarklaustur airport

The Icelandic Meteorological Of ce has an automatic weatsiation at Kirkjubaejar-
klaustur Airport (Stjérnarsandur), designated the nune&2 in the Reiknistofa i vedurfreedi—
DataMarket weather portal ( http://portal.belgingur.ifhe weather station stores mea-
sured values and calculated mean-values once per hourhesel Yalues are stored in a
database at the Icelandic Meteorological Of ce.

In our model, we use the weather forecast de ned by a singleibee (called the base
member - “gec00”) from the ensemble forecast for a giventlona In the model, the
location for the calculated values is grid-point 410 fronRal$/-32 point grid where each
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Figure 2.5: The airport at Kirkjubaejarklaustur is indichtey the red arrow. It's location
is 63 47'28"N 18 00'06"W

point is 9KM away from the next point. The geological locatmf the calculated point is
within a few a few kilometers from the physical weather stati

The calculated weather is a model simulation of the weathaveamay expect it to be.
The weather forecast describes this future estimate oftewera single timeline, while
the ensemble forecast has several timelines, each cadubgta separate cluster node
in a computing cluster. This is very different from the measuwalues which are actual
measurements on site at the time of the observation.

2.2 The Icelandic energy market, consumption estima-
tion and power production

In the Icelandic energy market there are certain rules aporghase and distribution of
energy. Energy orders have to be placed for a 7-day periode& aleead of time. This
leaves power producers to the mercy of the spot-market ¥ tlom't plan well enough
ahead. Spot-energy, although usually cheaper than in tftopEan market [see Zachmann
(n.d., p. 3.1) versukandsnet Spot-Market pricé2011)], is still more than 46 times as
expensive as planned purchatesdsnet Spot-Market pric2011). In power markets
with stable energy production, like geothermal productgpot-market purchases can be
expected to be rare, but in production like wind-power farihdecomes increasingly
relevant to have good planning systems available to prediein power purchases are
necessary. In this research, we will neither look at thegynerarket in whole, nor will
we look at the complexity behind the power curves of wind poplants, since research
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in that area is plentiful (see e.g. Nielsen et al. (2006), Kimd Han (2001)) and is outside
the scope of the planning problems.

2.3 Automatic Planning Using Al

In todays demand for ef ciency and return of investment (R@utomatic planning is
being used more and more. It is being used in elds like theimdustry for production
lines, warehouses, the space industry and autonomoudiscegpplications. In light
of the results of the UOOR project, where it became appakraitautomatic planning
was not being used in the Icelandic energy production seatat the success of using
automatic planning in complex systems like the Mars Rover laorax, we saw an op-
portunity to see if planning could indeed be used in the gnprgduction sector. Since
we also have access to the meteorology sector, we havesniergeeing if the current
practices can be improved, and if by using better forecasggould improve the planning
even further.
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Chapter 3
Overview

In 2008-2009 we conducted research for the Environment aredtgy Research Fund
Sigurdsson et al. (2009) where we examined the main Icedaguiergy producers and
their environment, looking for areas which would be affechy environmental factors
and how automatic planning might help in solving the proldéhe producers might face.
While conducting this research it became apparent that@atio planning wasn't being
used at all. There were a number of questions raised.

When exmining work already done in the eld of ensemble fasts and power plants,
work done by Nielsen et al. (2006) presents a method of ctingethe ensemble wind
metrics to an estimated power output of a wind farm and Yarolaigand Ishihara (2008)
adds to that a multi-timescale parameter. Although Nietteal. (2006) do not use auto-
matic planning, their method may be used as an intermedegarsthis model to convert
the wind metrics directly to power curve metrics. It has hesvdor the purpose of this
research, been chosen not to implement it since it will cocapd the model and will
have little if any effect on the results. No references weretl on the use of automatic
planning using ensemble forecasts in wind-energy prodaochut one compangarrad-
Hassan Webpag@011), may have implemented such planning without rehggsublic
information about it.

The current state of the art in the Icelandic power produacgilanning involves getting
metrics through measurements and manually weighing themsig perceived best solu-
tion based on subjective professional experience. Intgtoswhere uncertainty is high,
the time to nd an acceptable solution may be long and thetsoiichosen may be far
from the best available. Factored into the selection poaes recurrent events like regu-
lar maintenance, planning in what might be unforseen e @késdistribution aws due
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to weather, failing distribution system, etc.), coordioatof several power plants each
different from others and each with its own recurrent events

The planning/atmospheric model combination can be illdstt as in Figure 3.1. The
state of the art, marked by the mark on the left, is moving éxdinection of the solid line.

This research will look into the use of automated plannirsggad of manual optimisation
and whether such a solution does better by using ensemigeafsts, as signi ed by the
broken line.

Ensemble forecast

Linear optimisation

Bujuueld apewoiny

Weather forecast

Figure 3.1: The current state and path, proposed path

The focus
In this research, we will use a wind power plant as our target.

The choice of a wind power plant is based on two factors

The simplicity of the wind power plant parameters and thesglsty of simplifying
the model without losing relevant accuracy

The short-term nature of wind forecaists

In this research, we will answer the following two questioaad describe our nd-
ings:

Can we use an automatic planner to plan for a wind power pkingwconventional
weather forecasts?

If we replace the conventional forecast with an ensemblectst, do we get better
results?

To which the answers are:

We can use an automatic planner to plan for a wind power plaatshort term basis
(up to 3 days), but on a long term base it will not be helpful $& eonventional

1 Since direct effects of weather on hydro and geothermal ppiats can be expected to be primarily
of long-term nature, the direct dependence of productiowiid power plants on weather was deemed
more relevant for examining the effectivness of a plannempfawver production systems, as well as for
investigating the qualitative difference between enserfdrlecasts and traditional weather forecasts
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weather forecasts since there is no quantitative infolonait the forecast to tell
about the quality of the forecast itself which may in turnadithe plan.

