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Abstract

Clustering is a technique used to partition data into groups or clusters based
on content. Clustering techniques are sometimes used to create an index from
clusters to accelerate query processing. Recently the cluster pruning method
was proposed which is a randomized clustering algorithm that produces clus-
ters and an index both efficiently and effectively. The cluster pruning method
runs in a single process and is executed on one machine. The time it takes to
cluster a data collection on a single computer therefore becomes unaccept-
able due to increasing size of data collections.

Hadoop is a framework that supports data-intensive distributed applications
and is used to process data on thousands of computers. In this report we adapt
the cluster pruning method to the Hadoop framework. Two scalable dis-
tributed clustering methods are proposed: the Single Clustered File method
and the Multiple Clustered Files method. Both methods were executed on
one to eight machines in Hadoop and were compared to an implementation
of the cluster pruning method which does not execute in Hadoop. The results
show that using the Single Clustered File method with eight machines took
only 15% of the time it took the original cluster pruning method to cluster
a data collection while maintaining the cluster quality. The original method,
however, gave slightly better search time when compared to the execution of
the Single Clustered File method in Hadoop with eight nodes. The results
indicate that the best performance is achieved by combining the Single Clus-
tered File method for clustering and the original method, outside of Hadoop,
for searching. In the experiments, the input to both methods was a text file
with multiple descriptors, so even better performance can be reached by us-
ing binary files.
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Útdráttur

Þyrping gagna (e. clustering) er aðferð þar sem gögn er hafa svipaða eigin-
leika eru sett saman í hóp. Til eru nokkrar aðferðir við þyrpingu gagna,
sumar þessarra aðferða búa einnig til vísi sem er notaður til þess að hraða
fyrirspurnum. Nýleg aðferð sem heitir „cluster pruning” velur af handahófi
punkta til þess að þyrpa eftir og býr jafnframt til vísi yfir þyrpingarnar. Þessi
aðferð hefur skilað góðum og skilvirkum niðurstöðum bæði fyrir þyrpingu
og fyrirspurnir. Cluster pruning aðferðin er keyrð á einni vél. Sá tími sem
tekur eina vél að skipta gagnasafni upp í hópa er að lengjast þar sem gagna-
söfnin eru sífellt að stækka. Því er þörf á að minnka vinnslutímann svo að
hann sé innan ásættanlegra marka.

Hadoop er kerfi sem styður hugbúnað er vinnur með mikið magn af gögnum.
Hadoop kerfið dreifir vinnslunni á gögnunum yfir margar vélar og flýtir þar
með keyrslu hugbúnaðarins. Í þessu verkefni var cluster pruning aðferðin
aðlöguð að Hadoop kerfinu. Lagðar voru fram tvær aðferðir sem byggja á
cluster pruning aðferðinni; Single Clustered File aðferð og Multiple Clus-
tered Files aðferð. Báðar aðferðirnar voru keyrðar á einni til átta tölvum
í Hadoop kerfinu og þær bornar saman við upprunalega afbrigðið af cluster
pruning sem er ekki keyrt í Hadoop kerfinu. Niðurstöður sýndu að þegar Sin-
gle Clustered File aðferðin var keyrð á átta tölvum þá tók það aðeins 15% af
tímanum sem það tók upprunalega cluster pruning aðferðina að þyrpa gögnin
og jafnframt náði hún að viðhalda sömu gæðum. Upprunalega cluster prun-
ing aðferðin gaf örlítið betri leitartíma þegar hún er borin saman við keyrslu
á Single Clustered File aðferðinni í Hadoop þegar notast var við átta tölvur.
Rannsóknin sýnir að með því að nota saman Single Clustered File method
við þyrpingu gagna og upprunalega afbrigðið af cluster pruning við leit, án
Hadoop, þá nást bestu afköstin. Við prófanir voru báðar aðferðirnar að vinna
með textaskrár en hægt væri að ná betri tíma við þyrpingu gagna með því að
nota tvíundaskrár (e. binary files).
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Chapter 1

Introduction

The size of multimedia collections is increasing and with it the need for fast retrieval.
There is much research on nearest neighbor search in high-dimensional spaces. Most of
those methods take the data collection (text,images...) and convert them into a collection
of descriptors with multiple dimensions. The collection of descriptors is then segmented
into groups and stored together on disk. An index is typically created to accelerate query
processing.

