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Abstract

This paper deals with non-preemptive onlinet-interval scheduling. At-
interval is a union oft half-open intervals (segments). In online scheduling
the t-intervals are presented incrementally and each presentedinterval must
be accepted or lost forever. A presentedt-interval which overlaps a previ-
ously acceptedt-interval cannot be accepted. The decision of whether or not
to accept an interval is made without knowledge of the future.

Schedulingt-intervals has an application in bandwidth allocation, transmis-
sion of continuous-media data, linear resource allocationand genomic se-
quence similarity. Online scheduling is of increasing importance in a high-
speed world with an uncertain future.

The most famous version of the problem is the interval scheduling problem
(t = 1). This version has been analyzed both when it is online and offline.
It has also been analyzed with weighted intervals. Scheduling t-intervals for
t > 1 is on the other hand area covered to lesser extent.

The performance of the algorithm is the ratio between the number of t-
intervals in its output vs. the optimal offline schedule. If the intervals are
weighted, the performance is the ratio between the total weight of these sets.
The maximum ratio, taken over all input instances, is the competitive ratio.
The competitive ratio is measured with respect to differentfactors. One fac-
tor is the input sizen. Another one is∆, the ratio between the length of the
longest and the shortest intervals.



Raðbundið t-bilaval

eftir

Unnar Þór Bachmann

September 2009

Útdráttur

Þessi ritgerð fjallar um raðbundin reiknirit fyrirt-bilaval. Sammengi hálf
opinna bila,t að tölu, kallastt-bil. Í raðbundnut-bilavali er eitt t-bil birt
í senn. Á þeim tímapunkti þarf að velja bilið, ella glata því fyrir fullt og
allt.

t-bilaval hefur margvíslegan hagnýtan tilgang: Úthlutun á bandvídd, gag-
naflutningi, auðlindastjórnun og mynsturgreiningu genamengjum. Mikil-
vægi raðbundinna reiknirita er sívaxandi í heimi hraða og óvissu um framtíð.

Þekktasta útgáfan aft-bilavali er bilaval (t = 1). Þetta vandamál hefur verið
kannað að nokkru leiti. Bæði fyrir raðbundin reiknirit og þegar bilin eru gefin
fyrirfram. Einnig hefur bilaval verið kannað með vegnum bilum. Almennt
t-bilaval er hins vegar mun minna kannað.

Frammistaða reiknirits er mæld með hlutfallinu milli fjölda t-bila í úttaki
og stærsta mögulega bilasafnsins, þar sem engin tvö bil skarast. Nálgu-
narhlutfall er hámark þessa hlutfalls, reiknað yfir öll möguleg inntök. Nál-
gunarhlutfallið er oft metið m.t.t. tiltekinna stuðla. Dæmi um slíka stuðla er
n, fjöldi bila í inntaki. Annað dæmi er∆, hámarks hlutfall milli lengda bila
í inntaki.
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Chapter 1

Introduction and Principles

1.1 Introduction

Assume that you are running aresource online. Customers arrive and request to use

it from time to time, for up tot time periods, not necessarily of same length. These

requests must either be accepted or declined. If a request isaccepted, then itoccupies

the resource for these periods of time. A request cannot be accepted if one or more of its

periods intersect a period of a previously accepted request. Your aim is to accept as many

requests as possible. How will you accomplish that? Consider the requests in Figure 1.1

arriving in the ordera, b, c, d, e, f andg. Theoptimal schedulecontains the requestsa,

f andg. Many interesting questions arise when this problem is being solved. Is it wise

to accept the first requesta upon arrival? If accepted, it would use the resource for two

periods. The first one is short but the second one is long. The short period is not likely to

hinder many future requests from being scheduled, but the long period may.

This uncertainty of future events is often characterized inan adversary. The adversary

designs an input with the sole purpose of making your algorithm look bad in compari-

son to the optimal schedule. The comparison is made by calculating the ratio between

the number of requests your algorithm accepts to the number of requests in the optimal

schedule, which the adversaryoutputs. If an algorithm schedules onlyc andd, in the

example in Figure 1.1, vs.3 in the optimal schedule, the ratio is3/2. We call it the

performance ratio. It is ideal for the adversary to keep the ratio as high as possible. The

power of the adversary is to know your algorithm in advance. Then the adversary designs

an input instance which leaves the performance ratio as highas possible. We take some

other attributes of the adversary for granted, such as unlimited power of calculation. This
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means that it can determine the optimal schedule and determine the performance ratio in

advance.