If we replace the conventional forecast with an ensemblectast, it will provide
us with better results. It is not quite on the scale we expkclde base range is
still up to 3 days, but we now have the bene t of actually beafde to track some
forecasts for a longer time with higher con dence than weldauthe conventional
forecast, since the ensembles work as a measure on theaintedf the forecast,
and therefore on the quality and probability of the outcofirtee ensemble forecasts
may also be used to nd periods of certainty in the timeframed areate plans
for these, even if there is a large uncertainty on both erd# (8, given a period
of uncertainty, if we have a period at the end of that whichradlsts members
of the ensemble agree upon, we can plan for that part even amt plan for
the preceding uncertainty). That means we can nmagartial plans for the given
period and end up with a set of plans that may aid us throughearbest fashion
possible, considering the lack of a complete plan. The prabs however that the
ensemble data does not present us with a pro le of the wintesyén ne enough
granularity for us to predict with any certainty how the wesatsystem will behave
beyond a “mean value” (10-minute mean wind in a 6-hour péridal Chapter 6,
we present suggestions to what needs to be examined nextre t# improving
the ensemble forecasts in such a way that they may prove bahé¢o the wind
power production industry.

If we are able to show that automatic planning in wind powedpiction systems is pos-
sible using the methods we propose, then these methods nagpbed to other temporal
systems like hydropower and geothermal power, both of whrehmore stable systems
than wind power, with at least equal long-term bene ts. 8itlte weather model for hy-
dropower and geothermal power plants changes less rapidiyih fewer variations than
the wind model, and as such, long-term planning may be of biggrer bene t on a larger
(national) scale, while the wind power will show bene ts osteort-term scale.

The second question comes into play on the quality of thespl&or the producer, this
IS important since a plan needs to be very accurate if it ingtd keep the producer in
positive productivity. Once the plan accuracy drops bel@iwan percentage (depending
on time of day and year since spot-market prices uctuatatly® the producer becomes
less of a producer and more of an energy reseller. When rgrminsimulations, we esti-
mated a spot-market price of 4x the standard purchace grid.implies a plan accuracy
of approximately 80% (not taking into account that the paunay sometimes sell into
the spot-market as well). Since the experiements were d@mglsnet has updated their
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website, publicing actual historical data on spot-marketgs as well as current market
prices. This newly publicized information suggests thatumeerestimated the highest
spot-market prices 12-fold and overestimated the lowesttsfarket prices 2-fold. This
information was not available when the system was written.

Automatic planning using Al

In automatic planning there are many diverse planning nistlavailable, each with its
own merits. Planning based on a temporal datastream likeaghereforecast is a xed
depth search problem. We have a xed number of steps our plest have (the number
of time steps in the weather model in the base case, and thberurh steps there are
from the start of the plan until the uncertainty of forecastdmes too great - in either
case, the number between the end-points is xed, that is -anaat add or omit any steps
to/from the data stream). The implementation of the plameguires us to implement a
problem area that represents the recurrent issues thaldrthe energy industry in one
way or another, like maintenance, uctuations of other gggsroduction facilities and
even recurrent weather-connected events. We chose torimepteone recurrent event per
production plant where an event had to occur within a ceramdow of opportunity.
This window of opportunity is then reset so the event haske dace again. We call the
event “maintenance”, but in reality it can take place of ametsensitive recurrent event
as needed. The presence of the recurrent event means we oaerimear optimization
to create a plan for our facility. Since the problem is a setjaktemporal problem, we
claim that a search (e.g. & Russell and Norvig (2003)), with some modi cations to
make it more benign in terms of speed and resource usageswfitie to nd the best
plan.

Inthe planner we test a variety of heuristics, where thedsffices between heuristics have
to do with the way we interpret the ensemble data. Since tisea@ arbitrary number
of members in the ensemble, and they are not necessarilgsggu(since a member
may fail in its attempt to create the forecast), severakrprttations of the ensembles are
attempted and found to give suboptimal results - midvalweraidrange, the mean for
grouped data, the modal for grouped data Bluman (2008jhgtthe baseline to the trend
in the ensemble and nally the con dence level of the ensemwhere we check if a
certain percentage of the members land within the set ptmatu@nge) with and without

a deviation check for early exit.

When purchasing energy, an estimate is created on an haasiy tor a full week - both
for production and consumption. All failures in producti@mergy already sold but not
produced) have to be purchased and this is done throughyenbadesale retailers. While

2 A is atree-based search method which can be applied in pgpniblems
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it is essential for the company to create such purchase,glanductionmayfail (due to
malfunctions, lack of resources etc.) and when that happe@gompany must purchase
the energy on a spot market at a price over four times theaegurchase price (depend-
ing on supply and demand). The producer of energy bene t®fgood planning as he
may conduct maintenance when production would otherwiss bdow.

As we show in Chapter 5, we nd that planning for wind prodoatiusing conventional

weather forecasts works somewhat well for a up to 3 days. &opgriods are however
affected by the forecast diverging from the real weatheustwy the plan to fail due

to the input data. When upgrading to ensemble forecasts,haw that the planning

period does in many cases extend itself further than the 8 afayre conventional weather
forecast, it handles better than the conventional foreicastrms of being able to see
when the uncertainty is low, and create plans for those gsyiand bail out on periods
where uncertainty is very high, thus not wasting resourceglans that cannot with any
guarantee hold against the real world.

We also perform a basline test on the planner to sanity tegil#mnning functions.
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Chapter 4

Methods and Model

In this chapter, we start by giving an overview of the modeitttihe planning process
operates within. We then go on to describe the tools we at¢atkandle the data and the
planner and the variations that we have tested in this reflsear

4.1 The Model

The model is a description of a wind-power plant consistih@ & n 6 windmills,

a repository (batteries) for short-term energy storageg aition of recurrent events
(“maintenance”), a consumption of energy and a weatheesysts shown in Figure 4.1.
Consumption in the model is preset at 12MW per hour. The prol capability is
user settable per windmill as are the repositories and eraamice periods of each wind-
mill. The weather system consists of data from the envirartaleveather model WRF
(Skamarock et al., 2008) which creates weather forecastsriegion based on initial and
boundary conditions. Part of the boundary conditions aa@ics{i.e. the terrain maps)
while atmospheric boundary and initial conditions comerfrglobal atmospheric mod-
els, in our case the GFSIQAA GFS Webpag@011) model. In addition to the simulated
weather from the forecasting model, observational data &peci c location was used in
the runner phase. For this purpose, measured data for #loeéthin the ensemble grid
was acquired from the Icelandic Meterological Of ce. Thesebvational measurements
cover 1477 hourly measurements.
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Figure 4.1: The Model

4.2 The Data converter

The data converter is the rst step of the planning process.