Several indexing methods have been proposed, such as the NV-Tree [8] and LSH [2].
They create an index which is used to query the data collection, resulting in fewer com-
parisons of data points. By using a good technique for indexing, the disk reads can be
minimized. The number of disk reads can make a significant difference when working
with a large disk-based data collection.

1.1 Clustering

Clustering is a common technique for static data analysis and is used in many fields,
such as machine learning, data mining, bioinformatics and image analysis. Typically
these methods identify the natural clusters of the data collection. K-means clustering is a
good example of such a method. K-means attempts to find the center of a natural cluster
by recursively clustering a data collection and finding a new centroid each time; this is
repeated until convergence has been reached.

Chierichetti et al. proposed a method called “cluster pruning” [1]. Cluster pruning con-
sists of selecting random cluster leaders from a set of points, and the rest of the points
are then clustered based on which cluster leader they are closest to. Guðmundsson et al.
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studied cluster pruning in the context of large-scale image retrieval and proposed some
extensions [6].

All these methods have been designed to work in a single process, so clustering a large
dataset can take a long time. One way to cluster a large dataset in multiple processes is
to use distributed computing and cluster data in parallel. Parallel processing of data has
shown good results and can decrease processing time significantly. Manjarrez-Sanchez et
al. created a method that runs nearest neighbor queries in parallel by distributing the clus-
ters over multiple machines [9]. They did not, however, provide any distributed clustering
method.

1.2 Hadoop

The Hadoop distributed file system (HDFS) is a tool to implement distributed computing
and parallel processing for clustering and querying data collections. Processing large
datasets with Hadoop has shown good results. Hadoop is a framework that supports data-
intensive distributed applications; it allows applications to run on thousands of computers
and can decrease processing time significantly. Hadoop has been used to solve a variety
of problems with distributed computing, for example, machine translation on large data
[4, 10, 11] and estimating the diameter of large graphs [7].

HDFS was inspired by two sysems from Google, MapReduce [3] and Google File Sys-
tem (GFS) [5]. GFS is a scalable distributed file system for data-intensive applications
and provides a fault tolerant way to store data on commodity hardware. GFS can de-
liver high aggregate performance to a large number of clients. The MapReduce model,
created by Google, provides a simple and powerful interface that enables automatic par-
allelization and distribution of large computations on commodity PCs. The GFS provides
MapReduce with distributed storage and high throughput of data. Hadoop is the open
source implementation of GFS and MapReduce.

1.3 Contribution

The contribution of this paper is to adapt the cluster pruning method to MapReduce in
Hadoop. We propose two different methods for implementing clustering and search in
parallel using Hadoop. We then measure the methods on an image copyright protection
workload. By using Hadoop on only eight computers, the clustering time of a data collec-
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tion decreased by 85% compared to a single computer. Search time, however, increases
when applying Hadoop. The results indicate that the best performance is achieved by
combining one of the proposed methods for clustering and using the original method,
outside of Hadoop, for searching.

The remainder of this paper is organized as follows. Section 2 reviews the cluster pruning
method, while Section 3 reviews the Hadoop system. Section 4 presents the adaptation
of cluster pruning to Hadoop. Section 5 presents the results from the performance ex-
periments and in Section 6 we arrive at a conclusion as to the usability of the proposed
methods.
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Chapter 2

Cluster Pruning

There are two phases to cluster pruning. First is the clustering phase, where random
cluster representatives are selected, the data collection is clustered and cluster leaders are
selected. An index with L levels is created by recursively clustering the cluster lead-
ers.

Next is the query processing phase, where the index is used to accelerate querying. By
using the index, a cluster is found for each query descriptor and this cluster is searched
for the nearest neighbor.

2.1 Clustering

The input to cluster pruning is a set S of nS high-dimensional data descriptors, S =
{p1, p2....pnS

}. Cluster pruning starts by selecting a set of l =
√

nS random data points
r1, r2...r√nS

, from the set of descriptors S. The l data points are called cluster represen-
tatives.

All points in S are then compared to the representatives and a subset from S is created
for every representative. This subset is described by [ri, {pi1 , pi2 ....piv}], where v is the
number of points in the cluster with ri as the nearest representative. This means that data
points in S will be partitioned into l clusters, each with one representative.