Since the adversary knows the structure of your algorithm before it designs the input

instance, it is easy to see that adeterministic algorithmis not good. The adversary will

first consider a request which uses the resource for a “very long” time period. If it is not

accepted by your algorithm, then no other interval will be inthe input instance. In this

case, the performance ratio is as bad as possible since the optimal schedule contains one

request but your algorithm contains none. If on the other hand, your algorithm accepts

the first interval, a sequence of requests would be added to the input, requesting to use

a fraction of the “very long” time period. These requests could not be accepted by your

algorithm.

An obliviousadversary knows the structure of the algorithm but not the outcome of its

randomized decisions. For such an adversary, arandomized algorithmcan hide the out-

come of its choices. Randomized algorithms do therefore make the input instance design

harder for an oblivious adversary. In this paper, we will always assume that the adversary

is oblivious. Other common types of adversaries are theadaptive offline adversaryand

adaptive online adversary. The adaptive offline adversary is so powerful that it knows

the outcome of random decisions beforehand. Therfore, the input design is no harder for

adaptive offline if the algorithm is randomized. The adaptive online adversary has the

ability to foresee the outcome of random decisions. On the other hand, the adversary is

not allowed to output the optimal schedule. Instead, it has to output a schedule made

online, without knowing future events.

a b
c d

e f g

a b
d c

e f g

Figure 1.1: The resource is requested by customera, b, c, d, e, f andg for two periods
each. These requests arrive online in the same order. The requesta arrives first and before
b arrives we must decide whether to accepta or not and so on. If we decide to accepta
the requestsc, d ande cannot be accepted. The optimal schedule is thereforea, f andg.
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1.2 Onlinet-Interval Scheduling

The problem described in the last section is theonline t-Interval Scheduling Problem

(tISP ), which is the subject of this paper. The requests are jobs ort-intervals. No

preemption is allowed. This means that once at-interval is scheduled, it cannot be ejected

to free the resource. The version of the problem witht = 1, Interval Scheduling Problem

(ISP ), is probably the most analyzed. If thet-intervals are allowed to haveweight, then

these problems become Weightedt-Interval Scheduling Problem (tWISP ) andWISP

when t = 1. The aim in the non-weighted version, is to schedule as many disjoint t-

intervals as possible. In the weighted version the aim is to output the set of disjointt-

intervals of maximum weight. All thet-intervals are jobs carried out on a singleresource

or machine. This means that no two overlappingt-intervals can be scheduled. A related

problem is theInterval Partitioning Problem. In this problem, multiple (usually identical)

resources can carry out each job. The aim in this problem is touse as few machines as

possible.

Scheduling oft-intervals can be viewed by graph theory as an independent set problem.

Eacht-interval is a vertex and two intervals do intersect if and only if there is an edge

between them. Such an intersection graph is called at-interval graphor interval graph

if t = 1. Interval graphs are a subclass ofchordal graphs. Chordal graphs are the largest

class of intersection graph which can be colored in a greedy fashion. The reason for this is

that chordal graphs have asimplicial elimination ordering. The greedy algorithmSimpli-

cal Coloringcolors an interval graph optimally using this order (Agnarsson & Greenlaw,

2007). A greedy algorithm (Kleinberg & Tardos, 2005) finds a maximum independent

set in an interval graph optimally by using it. It starts by scheduling the interval with the

smallest finishing time and rejects every interval that intersects it. Then it continues until

no interval is left.Dynamic programmingcan be used to solve theWISP (Kleinberg &

Tardos, 2005).

Finding a maximum independent set in at-interval graph is on the other hand more chal-

lenging. It has been shown that finding maximum independent set in at-interval graph

is NP -hard, even whent = 2 (Bafna, Narayanan, & Ravi, 1995). Bar-Yehuda et al.