The origin of the ensemble data is from the WRF weather modéle model stores
the data in a binary format called netCDF. This format is sdgcdesigned for storing
scienti ¢ data and is very effective as a storage format, dsita query format it is not.
The data was therefore extracted from the netCDF les by medra program written
speci cally for the purpose, and injected into a PostgreSfatabase (see Figure 4.2 and
Table 4.1 for explanation). The resulting data, shy of 70iamlrows describing the
ensemble forecasts for up to 21 members in a roughly 2 momibdpevas used as input
into the planner.
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| TABLE | SOURCE | DESCRIPTION |

msc_ensemble calculated weather forecasts based on GFS data

wind measured data from Icelandic Meterolggneasured wind data for select
ical Of ce weather stations

precip measured data from Icelandic Meterolagneasured precipitation for se-
ical Of ce lect weather stations

msc_series local de nition A key value that identi es the

series (member) by name

latlongs A keying table which binds together a certhis value is used in INDE

tain coordinate and a grid-point numbef in Table 4.2

Table 4.1: The declaration of the database and its sourcataf d

The data conversion program reads the netCDF data les vdrigkreated by the weather
forecast model. Selected data from the netCDF les is ieskntto the database — in our
case time of calculation, time of target, member id, windrsgith and location of the grid

points. Some of the data (e.g. wind, stored in north-soudmta/vest component form
asUjp andVyp) is converted to a usable value (e.g., of wind speed)?, + V3)

msc_ensemble
<2 reiknidags : timestamp
<5 targetdags : timestamp
f latitude : float8
B longditude : float8
<5 series : int4 *
precip : floatd

msc_ensemble_series_fkey = mSC_SEHIeS.
) R SRR LS R AT T HeEs series : int4

sname : varchar (10)

wind : float8
latlengs
wind precip 5 lation : int4

<F stod : int4 3% stod : intd (& latitude : dbl precision
<5 dags : timestamp &% dags : timestamp 5% longitude : dbil precision

w10 : float8 urk : float8

wlOmax : float8

wmax : float8

Figure 4.2: The structure of the stored data in the database

4.3 The Planner/ Runner

The planner/runner is a single two-phase program. It is gared by editing two con-
guration les and by command-line parameters where therusa set the constants for
the power plants, the period to plan for, which heuristic $e,uf and when to use early
commitment and other parameters which control the ow of pleenning process. The
rst version of the planner used pure Ao plan. It became apparent very soon that al-
though the growth of the plan-space is very slow when pradngs possible (the best
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plan is easy to nd since production always gives the besiltes the real problem be-
comes selecting the timing of the maintenance periods)ldregpace grows b# when
no production is possible, since all other possibilitiethatsame and previous level in the
search tree become candidates once a counter—produabive ¢tas to be made.

To counter this growth, the next iteration of the planner ttaelpossibility of planning
only a few (user-selectable number of) steps (early comemtin commiting to the plan
and continue searching from that point on an equal numbetepks That ment that a
plan of 360 hours could e.g. be planned in 10 segments of 6 ster 36 segments of
10 steps. The growth problem was however still in the plaanedreven 10-step searches
through a time serie with no possible production led to dediroes far exceeding the
actual period being searched.

This lead to the third iteration of the planner where earlgnoatment was added. The
early commitment works by keeping a count of how many nodeg fi@en expanded
and once the set amount has been reached, the planner egdharairrent node being
expanded, takes note of its level and goesugvels in the tree (user selectable). In this
previous level, the best node is selectdabth from the OpenList and ClosedLfst the
particular selected level, since the best node is verpliteehave already been expanded.
The planner then commits to this node as the best solutiogepuhe OpenList and re-
sumes planning from that point in time. This method solvexiglowth problem in the
n-step early commitment planner described above. Care nowgtver be taken that if
a too small number of nodes is set as early commitment — orai@e Ibacktracking of
levels — a loop may be created when the planner backs up t@thieesof the expansion
problem. A problem with early commitment may arise if therplar commits to a period
where nothing is done when it should commit to maintenacerevhduture production
may be compromised by a bad early commitment. This may betemaby examining
the plan structure and not allowing early commitment to comathe last step before
production.

4.3.1 Determining if production will be available a state

The wind strength is the determining factor, as well as tlexipus state the windmill is
in. Since it does take some amount of time to start up the withdswell as to shut it

down, this is simulated in the decision process by sepatatesswith their own action
sets. We store information about the production plant in ta d&ucture like the one
de ned by Table 4.2. The data structure is the set of initedlres for the power-plant, and
should be considered constant. It is only used in initinjzthe rst state of the search
tree.



Poér Sigurdsson 21

| INDEX | Name | Description |
00 | type Plant Type (O=wind, 1=water, ...)
01 | genprodcap Production Capacity in % (0-1)
02 | maxprodcap Production Capacity in MW
03 | serviceinterval Maximum interval in timesteps

04 | servicestoplength | Number of timesteps each service
interval must last
05 | startupprodcap Production capacity in % for the
startup phase
06 | shutdownprodcap | Production capacity in % for the
shutdown phase

07 | res_max Maximum allowed storage of re-
serve power

08 | res_min Minimum allowed storage of re-
serve power

09 | res_lIvl Current storage level of reserye
power

10 | location (DataPoint) The grid-location of the power plant

... | Reserved Reserved (not used)

18 | prod_above Production Trigger (Lower Bound

19 | prod_below Production Trigger (Upper Bound

Table 4.2: The data structure that stores facts about thempolant

All the , variables are such thatis the index to Table 4.2.

These are the formulae for wind producti@a (s the previous action ara is the current
one, is the estimated/measured wind strength):

Calculate the MW multiplier to use if there is wind available

1=( 18 19) 1 2 (4.1)

Calculate the MW multiplier to use if there is no wind avalkb
2=(( 18< )_(> 19) 12 (4.2)
If there's wind:

P= i(ai” 3)(@i4) o+ 1(@id(@id), + 1(aid)+ 1(a2) s (43
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And if there's none:

P= 2a34) 6 (4.4)

For ; and ; in Equations 4.1 and 4.2, we check if the wind {s within the produc-
tion boundaries (15::: 19) and them multiply it with the general production capabil-
ity ( 1, current capabilityQ:::1) and maximum production capability {, megawatts,
> 0).