Chierichetti et al. proposed using
√

nS representatives, since that number minimizes the
number of distance comparisons during search, and is thus optimal in main-memory sit-
uations. But Guðmundsson et al. studied the cluster pruning method and its behavior
in an image indexing context at a much larger scale [6]. That study revealed that using
l = d nS

desired cluster size / descriptor size
e (where the desired cluster size is 128KB, which is the
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default IO granularity of the Linux operating system) gave better results when working
on large data collections. This value of l results in fewer but larger clusters and a smaller
index, which gave better performance in a disk-based setting.

For all l clusters, a cluster leader is then selected. The leader is used to guide the search
to the correct cluster. Chierichetti et al. considered three ways to select a cluster leader
for each cluster:

1. Leaders are the representatives.

2. Leaders are the centroids of the corresponding cluster.

3. Leaders are the medoids of each cluster, that is the data point closest to the centroid.

Chierichetti et al. concluded that using centroids gave the best results [1]. Guðmundsson
et al. came to the conclusion, however, that while using the centroids may give slightly
better results than using the representatives, the difference in clustering time is so dramatic
that it necessitates the use of representatives instead of centroids as cluster leaders [6].
Using the representatives as cluster leaders means that the bottom level in the cluster index
is known before image descriptors are assigned to representatives. The whole cluster
index can therefore be created before the insertion of image descriptors to the cluster.
Thus the index can be used to cluster the collection of descriptors, resulting in less time
spent on clustering.

The cluster pruning method can, recursively in this case, cluster the set of cluster leaders
using the exact same method as described above. L is the number of recursions, which
controls the number of levels in the index. An index is built, where the bottom level
contains the l cluster leaders from clustering S as described above. ( L

√
l)L−1 descriptors

are then chosen from the bottom level to be the representatives for the next level in the
index. This results in a new level with L

√
l fewer descriptors than the bottom level. The rest

of the descriptors from the bottom level are then compared to the new representatives and
partitioned into ( L

√
l)L−1 clusters. This process is repeated until the top level is reached.

Figure 2.1 shows the index after recursively clustering the representatives. This can be
thought of as building a tree, resulting in fewer distance calculations when querying a data
collection. Experiments in [6] showed that using L = 2 gave the best performance.

Chierichetti et al. also defined parameters a and b. Parameter a gives the option of assign-
ing each point to more than one cluster leader. Having a > 1 will lead to larger clusters
due to replication of data points. Parameter b, on the other hand, specifies how many
nearest cluster leaders to use for each query point.



Andri Mar Björgvinsson 7

Figure 2.1: The index with L levels and l representatives in the bottom level

Guðmundsson et al. showed that the parameter a is not viable for large-scale indexing
and that using a = 1 gave the best result. Tuning b, on the other hand can result in better
result quality. However, incrementing b from 1 to 2, resulted in less than 1% increase
in quality while linearly increasing search time [6]. In this paper we will therefore use
b = 1, because of this relatively small increase in quality.

2.2 Searching

In query processing, a set of descriptors Q = {q1, q2...qs} is given from one or more
images.

First the index file is read. For each descriptor qi in the query file the index is used
to find which b clusters to scan. The top level of the index is, one by one, compared
to all descriptors in Q and the closest representatives found for each descriptor. The
representatives from the lower level associated with the nearest neighbor from the top
level are compared to the given descriptor, and so on, until reaching the bottom level.
When the bottom level is reached, the b nearest neighbors there are found. The b nearest
neighbors from the bottom level represent the clusters where the nearest neighbors of qi

are to be found.

Q is then ordered based on which clusters will be searched for each qi; query descriptors
with search clusters in the beginning of the clustered file are processed first. By ordering
Q, it is possible to read the clustered descriptor file sequentially and search only those
clusters needed by Q. For qi the k nearest neighbors in the b clusters are found and the
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images that these descriptors belong to receive one vote. After this is done, the vote
results are aggregated, and the image with the highest number of votes is considered the
best match.
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Chapter 3

Hadoop

Hadoop is a distributed file system that can run on clusters ranging from a single computer
up to many thousands of computers. Hadoop was inspired by two systems from Google,
MapReduce [3] and Google File System [5].

GFS is a scalable distributed file system for data-intensive applications. GFS provides
a fault tolerant way to store data on commodity hardware and deliver high aggregate
performance to a large number of clients.