(Bar-Yehuda, Halldórsson, Naor, Shachnai, & Shapira, 2002) showed that the problem is

APX-hard, even whent = 2. Subversions of the problem are hard as well. An example

is Strip graphs(Crama & Spieksma, 2008)(Keil, 1992)(Karlsson, 2005). Each vertex in

a strip graph is represented by an interval and a unit interval representing an equivalence

class. The intervals representing the equivalence classesare all disjoint from the intervals

representing the requests.
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OnlinetISP is a harder problem because thet-interval graph is introduced in steps.

1.3 Applications and Previous Results

The scheduling oft-intervals and intervals have numerous applications in thereal world.

Crew schedulingis the problem of assigning flight crews to flights where each flight has

a start time, end time and duration. The aim of the calculation is to find the minimum

number of flight crews needed for fixed amount of flights. Each flight is described by

an interval and each crew by a machine. The problem is to minimize the number of

crews/machines needed.

Bandwith allocation(Bar-Noy, Canetti, Kutten, Mansour, & Schieber, 1995) in a network

is another application. Number of users communicate via network with a limited band-

width. Each communication request can be thought of as an interval requiring a certain

amount of bandwidth (demand). These communications can have different priorities. The

competitiveness of the system is with respect tothroughputor the number of successful

requests. Here, the online version is particularly importan. Preemption usually improves

the competitive ratio.

Scheduling applications of split intervals are consideredin (Bar-Yehuda et al., 2002).

Scheduling of continuous-media data occurs where multimedia servers broadcast streams

of data to clients upon request. Requests from the clients can be modeled ast-intervals,

since requests can be split into views and breaks. Another application considered in that

paper is linear resource allocation. An example of a linear resource is disk drive with

contiguous blocks.

In (Goldman, Parwatikar, & Suri, 2000) the importance of online interval scheduling for

high-speed networks is highlighted. An example of this is a packet-switched network

such as the Internet. Streams are passed to nodes/routers which forward them onward. In

order to do so, they need a scheduling algorithm. A suitable algorithm can be an interval

scheduling algorithm, since each stream can be thought of asan interval.

Other applications are pattern matching over a set of2-intervals discussed by Vialette

(Vialette, 2004). The problems are of two kinds. The first problem is to find a given

2-interval pattern and the second is to find the longest2-interval from a given graph. This

problem arises in molecular biology where a given RNA secondary structure has to be

found in a database.
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Bar-Yehuda et al. (Bar-Yehuda et al., 2002) came up with a2t-approximation for offline

tWISP using theLocal Ratio Technique, a method similar to dynamic programming and

introduced in (Bar-Yehuda & Even, 1985) to solve theWeighted Vertex Cover Problem.

Similarities between Local Ratio Technique andPrimal-Dual Schemaare the issue of

(Bar-Yehuda & Rawitz, 2001). The paper also gives a2-approximation algorithm using

the Primal-Dual Method forWISP with intervals of even length.

The Primal-Dual Schema is a linear programming method. Mostcombinatorial optimiza-

tion problems can be formulated as an integer programming problem. Solving a linear

programming relaxation of such a problem does not lead to a feasible solution. In the

Primal-Dual Schema the dual complementary slackness conditions are relaxed. The so-

lution becomes a feasible approximation solution to the original problem. Using Primal-

Dual Schema, Bar-Yehuda et al. (Bar-Yehuda & Rawitz, 2006) gave a6t-approximation

algorithm for offline weightedt-interval scheduling. Each interval was allowed to have a

demanddi ∈ [0, 1]. This means that intervals are allowed to overlap if the sum of their

demands is not greater than one.

1.4 Online Scheduling

The traditional assumption that inputs of algorithms are known in advance is not always

realistic. An example of this isscheduling. In a global economy, the demand is ever

changing and it is vital to remain adaptive to changes in demand. An area where this is

relevant is in networks, The most important being the Internet. Cachingof web documents

is an important problem. Web clients store actively accessed web data in caches. This is

practical in order to have less stress on the network. Since the network traffic is not known

in advance, the problem is online.

A related problem to this is thepaging problem. The paging problem is a problem of two

storage units. One is fast but limited, the other is slow but vast. The goal here is to keep

as many actively requested pages in the fast memory. An algorithm must decide online

which page to evict from the fast memory. A common deterministic algorithm used to

solve this problem isLRU . This algorithm evicts the page whose most recent access was

earliest. This algorithm isk-competitive wherek is the size of the fast memory. A more

complicated randomized algorithm isH(k)-competitive. HereH(k) = 1 + 1
2

+ · · · + 1
k
.