For P, if there's wind, only one of the four segments in Equatiod will return a value
(since the logical-and creates a multiply-by-zero coonditi Thea; anda, variables of
the formula de ne the current actioaf) and the previous actiom{) of the state machine
(see Section 4.3.2). The checks for actions and/or act&ns-peturn a value, O or 1. This
value is multiplied with ;/ , and then with a variable representing the production value
for said situation (e.qg. ¢ for production under shutdown)

The value of is then used to evaluate the “quality” of the state (the petida of energy
under the estimated or observed circumstances).

4.3.2 The state machines

Both the planners and the runners selection process ard bassate machines. These
state machines control what actions are available at amngitate, based on the weather
(for the planner) and based on the previous action takemgalgth conditions given
by the resource calculation formula presented in Secti8r84The state machine for the
planner is shown in Figure 4.3, and the transition tableaswhn Tables 4.3 and 4.4. The
planner is a Finite State Machine (FSM). If there is toodittlind to allow production, the
number of options available as actions to leave the stateedieced to the set indicated
by the broken lines. If there is wind, the number of actionsejgresented both by the
broken lines as well as the solid lines. From the optionslalvks the planner chooses an
action to take, based on the heuristic (see Section 4.5).

The method used to implement the state machine is simildrabdf the Europa plan-
ning system written by NASAEUROPA pso Platform for Al Planning, Scheduling, Con-
straint Programming and Optimizatidi2011)). That is, the state machine is de ned and
designed before-hand, and then converted to a translatobewhere we can translate the
knowledge of the current state to an action that leads to astee.
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Figure 4.3: The state machine used in the planner

The state translation table for the given state machineguargi4.3 would thus be as seen
in Tables 4.3 and 4.4.

action
| a |a|ag|a’y|an
S | Maintenance%;) | - - - -1 S S
t Idle (82) - - - - S; S,
a| StartupB,) - - - 1S5 - | -
t | Production,) | - - S| - - -
e | Shutdown &s) - - - -1 S| S

Table 4.3: Transition table for state machine in planner wiral

action
a a az | a4 | A"y |a
S | Maintenance$;) | - Ss - -1 S ]S
t Idle (82) - - S; - S; S,
a Start up 63) S, - - | Ss| - -
t | Production§;) | S4 - S5 | - - -
e | Shutdown §s) - S;3 - -1 S| S

Table 4.4: Transition table for state machine in plannerthwiind
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e.g. in a given stat8, (production), the planner takes an action depending onghggtic
and the weather. In sta&, according to the transition table for no wind (Table 4.3), in
stateS, we have the only option dds, since that is the only action that provides a state
transition. That is, regardless of the heuristic, if thexed wind to power the turbine,
and the turbine was in a production phase, it will transitmthe shutdown phase which
returns the valueg. However, if there is wind, according to Table 4.4, in stajeve have
the option ofa; (keep producing) and; (shutdown). The heuristic would provide which
action would be preferable.

6"50*14$/07"#3&'$"$(!

6"50*1#$/07"#$&'$"$("
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Figure 4.4: The state machine used in the runner

In the rst iterations of the system, these are the state mash In the iteration where
we added the penalty, we added a sixth state in the runnergtakire of the additional
maintenance under penalty - basically the same state &s"Statexcept with a higher
penalty value.

In our model, there are 5 actions. These are, as seen in Téable 4

| Action | Description |

ID Idle - do nothing

MA Go into Maintenance mode

SuU Start Up - prepare for production
P Produce - produce energy

SD Shut Down - stop production

Table 4.5: The possible states of the planner

The states the planner can take are likewise 5, but the nuoilaetions out of the state
depends on the environment (weather) as seen in Table 4 &re Hne limits set to the
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actions, such that if designates the number of steps left until recurrent acidarced,
then at step 1, if state is Production or Start Up, tlealy option is Shut Down. If at
step and state is Shut Down or Idle, Enter Maintenance is the ctipa

| State | Weather | No Weather |
Maintenance Enter Maintenance Enter Maintenance
Enter Idle Enter Idle
Enter Start Up
Idle Enter Idle Enter Idle

Enter Maintenance Enter Maintenance
Enter Start Up
Start Up Enter Shut Down | Enter Shut Down
Enter Production
Production | Enter Shut Down | Enter Shut Down
Enter Production
Shut Down | Enter Idle Enter Idle
Enter Maintenance Enter Maintenance
Enter Start Up

U

Table 4.6: The States and the Actions possible in each state

The search space is a tree structure, where the number ofsetvailable as exit-actions
out of a state are designated by the state and environmeath®&r. The root of the tree
is at the start of the weather/ensemble forecast and thetleagliysical goal state) is at
the end of the forecast.

4.3.3 Calculating resources

We make an estimate on the value of a state, by means of EqdatioThe equation takes
resource values from the previous state and the productitve @urrent state, along with
limits for resources and values for consumption. The ougfpubhe formula is basically

how much energy is produced by the mill, how much is purchasebdhow much is put

into or taken out of storage. Thg C, r, r'max, 'min » Po @andb are state- and calculated
values, the rest are user-supplied.

+

Mmax T (4.5)

r r rmn (4.6)
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| Legend| Description

p Production

c Consumption

I max Maximum allowed reservoir level

I min Minimum allowed reservoir level

r Reservoir level

r* Difference between andr .y

r Difference between andr

Po Overproduction (after consumption and reservaoir)

b Purchased (bought) energy (after insuf cient reservod production)

Table 4.7: Resource-Production-Consumption Legend

Resource calculation formula:

_1
-
o
o
o

r-<c) c Cc r;r rmn;b ¢cc O

Sp ') r  rma;Po P I

8

<

%C p) ¢ ¢ pp O | ¢)
%Kp) p p ¢gc 0,

p<r*) r r+pp O
4.7)
Equation 4.7 along with Equations 4.5 and 4.6 describes afseiquirements for the
value function when calculating resource usage;the consumptiom is the production
and so on (see Table 4.7).

The goal of the formula is to leave us with how much must be lmased, how much is
overproduction, how much is saved for later and how muctkisrtdrom reservoirs.

4.3.4 The Runner

The second phase of the program (the runner) takes the pliah whs created in the rst
phase and runs the plan on actual measured meteorologieal da

Once the runner has read the plan and executed it againsl avtasure weather, both
the plan and the result are output in tabular form.

The output of the planner is twofold. Internally in the pragr, the return of the planner
is a list of plan actions which the runner then can utilise¢ofgrm its task. Externally
however, a table is printed in human-readable form. Therookiof the planner output
are shown in Table 4.8.