MapReduce is a toolkit for parallel computing and is executed on a large cluster of com-
modity machines. There is quite a lot of complexity involved when dealing with par-
allelizing the computation, distributing data and handling failures. Using MapReduce
allows users to create programs that run on multiple machines but hides the messy details
of parallelization, fault-tolerance, data distribution, and load balancing. MapReduce con-
serves network bandwidth by taking advantage of how the input data is managed by GFS
and is stored on the local storage device of the computers in the cluster.

3.1 Google File System

In this section, the key points in the Google File System paper will be reviewed [5].

A GFS consists of a single master node and multiple chunkservers. Files are divided
into multiple chunks; the default chunk size is 64MB, which is larger than the typical file
system block size. For reliability, the chunks are replicated on to multiple chunkservers
depending on the replication level given to the chunk upon creation; by default the replica-
tion level is 3. Once a file is written to GFS, the file is only read or mutated by appending
new data rather than overwriting existing data.
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The master node maintains all file metadata, including the namespace, mapping from
files to chunks, and current location of chunks. The master node communicates with each
chunkserver in heartbeat messages to give it instructions and collect its state. Clients that
want to interact with GFS only read metadata from the master. Clients ask the master for
the chunk locations of a file and directly contact the provided chunkservers for receiving
data. This prevents the master from becoming a major bottleneck in the system.

Having a large chunk size has its advantages. It reduces the number of chunkservers the
clients need to contact for a single file. It also reduces the size of metadata stored on the
master, which may allow the master to keep the metadata in memory.

The master does not keep a persistent record of which chunkservers have a replica of
a given chunk; instead it pulls that information from the chunkservers at startup. After
startup it keeps itself up to date with regular heartbeat messages, updates the location of
chunks, and controls the replication. This eliminates the problem of keeping the master
and chunkservers synchronized as chunkservers join and leave the cluster. When inserting
data to the GFS, the master tells the chunkservers where to replicate the chunks; this
position is based on rules to keep the disk space utilization balance.

In GFS, a component failure is thought of as the norm rather than exception, and the
system was built to handle and recover from these failures. Constant monitoring, error
detection, fault tolerance, and automated recovery is essential in the GFS.

3.2 MapReduce

In this section the key points of the MapReduce toolkit will be reviewed [3].

MapReduce was inspired by the map and reduce primitives present in Lisp and other
functional languages. The use of the functional model allows MapReduce to parallelize
large computation jobs and re-execute jobs that fail, providing fault tolerance.

The interface that users must implement contains two functions, map and reduce. The map
function takes an input pair < K1, V1 > and produces a new key/value pair < K2, V2 >.
The MapReduce library groups the key/value pairs produced and sends all pairs with the
same key to a single reduce function. The reduce function accepts list of values with the
same key and merges these values down to a smaller output; typically one or zero outputs
are produced by each reducer.
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Figure 3.1: Execution of the word count example.

Consider the following simple word count example, where the pseudo-code is similar to
what user would write:

map (String key , String value)
//key is the document name.

//value is the document content.

for each w in value:
emitKeyValue (w , "1")

reduce (String key , String[] value)
//key is a word from the map function.

//value is a list of values with the same key.

int count = 0
for each c in value:

count += int(c)
emit(key , str(count))

In this simple example, the map function emits each word in a string, all with the value
one. For each distinct word emitted, the reduce function sums up all values, effectively
counting the number of occurrences. Figure 3.1 shows the execution of the word count
pseudo-code on a small example text file.

The run-time system takes care of the details of partitioning the the input data, scheduling
the MapReduce jobs over multiple machines, handling machine failures and re-executing
MapReduce jobs.
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When running a MapReduce job, the MapReduce library splits the input file into M

pieces, where M is the input file size divided by the chunk size of the GFS. One node
in the cluster is selected to be a master and the rest of the nodes are workers. Each worker
is assigned map tasks by the master, which sends a chunk of the input to the worker’s map
function. The new key/value pairs from the map function are buffered in memory.

Periodically, the buffered pairs are written to local disk and partitioned in regions based
on the key. The location of the buffered pairs is sent to the master, which is responsible for
forwarding these locations to the reduce workers. Each reduce worker is notified of the
location by the master and uses remote procedure calls to read the buffered pairs.

For each complete map task, the master stores the location and size of the map output.
This information is pushed incrementally to workers that have an in-progress reduce task
or are idle.

The master pings every worker periodically; if a worker does not answer in a specified
amount of time the master marks the worker as failed. If a map worker fails, the task
it was working on is re-executed because map output is stored on local storage and is
therefore inaccessible.