A good survey of this and other online problems is in the bookApproximation Algorithms

for NP-hard Problems(Hocbaum, 1997).
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A closely related online problem to interval scheduling andinterval partitioning isschedul-

ing on parallel machinesandload balancing. In scheduling on parallel machines the on-

line scheduling is as follows: there arem machines, given and jobs arrive online. These

jobs are scheduled in order to optimize certain objective function. A common objective

function is themakespan. This is the time it takes to finish all jobs. For the most basic

version of the problem no preemption of intervals is allowedand all the machines are

identical. A famous greedy algorithm (Graham, 1969) is

(

2 − 1

m

)

-competitive. The

algorithm is very simple. It assigns each job to the least loaded machine. A lot of work

has since on both this version and others. In load balancing,the machines arem as well

but each job is weighted. The goal becomes to minimize the load on single machine from

each set of job requests.

Buchbinder and Naor (Buchbinder & Naor, 2009) use the Primal-Dual Schema to solve

onlinecoveringandpackingproblems. Given a setS to be covered withn known subsets

of S, where each set has a weight. The set cover problem is the problem of finding a

union of minimum weight where each element ofS is covered. The set packing problem

is the problem of finding the maximum weighted union of sets which do not intersect.

For the covering problem there is a variablexi for each set. The weight of each set,ci

is known in advance, and the objective function is therefore
n
∑

i=1

ci · xi. The constraints

n
∑

i=1

a(i, j) · xi ≥ 1, represent the elements ofS which need to be covered. They are

presented one by one. For the covering problem, the competitive ratio ofB can by ob-

tained by violating the constraints by a factor no more than1/B. They also showed that

O(logn)-competitive algorithm exists for the fractional version of the problem, which

does not violate any constraints. A good overview of the influence of the Primal-Dual

method for online scheduling is in the paper (Chrobak, 2007).

In the paper (Goldman et al., 2000) nonpreemptive online interval scheduling is consid-

ered. Each interval is allowed to have a delay and the weight of each interval is its length.

In this problem each start point can be delayed within certain certain limits. The paper

considers both unit lengths intervals, intervals with two possible lengths and intervals of

various length. In the case of unit length, the paper shows that the lower bound of any

deterministic algorithm is at least2 and4/3 for a randomized one if the delay is arbitrary.

With intervals of two lengths they give a4-competitive algorithm for the same delay re-

strictions.

Another problem isJob Scheduling, where each job has a starting time, deadline and a

fixed processing timep. Each job can be viewed as an interval of lengthp which has to
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be scheduled within a given frame. This problem is considered in (Chrobak, Jawor, Sgall,

& Tichy´, 2007). They give a randomized5/3-competitive algorithm. This algorithm

is barely random, meaning that that it uses two deterministic algorithms andchooses

between them with probability factor of1/2. They do also give a lower bound for barely

random algorithms of3/2.

One version of onlineWISP is where the intervals are of equal length and preemp-

tion is allowed. The algorithmGreedy2, which schedules each interval greedily (first

fit) and preempts a job if another job with double its weight arrives, was proved to be

4-competitive by Woeginger (Woeginger, 1994). This proof was based on the so-called

doubling method. Furthermore, he proved that this constant was optimal for adetermin-

istic algorithm.

When intervals inWISP are allowed to have variable lengths, the ratio∆, between the

shortest and the longest interval becomes significant. Allowing the algorithm to preempt,

Canetti and Irani (Canetti & Irani, 1995) found a lower boundof Ω(
√

log ∆/ log log ∆)

and upper bound ofO(log ∆) for randomized algorithms.

Lipton and Tomkins (Lipton & Tomkins, 1994) studied an algorithm where the weight of

each interval is its length. Their problem was non-preemptive and the intervals are intro-

duced at their start time. They gave a strongly2-competitive algorithm when the intervals

are of same length. They gave a randomized algorithm which isstronglyO((log ∆)1+ǫ)-

competitive when the intervals are allowed to be of various lengths. Their algorithm did

not know∆ in advance. They introduced a method which we call theBucket Method.