In the runner, the only output is in machine-readable fomte¢nally). The output is then
converted to human readable form on standard-out at the fetit aun. The columns
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| INDEX () | Description

00 | line number

01 | step number

02 | action taken in this step

03 | action taken in previous step

04 | node-ID

05 | previous node-ID

06 | produced energy

07 | purchased energy

08 | Not used

09 | reservoir status

10 | Not used

11 | Not used

12 | total value

13 | state value

14 | maintenance countdown 1

15 | maintenance countdown 2

16 | maintenance countdown 3

17 | maintenance countdown 4

18 | maintenance countdown 5/ debug item
19 | maintenance countdown 6 / debug item
20 | debug item

21 | wind (min value < current value < max valug)

Table 4.8: Planner/Runner output tables

of the runner output are the same as those of the plannemptetkzd there is no debug
output.

4.4 Postprocessing

Postprocessing is done by taking the output data from thenplérunner and convert it to
graphs using shell scripts and gnuplot/matplotlib.

The log les are copied from the host running the simulatiang are split into separate
log les for the plan and run. Then, from each set, the valdammms (planned and actual),
wind (measured and estimated), action and planned act®@odiected into graphable
data les.

Once this is done, each dataset is plotted based on the spfeeitures each graph is
intended to have (see the three main types of graphs useef), Tially, a PDF is created,

containing all the graphs.
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45 Heuristics, statistics and search methods

A heuristic is a value function with wich we measure the dis&ato our goal. In A the
heuristic is the h(n) part of the value function f(n)=g(njrh The function g(n) is the
value of the current state and h(n) is the heuristic (esgdhaiture value).

In the planner we tried a variety of value functions. The eafunctions break up into
three parts. These are:

Weather evaluation

We need to take the input from the weather forecast and somekaluate the
state. In conventional weather forecasts, the evaluati@one by evaluating the
wind strength against min and max values for the productiowe of the wind
turbine. In ensemble forecasts we use the same evaluatibrhetfore that, we
use the ensembles to get an estimate of what might be thevage. In weather
applications, the midvalue is commonly used, so it was afor us to start with
the midvalue and other statistical methods like §.(; as shown in Table 4.9). We
then gradually added others like the con dence level antyexit. As can be seen
in Figure 4.5, the four metrics are very close in their estevad the wind strength
based on the outcome of the members of the ensemble for&tagtmeans that of
the four metrics, it makes little difference which one we ab®— we need to add
other elements to improve our estimate since a wrong esifr@an any of the four
metrics will have the same incorrect effect on the distarstenate as any of the
other three.

We then added a con dence level — instead of examining whataittual wind
strength value was estimated at, we examined how many of émel@rs said that
production would be within the range de ned by the wind tmbias production
range. By tuning the con dence level we can affect how opgiiior pessimistic
the planneris. Itturns out that the planner is less optimilsan before while having
a slightly better correlation between production estirmaied actual production.
Lastly we add an early exit so that the planner exits the ptenphase when the
ensemble forecasts become too erratic. This means that atargenerally much
shorter than the timespan of the weather forecast, butidste have a plan that we
have more trust in, rather than one that covers forecastst@athigh uncertainty.

Resource usage
The power plant may or may not be de ned with resources (bhag The re-
sources must be considered both for underproduction asageNerproduction.
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Figure 4.5: Correlation between the four rst heuristicstégl - y axis is wind strength, x
axis is time slot from start of forecast, all four heuristiag against the same forecast.

Future evaluation

Since the ensemble data is constant i.e. once the worldastimas been produced
it will not change, all of the above may be used both to createstimate of cur-
rent and future productivity. To estimate the implied fetwalue of the facility,
we examine the timeline of the weather and divide it into twtss timeslots of
production and timeslots of purchase. We use grouping toeameso that we try
to take into account that single timeslots of productionraeer full timeslots (i.e.
to gain full production, at least two adjacent timeslots afduction are needed).
By estimating the future value in this way, our future estenaakes the heuristic
admissable since we get a fairly good estimate from the eeatfetrics, we will
attemt to underestimate, not overestimate, the cost oingefitom n to the goal
state.

The heuristic is the “Future Evaluation” part, with the “Wileer Evaluation” function as
the evaluator of the quality of the future state. In the &g, gains from using resources
are not considered. Only the number of production days, avitlimber of maintenance
days subtracted. To make the heuristic admissable, theemaimce days are planned into
the production days to make sure that the future is congtanterevaluated.

The choice of heuristics is shown in Table 4.9.

For both conventional weather forecasts (gec00) and ersdimiecasts, the heuristics
count periods (productive and non-productive in the fus@en from the timepoint of the
planner in the forecast) and creates a future estimategusirior interpretation of the

ensemble). They then estimate how many service periodsedhedming and decrement
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| | Algorithm | Description |
o | Midvalue From the set oh sorted val-
ues, the value in the middle |s
selected
1 | Midrange The midrange is selected as
Such:MR = > tow.
> | Mean for grouped data The ensemble data is grouped

into sizeable groups. See
Bluman (2008, p. 106)

3 | Modal class for grouped data | See Bluman (2008, p. 110)
4 | Con dence level A state is valued productive
if a certain percentage of the
members are within the prg
duction level

5 | Baseline This creates a ctional set of
full-production weather situt
ations to run agains a certain
measured weather system
6 | gec00-t This uses the members of the
ensemble to t the base mem-
ber to the most likely sce
nario according to the ensem-
ble forecast
7 | Con dence level with early exit When the ensemble deviates
more than a maximum setting
for the standard deviation at
1m/s with a user-settable fail-
ure assesment count and deyi-
ation slant

Table 4.9: Available heuristics/algorithms

rst positive days, and if that's not possible, then the negadays. This forces the
planner to never overestimate the value of a state (adniéskahbristic).

Since the base weather forecast only has a single serieaftznts in time/space), none
of , may be of use and only the resource usage and future eval@gaised.