The buffered pairs with the same key are sent as a list to the reduce functions. Each reduce
function iterates over all the key/value pairs and the output from the reduce function is
appended to a final output file.

Reduce invocations are distributed and one reduce function is called per key, but the
number of partitions is decided by the user. If the user only wants one output, one instance
of a reduce task is created. The reduce function in the reduce task is called once per key.
Selecting a smaller number of reduce tasks than the number of nodes in the cluster will
result in only some, and not all, of the nodes in the cluster being used to aggregate the
results of the computation. Reduce tasks that fail do not need to be re-executed, just the
last record, since their output is stored in the global file system.

When the master node is assigning jobs to workers, it takes into account where replicas of
the input chunk are located and makes a worker running on one of those machines process
the input. In case of a failure in assigning a job to the workers containing the replica of
the input chunk, the master assigns the job to a worker close to the data (same network
switch or same rack). When running a large MapReduce job, most of the input data is
read locally and consumes no network bandwidth.

MapReduce has a general mechanism to prevent so-called stragglers from slowing down
a job. When a MapReduce job is close to finishing it launches a backup task to work on



Andri Mar Björgvinsson 13

the data that is being processed by the last workers. The task is then marked completed
when either the primary or the backup worker completes.

In some cases the map functions return multiple instances of the same key. MapReduce
allows the user to provide a combine method that is essentially a local reduce. The com-
biner combines the values per key locally, which reduces the amount of data that must be
sent to the reducers and can significantly speed up certain classes of MapReduce opera-
tions.

3.3 Hadoop Core System

MapReduce [3] and the Hadoop File System (HDFS), which is based on GFS [5], is what
defines the core system of Hadoop. MapReduce provides the computation model while
HDFS provides the distributed storage. MapReduce and HDFS are designed to work
together. While MapReduce is taking care of the computation, HDFS is providing high
throughput of data.

Hadoop has one machine acting as a NameNode server, which manages the file system
namespace. All data in HDFS are split up into block sized chunks and distributed over
the Hadoop cluster. The NameNode manages the block replication. If a node has not
answered for some time, the NameNode replicates the blocks that were on that node to
other nodes to keep up the replication level.

Most nodes in a Hadoop cluster are called DataNodes; the NameNode is typically not used
as a DataNode, except for some small clusters. The DataNodes serve read/write requests
from clients and perform replication tasks upon instruction by NameNode. DataNodes
also run a TaskTracker to get map or reduce jobs from JobTracker.

The JobTracker runs on the same machine as NameNode and is responsible for accepting
jobs submitted by users. The JobTracker also assigns Map and Reduce tasks to Task-
Trackers, monitors the tasks and restarts the tasks on other nodes if they fail.
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Chapter 4

Methods

This chapter describes how cluster pruning is implemented within Hadoop MapReduce.
We propose two methods which differ in the definition of the cluster index.

The first method is the Single Clustered File method (SCF). This method creates the same
index over multiple machines and builds a single clustered file; both files are stored in a
shared location. With this method the index and clustered file are identical to the ones
in the original method, and each query descriptor can be processed on a single machine.
The SCF method is presented in Section 4.1.

The second method is the Multiple Clustered Files method (MCF). In this method each
worker creates its own index and clustered file, and both files are stored on its local stor-
age. With this method, each local index is smaller, but each query descriptor must be
replicated to all workers during search. The MCF is presented in Section 4.2.

Note that while the original implementation used binary data [6], Hadoop only supports
text data by default. The implementation was therefore modified to work with text data.
This is discussed in Section 4.3.

4.1 Single Clustered File (SCF)

This method creates one index per map task. All map tasks read sequentially the same file
with descriptors, resulting in the same index over all map tasks. After clustering, all map
tasks send the clustered descriptors to the reducers that write temporary files to a shared
location. When all reducers are finished, the temporary files are merged by a process
outside of the Hadoop System, resulting in one index and one clustered file in a shared
location.
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4.1.1 Clustering

This method has a map function, reduce function and a process outside of Hadoop, for
combining temporary files.

When a map task is created, it starts by reading a file with descriptors, one descriptor per
line. This file contains the representatives and is read sequentially. The file contains a
collection of descriptors randomly selected from the whole input database and thus there
is no need for random selection. This file is kept at a location that all nodes in the cluster
can read from. When the map task is finished reading l descriptors from the file it can start
building the index. The selected descriptors from the file containing the representatives
make up the bottom level of the index. The level above is selected sequentially from the
lower level.