1.5 Our Work

In Chapter2 we will deal with ISP . We start with introducing a so-calledt-interval

stacking construction used to derive lower bounds fortISP . Next we demonstrate that

every deterministic or randomized algorithm has a competitive ratio of at least2, when

the intervals are of unit length. Furthermore, we relate thelower bound to the maximum

clique size of the intersection graph,τ . We show that every algorithm has a competitive

ratio of at least2 − 1

τ
. In the case whenτ = 1 we give a strongly1.5-competitive algo-

rithm. We give a strongly4-competitive algorithm forISP when intervals are allowed

to be of two lengths,1 andd. In terms of input sizen, we show that every algorithm has

a competitive ratio at leastΩ(n). Another important factor is,∆, the ratio between the

length of the longest and the shortest interval. We show thatevery deterministic algorithm

has a competitive ratio at leastΩ(∆). In the randomized version we show that every al-
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gorithm has a competitive ratio at leastΩ(log ∆). We analyze a related problem to online

ISP with unit intervals, the onlinePrefix Interval Scheduling Problem. For this problem

we give a strongly1.5-competitive algorithm.

In Chapter3 we analyze the case oft = 2, for unit segments, we show that every ran-

domized algorithm has a competitive ratio of at least3. When the segments are allowed

to be of two lengths,1 andd, we demonstrate a randomized lower bound of6 and a ran-

domized upper bound of8. In terms of the factor∆, we give aO(log2 ∆)-competitive

algorithm when∆ is known in advance. For the case when∆ is not known, we give a

O(log2+ǫ ∆)-competitive algorithm

In Chapter4 we show that fortISP with unit intervals every randomized algorithm has a

competitive ratio ofΩ(t).

1.6 Definitions

If s, f ∈ R ands < f , then ahalf-open intervalis the set[s, f) = {x ∈ R | s ≤ x < f}.

For I = [s, f), s is thestart timeof I andf the finish time. In this paper, we do not

distinguish between half-open intervals andintervals. Two intervals,I andJ , aredisjoint

if I ∩ J = ∅ and theyintersector overlapif I ∩ J 6= ∅.

A t-interval is a union oft half-open intervals. Each interval is asegment. Two t-intervals,

I andJ , are disjoint if none of their segments intersect. They do intersect if at least one

segment ofI intersects one or more segments ofJ or vice versa. A subset of at-interval

is called at-sub-interval. If t = 1 the subset is called asub-interval. If the segments of a

t-intervalI arei1, ..., it thenI = (i1, . . . , it).

A t-interval isscheduledon amachineor a resourceif each of its segments occupies the

resource from its start time to its finish time. Once at-interval is scheduled, no preemp-

tion is allowed. At-interval isblockedif it cannot be scheduled. If one or more segments

of at-interval overlap a segment of a scheduledt-interval, then it is blocked. If at-interval

is not scheduled, then it is lost forever. At-interval isvirtually scheduledif it does not

occupy the resource, but blocks other intersectingt-intervals from being scheduled. A

scheduledt-interval that occupies the resource is scheduleddirectly. In online scheduling

the resource is freeif a presentedt-interval does overlap a scheduledt-interval. Other-

wise,the resource is in use.

A t-Interval Scheduling Problem(tISP ) is the problem of scheduling as many disjoint

t-intervals from a given set oft-intervals on a single resource. TheWeightedt-Interval
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Scheduling Problem(tWISP ) is the problem of scheduling a set oft-intervals of maxi-

mum weight from a given set oft-intervals with weight. Note that thetISP is a special

case oftWISP , were the weight of allt-intervals is equal. We assume thattISP is

tWISP where eacht-interval has the weight1. If t = 1, we call the former prob-

lem Interval Scheduling Problem(ISP ) and the latter oneWeighted Interval Scheduling

Problem(WISP ). We also distinguish betweenoffline schedulingandonline scheduling.

In offline scheduling, the set oft-intervals are given in advance. In online scheduling,

the t-intervals are presented one by one. The ratio between the longest and the shortest

segment of anyt-interval in a given problem is denoted by∆.