4.6 Variationson A

In this section, the different search methods considerszltfhout the project are dis-
cussed and explained. The reasoning behind selecting E&@eAmade clear, as well as
why IDA and Greedy-A are inef cient when using weather data.
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4.6.1 Improving time ef ciency while keeping (most) of the garch
accuracy

Although the greedy algorithm of Awill be providing the best result within the bounds
of the heuristic, it will still, under circumstances out bétcontrol of the user, expand mil-
lions and millions of nodes. In testing, at depth 10 it haéadly expanded over 2 million
nodes. The problem with Ais however that its growth rate is in the worst caééwhere
bis the number of options at each point in time at any givendiramthe search tree, and
dis the depth of the search tree - in our case the number of teps)s which quickly be-
comes very large as Aeeps track of all expanded states — it quickly becomes mgmor
bound. Since the possible number of nodd$ i5 the search space is prohibitively large.
One of the improvements may be to useBarly Commitment (A-EC). We added in the
planner an early commitment function where we could selecsearch depth at runtime.
Adding to the complexity, since the problem is temporal (&dxdepth search) the so-
lution will only be found at the leaf of the search tree — newside a branch, which
means that memory-saving modi cations of Ake the IDA 2 are also infeasible. Early
commitment (EC) is used to commit to a certain level in thede&ee. If we consider
searching through a binary tree, at level 10 we will hat®e= 1024 options, at the 11th
level we have?!! = 2048 options, and so on. If we decide to commit to a certain level,
say level 10, the best value we have found so far there, theiegy@ the node at level 10,
purge the open list which contains our “next in line” nodegand the level 10 node and
insert the children into the open list and put the level 10eniocthe closed list. We have
now committed to a partial solution, and reduced our segoelcesfrom 1024+ options
to a set of mere two options (for our imaginary binary tred)isT of course has an even
greater impact as the branching factor in the tree is gréatgr5'! = 48828125possi-
bilities).

This leads to Aiin our case having a search space siz@@F¢°) (4 is the average number
of options, 360 is the max number of time steps) in the worse cavhich is completely
unsolvable in the timeframe required for the problem, usottay's technique, were we
to search all of the search space. This means that we mustnratimissable heuristic
which inhibits branching as much as possible, without belatsimental to the results.
The method we will be using is a modi ed version of Asince if we are able to conduct

1 Horizontal transpositions means everything under willngeaas well, so the number of options is still
the same. Since the timeline is xed, vertical transpositiare not allowed.

2IDA is an incremental-depth variation of Avhich expects to nd the solution inside the search tree.
If the algorithm will have to search the whole tree, it wilkéatwice time of the regular A
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the search in such a way that it searches only a small parteae¢hrch space, and yet
reaches an acceptable conclusion, it has done what we gdend

The function of EC is that when we decide to commit to a certailution while still
searching for the goal state. Since we are dealing with ademhgdata stream, the starting
state is always at the beginning of the stream and the gdalistalways at the end. This
means that in our case, any decision we take has a limitedt efféerms of when the
effect starts and how long it lasts. The effect a decisionteaare is: nancial (we make
an unsound decision that requires us to purchase energysteps more than neccessary)
and suboptimal planning (we plan on maintenance in a bad ggptiring plan alterations
or clashes between production and maintenance, both ohweaie be costly).

Once we have decided that we need to commit to a certain soutie node we are

exmining at that moment is not the node we wish to save siratenthde may be far from

being the best one available. What we do is, we back up a fqus stea level where we

have already expanded a portion of that level. We searchhé&best node for that level

in both the open and the closed lists in case we already erpaarttd discarded the node.
Once found, we purge the open list and expand the found natlpwnts descendants on
the open list, and the node itself on the closed list. Oncedar have limited the search
tree to only the descendants of the speci ¢c new root node.

In the rst iteration of using A-EC, we simply committed to a solution when the branch-
ing of nodes had become suf ciently great, e.g. at 50000 s@@anded. This however
did not prove to be satisfactory. Examining our solutiornveéda aw in our logic. When
using A -EC, it is not enough to nd a satisfactory node in the open Mge also need to
search through the closed list, and we need to search for @ thatl exists at a speci c
level. That meant for us to add to the node knowledge aboutiwibvel it was expanded

in, and to the search function to be able to search for mast/lexpensive node at given
leveln in both the open and closed lists.

Given the function of A-EC at a given amount of node expansions, we made it possible
to search through the search space in much less time anckath a good result.

4.6.2 Optimistic and pessimistic planners

When the original planner was written, one of the problemswated was that the plan-
ning phase was so overly optimistic that the plans resutiezbntinuous loss. To make
the loss more visible, we added a runtime penalty simuldtisgpot energy market. This
resulted in the losses to become even clearer. We realizédh# planner had to use a
narrower range (higher con dence value) to make its présiist When we experimented
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with the con dence values, we noted that a too high con dewakle did have the oppo-
site effect — the planner became overly pessimistic. Thesspot seems to lie between
65% and 75%.

The loss is because the planner is getting false positivdSdase negatives from the
heuristic, resulting in the planner missing productionigs it could use and planning
production in periods where it should have planned for gnprgchases as may be seen
in Figure 5.1b.

Analyzing this behaviour of incorrect detection shows ttias$ is partially due to un-

certainty in the ensemble forecast (see Figure 5.6a, butiseesae that the part of the
problem is that the resolution of the data is much too coatdghe moment, the fore-

casts are made in a 9km grid with a temporal resolution of Gpar step. This means
that for every hour we need to decide whether to produce orebeygy, we are making
our decision based on a calculated average for a six-folgtteof our planning period.

While this may work in weather systems that are “slower” (eagcumulated precipi-

tation, snow-melt etc.) it does clearly not work for wind giction. One remedy may
be to increase the spatial resolution to 1km and/or incrésséemporal resolution to 1
hour. It must also be noted that the measured data is a 10eaverage. This means
that the measured data is not necessarily representatrealdiy. The problem with the

measured data may be solved by sampling data with a higheprdney to give a better
wind pro le.

Also noted was that in an overly pessimistic planner, theckespace becomes most of
the search tree, since there “must” always be a better vahi&e in the overly optimistic
planner, the search space was very small - in some cases & giatp through the tree.
Unfortunately, the overly optimistic planner did not nessarily nd the best path. This
meant that we needed the scrutiny of the pessimistic planvigte keeping the small
search space of the optimistic planner — essentially ta&ihdgP-Complete problem and
making it solvable in polynomial time. Since there is no $iolu for such a conversion
at this time, we need to “ x” the problem. One method we useasyecommitment
since this allows us to reduce the search space severelyiggeive commit to a certain
node.