After sequentially reading the randomized file containing the representatives, there are no
more random selections. This is done so that all map tasks end up with the same index and
would put identical descriptors in the same cluster. When a map task is finished creating
an index, the index is written to a shared location for the combine method to use later.
After the index is built and saved, the map function is ready to receive descriptors.

The nearest neighbor in the bottom level of the index is found for all descriptors in the
chunk, as described in Section 2.2. When the nearest neighbor is found for a descriptor we
know which cluster this descriptor belongs to. After the whole chunk has been processed,
the descriptors are sent to the reducer with information on which cluster they belong
to.

The reducer goes through descriptors and writes them to temporary files in a shared loca-
tion where the JobTracker is running. One temporary file is created per cluster. When all
reducers have finished writing temporary files, a process of combining these files and up-
dating the index is executed outside of the Hadoop system. The combining process reads
the index saved by the map task. While the process is combining the temporary files to a
single file, it updates the bottom level of the index. The bottom level of the index contains
the number of descriptors within the clusters and where each cluster starts and ends in the
combined file.

When this process is complete there is one clustered file and one index on shared storage
and it is ready for search.
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4.1.2 Searching

The Map task starts by reading a configuration file located where all workers can access
it. This configuration file holds information about configuration parameters, such as k,
b, and t, as well as the number of top ranked items to return as results and location of
clustered descriptors and index file. When all this information has been read, the map
function is ready to receive descriptors. The map function gathers descriptors until all
descriptors have been distributed between the map tasks. Each map task creates a local
query file for the combiner to use.

When the local query file is ready, the combiner can start by reading the local query
and index file. The combiner can now start searching the data collection as described in
Section 2.2.

The reduce function receives a chunk of results from the combiner, or t results per query
image. The same identifier might appear more than once in the query results for one
image and the values must be combined for all image identifiers. The reducer then writes
the results to an output file in the Hadoop system after each query identifier.

The map task runs on all workers but it is possible to limit the number of reduce tasks; if
only one output file is required, one reduce task is executed. One reducer will give one
output, if R reducers are executed then the output is split into R pieces.

4.2 Multiple Clustered Files (MCF)

This method also creates one index per map task. With this method, however, the index
is smaller, as each worker only indexes a part of the collection. Each node builds its
own index and clustered file and saves them locally. After clustering, all nodes running
TaskTracker should have a distinct clustered file containing its part of the input file and
an identical index file in local storage.

4.2.1 Clustering

In this method we have a map function, a combine function and a reduce function. The
map functions is similar to the one in the SCF method, but there are two main differences
between the two functions.
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The first difference is the size of l. In the MCF method l is divided by C (lMCF = lSCF /C)
where C is the number of nodes that will be used to cluster the data. Thus, the index is C

times smaller, because each node receives on average n/C descriptors.

The second difference is that instead of sending the descriptors and information to the
reducer, the map function sends it to the combiner. The combiner writes the descriptors
to temporary files; one temporary file is created for each cluster. Using the combiner to
write temporary files reduces the number of writes to a single write in each map task,
instead of writing them once per chunk. When all records have been processed, a single
reduce operation is executed on all nodes.

The reducer reads the index saved by the map task and while the reducer is combining the
temporary files to a single file in local storage, the reducer updates the bottom level of the
index. When the reducer is done combining temporary files and saving the index on local
storage, both files are ready for querying.

4.2.2 Searching

After clustering descriptors with the MCF method, all nodes running TaskTracker should
have their own small clustered file and an index. The Map task reads the configuration
file that holds information about the configuration parameters such as k, b, and, t as well
as the location of the query file.

When the map task has received this information, it can start searching the clustered data.
The map function is the same as the combine function in SCF. However, all nodes have
a replica of the whole query file that is used to query the clustered data, while the SCF
method had a different part of the query file on all nodes.

The reduce function receives a chunk of results from all map tasks, or t × C results per
image query identifier. As in the SCF method, the reducer adds up the votes for each
image identifier and writes the results to an output file in the Hadoop system after every
query.

4.3 Implementation

The input files are uploaded to HDFS, which replicates the files between DataNodes ac-
cording to the replication level. The input consists of text files with multiple descriptors
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per line, where each descriptor has 128 dimensions. The list of descriptors is comma
separated.

Both methods use the default Java record reader provided by the Hadoop core system.
The default Java record reader converts the input to records, one record per line.

All dimensions in each descriptor must be converted from a string to a byte (char) rep-
resenting that number. This has some impact on the processing time; better performance
can be obtained by having the input data as binary. Running the original cluster pruning
with binary input was three times faster than running it on text file input. Some exten-
sions to the Hadoop framework are needed, however, so that it can process binary files. A
custom FileInputFormat, FileOutputFormat, record reader and record writer are needed
for Hadoop to process binary data. This is an interesting direction for future work.

All programming of the cluster pruning method was done in C++ and HadoopPipes was
used to execute the C++ code within the Hadoop MapReduce framework. SSE2 was used
for memory manipulation, among other features, and Threading Building Blocks (TBB)
for local parallelism.
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Chapter 5

Performance Experiments

5.1 Experimental Setup

In the performance experiments, Hadoop 0.20.2 was used with the Rocks 5.3 open-source
Linux cluster distribution. Hadoop was running on one to eight nodes. Each node is a
Dell precision 490. Note that there was some variance in the hardware; Table 5.1 shows
the specification of all the nodes.

Nodes were added to the Hadoop cluster sequentially. When the data collection is up-
loaded to the Hadoop file system (HDFS) it is automatically replicated to all DataNodes
in Hadoop, as the replication level is set to the number of current DataNodes. When the
data is replicated, MapReduce automatically distributes the work and decides how the im-
plementation utilizes the HDFS. The time it took Hadoop to replicate the image collection
to all nodes was 7.5 minutes.

The image collection that was clustered in this performance experiments contains 10,000
images or 9,639,454 descriptors. We used two query collections. One was a collection

Table 5.1: Specification for all machines.
Node RAM Cores CPUs Mhz
0 4 GB 8 3192
1 4 GB 4 2992
2 4 GB 4 2660
3 4 GB 4 1995
4 8 GB 8 3192
5 4 GB 4 1995
6 4 GB 4 2993
7 4 GB 8 2660
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Figure 5.1: Clustering using MCF, SCF, and the original method.

with 600 images, where 100 were contained in the clustered data collection and the re-
maining 500 were not. This collection was used to test the query performance on a number
of nodes. The second query collection contained 100 images, where twenty images were
modified in five different ways. This collection was used to test the search quality and get
the vote ratio for the correct image. In all cases, the search found the correct image. The
vote ratio was calculated by dividing the votes of the top image in the query result (the
correct image) with the votes of the second image.

5.2 Clustering

This section contains the performance results for the clustering. Figure 5.1 shows the
clustering time for each method depending on the number of nodes. The x-axis shows the
number of nodes and the y-axis shows the clustering time, in seconds.

The difference in clustering time between the original method and a single node in a
Hadoop-powered cluster, which is 9% for the SCF method and 13% for the MCF method,
is the overhead of a job executed within Hadoop. The difference stems from Hadoop
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setting up the job, scheduling a map task per each input split, and writing and reading
data between map, combiners and reducers.

In Figure 5.1 we observe super-linear speedup in some instances. For example, we can see
that clustering the data collection with the MCF method on two nodes took 1,188 seconds.
When the same data collection was clustered with four nodes it took 475 seconds. This
is a 60% decrease in clustering time. The decrease in clustering time is not only because
the number of nodes was doubled, but also because the index is only half of what it used
to be, resulting in fewer comparisons when clustering a descriptor. The time it takes to
cluster the data collection with the SCF method is almost cut in half, or by 47% from
two computers to four. The reason that the clustering time does not decrease as much as
with the MCF method is that the index size stays the same. The reduction in clustering
time, when going from one node to two nodes, is even steeper. This my be explained by
memory effects, as the descriptor collection barely fits within the memory of one node,
but easily with in the memory of two nodes.

While using 1-3 nodes we can see in Figure 5.1 that the SCF method is faster. When the
number of nodes is increased, the MCF method starts performing better when it comes
to clustering time. Applying eight nodes to both methods resulted in 38% less time spent
clustering with the MCF method, compared to the SCF method.

In the SCF method, there will be a bottleneck when more computers are added, because
the clustered data is combined and all reducers are writing temporary files to the same
storage device, while the MCF method is only writing to local storage and therefore scales
better.