See Appendix A, A.1.1 for the options the planner takes aima
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4.7 Baseline Testing

A test was then done on static data to see how the planner vinauidle planning on
still weather (wind speed data is 0m/s), constant wind (v@pded data is 15m/s), high
variability (wind speed is repeating Om/s and 15m/s) andleggvariability ( ve times
Om/s followed by ve times 15m/s, repeated 3 times). The datatained 30 timeslots,
giving an ample dataset to test the function.

Dataset | Result

Still weather (0,0,0,...,0) As expected in all cases as step size ex-
ceeded the window size of the repeated
events

Constant wind (15,15,...,15) As expected in all cases as step size ex-
ceeded the window size of the repeated
events

High variability (0,15,0,15,...,0,15) As expected in all cases as step size ex-
ceeded the window size of the repeated
events

Regular variability| High variability was detected with subop-
(0,0,0,0,0,15,15,15,15,15,...15) | timal plans created for all step sizes below
24 steps, with the exception of 13 steps
being correct for the scenario when future
value was highly discounted and 14 steps
correct in all cases. The correctness of 13
and 14 steps must be considered a uke
due to the design of the data unless oth-
erwise proven wrong. Further testing will
reveal if these step sizes can be used.

Table 4.10: Tests of different depths of &£C

As may be seen in Table 4.10, the rst three tests went as éxgecThe fourth test
did however show anomalous behaviour, which may be a resthbw the data is de-
signed.

The part a pattern plays in validating the sanity of the péans such that if the length
of the production period in the pattern allows the recurear@nt to be planned outside
the production period in every instance, the planner isidened to be sane. l.e. for a
recurrent event of max step count of 8 (steps between evantsax) and a pattern of
pause length 4 production length 6, there should be a redwvent at the beginning and
end of each pause to cover the production periods withotihgutff the production. The

simpli ed sequence for the weather forecast would thus b§Jg515,15,15,15,15,15,
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0,0,0,0,15,15,15,15,15,15, 0,0,0,0,15,15,15,15,16,0band the resulting plan should

be like P={ID,MA,SU,P,P,P,P,P,SD,MA, ID,MA,SU,P,P,RSD,MA, ID,MA,SU,P,P,P,P,P,SD,MA},
where ID=Idle, MA=Maintenance, SU=StartUp, P=Producti®b=ShutDown. 0 and 15

are meters per second wind strength.
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Chapter 5
Results

In this chapter we present the results of the experimentenpeed. We start with the

simplest type of planner where we show that it does not perfadequately. We then
go through the different heuristics tested and show ourngdifor each one. At the end
of the chapter we present the ndings of Yamaguchi and Isfail§a008) and how they

correlate with our own ndings. We planned against convamai weather forecasts and
ensemble forecasts to create plans. These plans were @ tousmulate the production
using measured wind data. We then evaluated the bottomflitne @ower plant. We did

this for different periods and different heuristics. Wegaet the results here.

5.1 Planning against a conventional weather forecast

The rst version of the planner planned against a convemtiareather forecast. The fore-
cast used was the baseline member of the ensemble forealst (gec00”). The data
stream is a timeline of single estimates of events (winchgtte. The function used to
sense to these events is straight forward - if the wind stheisgabove a certain minimum,
production takes place. As may be seen in Figures 5.1a thagiaoes not succeed at in-
terpreting the weather well enough to justify planning beythe rst few hours, for this
speci ¢ case. In Figure 5.1b, we see the lack of correlatietwieen the actual measured
weather (jagged green line) and the planned weather (stepvie line). The horizontal
red line signi es the breakout point where production ceadéhe lack of correlation, as
seen in timesteps 40-55 and again in 145-165 may happen fanetyof reasons. The
landscape may affect the forecast (solved with a higheduen weather forecast), or
the member may be interpreting the weather system inctyreetg. unforeseen vertical
changes, temporal variations or spatial variations. Thagations are supposedly caught
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to some extent by using a higher spatial resolution, a hitgmeporal resolution and better
input data (baseline and geographical data).
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Figure 5.1: A plain Weather forecast and the correlatiorwbeth measured and in-
terepreted values-axis is hours

5.2 Planning against an ensemble forecast

The next version of the planner uses ensemble weather &igsetmacatch some of the
probabilistic features inherent in weather forecastingstiwve added new heuristics -
methods of interpreting the values from the ensemble fetec&lVe used midvalue (Figure
5.2a), midrange (Figure 5.2b), mean for grouped data (Ei§uzc) and modal value for
grouped data (Figure 5.2d). These functions add to theque\simple heuristic, only to
evaluate the multiple points in the ensemble, and returmglesipoint which the simple
heuristic can use.

The planner was run for all four heuristics on both the enderfidoecast and the conven-
tional weather forecast. In all cases but the modal valu¢hdigolanner fare better on the
ensemble forecast than the conventional weather foretagtigures 5.3a and 5.3b, we
see an example of this.

It is however clear at this point that the planner isn't ciregplans that will help the wind
power production facilities - at least not on a long-termi®asviodifying the penalty
to re ect the actual penalty the power companies face whesniguenergy on the spot-
market further re ected the fact that the plans were barslghle on a short term basis,
and not at all on a long-term basis.
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We then added a simple con dence heuristicR%b of the values from the ensemble fall
within the production range, we have con dence of this vddeeng the “right” one. This
solution produced plans similar, better and worse thanipuevheuristics — depending
on the con dence value. At 50%-60% con dence, the plans wereoptimistic, while
at 85-100% the plans were much too pessimistic (see Figudas 5.4b, 5.4c and 5.4d).

In Figures 5.5a and 5.5b, we can compare the number of fatsives and false negatives
by the common heuristics.

These results lead to examining the input data for pattemig¢k thereof) which might
be causing the planner to fail - especially after reachindnd@s, where the variability
of the forecast starts manifesting itself. The spread irettemble forecast is such when
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the uncertainty hits that it is almost impossible to detemtf 20 members what the most
likely scenario is going to be. Examples of such spread maseke in Figures 5.6a and

5.6b.

Since the ensembles themselves are not just parameteresh@ng. amplitude changes)
but also movements in either or both time and space, actuat pedictions of wind
are harder than precipitation predictions - the latter Ingsaict over a longer period of
time resulting in @ much more foreseeable resource thanotineet, as well as being a
distributed parameter over a large area, where errors ifotieeast are smeared out to
some extent by the size of the forecast area. This leads wntbutle that the ensemble
forecasts require some improvement to use for wind-enengacasting. When we exam-
ined the graph shown by Yamaguchi and Ishihara (2008) (sp&é-b.7) on rated wind
power, the same as we see in our planner, i.e. a high numbetlofiése positives and

false negatives.

With that in mind, we modi ed the planner to take into accotire spread of the ensemble
forecast () and given a maximum spread at 1m/s, increasing kyery m/s, if the en-
semble forecast exceeded thattf@monsecutive timepoints, the planner stopped planning
at that point. Although this should lead to plans that havighdr con dence than longer
plans, it can still create plans that have lower con denftye n— —h—t combination isn't
carefully tuned. As may be seen in Figures 5.8a-5.8f, them@astops planning at differ-
ent time points, depending on the uncertainty in the enseifobécast. In the simulation
referenced we used no devaluation of future estimates, ade®dence level
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Figure 5.7: Results from Yamaguchi and Ishihara (2008) sigvalse positives and false
negatives
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Chapter 6
Conclusions

In the power production sector, automatic planning is aiféagool. It gives us the
opportunity to try out a variety of solutions in much greatembers than manual planning
allows us. It can also suggest a number of “best solutionsét@n search criteria, and
it will avoid mistakes which can happen in manual planningereha bad plan may be
elevated above the good plans.

Once we have the rulesets for how the model is supposed tovdehe can set our
heuristics (see Tables 4.3, 4.4, and Equation 4.7)

We addressed the heuristics problem and ran the model ootivemtional weather fore-
cast and showed that such runs in general don't work beyoBdl@ys, depending on
how far into the future the conventional weather forecastialy manages to keep its
accuracy - accuracy that is solely based on a single timelirevents. This is a real
problem for planning, since planning usually works by eaéihg the likelihood of an

event taking place, and selecting the best action (acogtdim heuristic) in light of the

probabilities.

We then did the same for ensemble forecasts, using a vafiéguoistics to evaluate the
distribution between members. We did get better resultd,vem also got a few ideas
worth exploring further in terms of planning techniques.

The weather forecasts were, as mentioned before, fairlyrate for a period of up to 3
days. In that period, plans were somewhat correct (or at leage correct than not). The
problem however persists that the quality of the plans ntastat a relatively high level
for them to be valuable tools to use in planning for power patin. Planning against
conventional weather forecasts does not solve that issue.
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This leads us to the ensemble forecasts and how they peridraey.don't x the problem,
but they do perform a little better. Also, by using the comde value, the planner may be
terminated or programmed to "ignore" periods of high uragty, since such uncertainty
has little value in planning. This uncertainty is clearlgibie just by plotting the data sets
(see Figures 5.6a and 5.6b). As can be seen on the gures, thkenembers get close
to one another, the con dence level rises, and when theyasipoet, the con dence level
decreases.

One of the problems we face is the inaccuracy of the enserobdéedsts. With a high
spread on the members, we have a low con dence on what is goimgppen. This can be
xed somewhat by improving the models with high-resolutgpatial dataGalileoCast:
Foreca Consulting Main Pag&011) and point-in-time weather data using UAVs (Vilhjakon,
2010).Reiknistofa i Vedurfreed2011) has been working on both of these projects as well
as on a method of incorporating high-resolution ASTER dA®GIER: Advanced Space-
borne Thermal Emission and Re ection Radiomg®&11)) into WRF, gaining increased
accuracy for high-resolution (temporal and spatial) weatbrecasts, e.g. for the island of
Utsira in Norway. At Gufuskalar, there has been work undgriwacollect high-resolution
weather data at several levels (10m, 40m, 100m, 200m, 4@Db@ &ble to pro le certain
weather events in greater detail than possible before.

The planner can use the information in the ensemble fore¢agjain the advantage of
many partial plans for the period in question, using the clamce level of the members
to select whether to plan or to ignore. These partial plang then be combined with
previously made plans for the same period to create a be#terget for a longer period.
What we do is to make plans for times that are “known” to be lstadnd attempt to
Il in the blanks with older information or search based parEven just-in-time (JIT)
planning if that's what we want. Since the wind is the mostcdit element of the
weather forecasts, we can be sure that since it does woltk vagil for shorter periods
of time with the rather vague input data available, it willnkanuch better for systems
that have even greater stability and slower rate of charayewhnd, e.g. hydropower and
geothermal power (groundwater, rain, melt).
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Appendix A

Appendix

A.1 The Planner

A.1.1 The planner options

>java -jar mscPlanner.jar -?
System options:
-? . This help
-h  : This help
-v  : Verbose (false)
-y n : Year, 0<n<now (2009)
-m n : Month, 1<=n<=12 (12)
-d n : Day, 1<=n<=(max day of month) (28)
-H n: The heuristic to use for planning, 0<=n<=5 (0)
: Midvalue
: Midrange
: Mean for grouped data
: Modal class for grouped data
: Confidence levels
: BASELINE
1 gec00 best fit
7: Confidence levels using stddev
-MD n: The maximum number of datapoints to consider, regardl
-cl n: The confidence level of the data
-cr n: The confidence range of the data
-B n : Break (early commit) if OpenList contains at least n nod
-smd n: The maximum deviation allowed at 1.0m/s
-ssl n: The slant of the maximum deviation
-sms n: The maximum number of successive 'bad' days
-hD n: The constant to devalue the future heuristic by (defau
-ss n: The number of steps to start with (5)

o s wWwNPRP O

-es n: The number of steps to end with )
-E : Use ensemble forecast
-W . Use weather forecast (default)

-eB n: The ensemble breakpoint (default: 0.7)

-f fn: The filename to use for plant definitions (default: De

-c fn: The filename of the system configuration file (defaul

-If fn: The filename of the logfile to use (default: none)

-L fn: The filename of the debug logfile to use (default: none
-Il n: The loglevel to use (from O through 7, default: 4)

-svx n: the carry of service days between planning sessions w
-RD : Only read the data from the database, and then quit.
-PP n: Production cost when production is planned

-PN n: Production cost when prodiction is planned but fails
-NN n: Production cost when production is not planned

-SC n: Service cost

-wdm n: Weather data multiplier for measured data (warning:

ess of the length of the series

es

It: 1.0, less than 1.0 is devalue)

faultFactories.yml)
t: plannerConfig.yml)

here 0<=x<=4

will skew results! - default 1.0)
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-SD : Simulate measured data by usung calculated data instea d
-bp n: Backpedal n levels at fork (default is 1)

The options available to the user in the planning program
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