When all eight nodes were working on clustering the data collection, it took the MCF
method 9% and the SCF method 15% of the time it took the cluster pruning method
without Hadoop to cluster the same data collection.

Note that when a small collection of descriptors was clustered, the time did not change
no matter how many nodes we added, as most of the time went into setting up the job and
only a small fraction of it was therefore spent on clustering.

5.3 Searching

This section presents the performance of searching the clustered data, both in terms of
search time and search quality. Figure 5.2 shows the search time in seconds for MCF,
SCF, and the original method depending on the number of nodes.
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Figure 5.2: Search time for 600 images using SCF, MCF and the original method.

In Figure 5.2 we can see that the time it takes to search clustered data with the MCF
method is increasing as more nodes are added to solve the problem. There are two reasons
for this. The first is that all the nodes must search for all the query descriptors within the
query file and end up reading most of the clusters because of how small the index and
the clustered file are. The second reason is that all map tasks are returning results for all
query images. If there are nQ query images in a query file and we are running this on C

nodes, the reducer must process nQ × C results.

The SCF method, on the other hand, is getting faster because each computer takes only
a part of the query file and searches the large clustered file. Using only one node, the
SCF method is slower than the MCF method because it must copy all descriptors to local
storage and create the query file.

In Figure 5.2, the original method is faster than both the MCF and SCF methods, as
searching with the original method only takes 56 seconds. The reason why the original
method is faster than both methods is that Hadoop was not made to run jobs that take
seconds. Most of the time is going into setting up the job and gathering the results.

Turning to the result quality, Figure 5.3 shows the average vote ratio when the clustered
data collection was queried. The x-axis is the number of nodes and the y-axis is the
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Figure 5.3: Vote ratio for 100 derived images using SCF, MCF and the original method.
Variable-k is the same as SCF except k = C.

average vote ratio. In Figure 5.3, we can see that the SCF method has a similar vote ratio
as the original method, but both are better than the MCF method. The SCF method and
the original method have a similar vote ratio because the same amount of data is processed
and returned in both cases. The vote ratio is not exactly the same, however, because they
do not use the same representatives.

In the MCF method, on the other hand, more data is being processed and returned. The
results is roughly the same as finding k nearest neighbors for each query descriptor, where
k = C. Because the MCF method is returning C results for every image identifier where
C is the number of nodes, this results in proportionately more votes being given to the
incorrect images. This is confirmed in Figure 5.3 where Variable-k is the SCF method,
but the k variable is changed to match the number of nodes.

The vote ratio of the MCF method could be fixed by doing reduction at the descriptor
level, instead of doing reduction on image query identifier level. Thus, for each descrip-
tor in the query file, the nearest k neighbors would be sent to the reducer. The reducer
combines the results from all map tasks, and the nearest neighbor is found from that col-
lection. All vote counting would then take place in the reducer. However, the reducers
could become a bottleneck and result in even longer query times.



26



27

Chapter 6

Conclusions

We have proposed two methods to implement cluster pruning within Hadoop.

The first method proposed was the SCF method, which creates the same index over mul-
tiple machines and builds a single clustered file; both files are stored in a shared location.
With this method the index and clustered file are identical to the ones in the original
method, and the query process can take place on a single machine.

The second method proposed was the MCF method, where each worker creates its own
index and clustered file, and both files are stored on its local storage. With this method
each local index is smaller, but each query descriptor must be replicated to all workers
during search.

The MCF method gave better clustering time. However, the search took more time and
the search quality was worse. The other method was the SCF method that gave good
results both in clustering and search quality. When compared to the extension of the
cluster pruning method by [6], the SCF method in Hadoop, running on eight machines,
clustered a data collection in only 15% of the time it took the original method without
Hadoop.

While SCF showed same search quality as the original method, the SCF method had
slightly longer search time when eight computers where used in Hadoop. The results in-
dicate that the best performance is achieved by combining the SCF method for clustering
and the original method used outside of Hadoop for searching.

Note that the input to both methods was a text file with multiple descriptors, but by using
binary files a better performance can be reached. To get the best performance with binary
files from both methods some extensions to the Hadoop framework are needed.
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We believe that using Hadoop and cluster pruning is a viable option when clustering a
large data collection. Because of the simplicity of the cluster pruning method, we were
able to adapt it to the Hadoop framework and obtain good clustering performance using a
moderate number of nodes, while producing clusters of the same quality.
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