A t-interval graphis an intersection graph where each vertex is represented byone and

only onet-interval. Two vertices are adjacent if and only if thet-intervals they represent

intersect. At-union graphis an edgewise union oft interval graphs over the same vertex

set, whereby they form a subclass oft-interval graphs. tISP and tWISP are equal

to maximum independent set and weighted maximum independent set problems in at-

interval graph. We say that an instance oftISP inducesthe intersection graphG. If the

max clique size of the intersection graph isτ = χ(G), then we say that the problem has

thedepthof τ .

The weight of at-intervalI is denoted byw(I), while a problem instance is denoted by

S. The set of all problem instances is denoted byS. We say thatσ ⊆ S is a feasible

scheduleor anoutputif no t-intervals ofσ intersect. A feasible schedule,σ, has a weight

w(σ) =
∑

I∈σ w(I). A feasible schedule, which is an output of algorithmA , is denoted by

σA or A(S). If R is a randomized algorithm, thenσR is a random variable ofF(S), the set

of all feasible schedules. The expected weight ofI ∈ S is ER [w(I)] = w(I) ·Pr[I ∈ σR].

The expected weight of the output ofR is E[σR] =
∑

I∈S w(I) ·Pr[I ∈ σR]. The feasible

set of maximum weight is called theoptimal schedule, denoted byσ⋆ or OPT(S). If the

t-intervals are nonweighted we can assume that eacht-interval has the weight1. The

weight of a feasible schedule,σ, is in this case the number of intervals in it. Instead of

usingw(σ) we use|σ|.

If p is a distribution overS, thenSp is arandom input instance. In this case, the expected

weight of an output is calculated with respect top and the algorithm itself, both if the algo-

rithm is randomized or deterministic. The expected weight of the output or the expected

number oft-intervals in the output is calculated both with respect top andA , Ep[A(S)].

In the case of a random input instanceSp, the weight ofσ⋆ becomes the expected weight

calculated with respect to the probability distributionp. If there is a positive probability

thatI is an instance fromSp, thenI ∈ Sp. Furthermore, if there is a positive probability

thatσ is a feasible schedule ofS, thenσ ⊆ Sp.
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If I ∈ σ andJ ∈ σ⋆, it can be useful toassigna part ofw(I) to J if I intersectsJ . Let

w(I, J) denote the weight ofI that is assigned toJ . The expected weight of the fraction

of I distributed toJ is thenw(I, J) times the probability thatI is scheduled. For a given

input instanceS, the assignment of weights isproper if
∑

J∈σ⋆
w(I, J) ≤ w(I) for all

I ∈ S.

The performance ratio of an algorithm in this paper is measured against anoblivious

adversary. Such an adversary recognizes the structure of algorithm but not the outcome

of its random decisions. The purpose of the adversary is to design as difficult input for the

algorithm as possible, difficult in the sense that the ratio between the optimal solution and

the expected weight of the algorithm is maximized. We say that the adversaryoutputsthe

optimal schedule or that the optimal schedule is the adversary’s schedule.

If p is a probability distribution over all input instances oftISP and A is an online

algorithm, thenA is ρ-competitive against if for all input instancesS, E[A(S)] ≥ 1
c
· |σ⋆|.

The competitive ratio ofA is ρ if for input instancesS, ρ ≤ sup{c |E [A(S)] ≥ 1
c
· |σ⋆|}.

An algorithm isstronglyρ-competitiveif it receives the best possible competitive ratio for

the problem. The expected weight is calculated with respectto both (random) decisions

of A and the distribution of the input instance.

Prefix Online Interval Scheduling Problem(PISP ) is an online interval scheduling prob-

lem where the input is known in advance by the online algorithm A . The input consists of

intervalsI1, I2, ... ,In presented in this order. After presentingIj , wherej ∈ {1, 2, ..., n},

the adversary can decide to stop the presentation at aterminal pointj. After stopping the

presentation, it outputs the largest set of disjoint intervals fromC = {I1, ..., Ij} vs. the

intervals scheduled online byA from C. The competitive ratio for this problem is not

only calculated over all input instances, but all subinstances induced by different terminal

points.

1.7 The Bucket Method

In this section we introduce a method for proving upper bounds for tISP . Recall that

tISP is a special version oftWISP where eacht-intervalI has the weight ofw(I) =

1. We call it theBucket Method(Lipton & Tomkins, 1994). By using this method, an

algorithm is proven to beρ-competitive. This is done by proving that for eachJ ∈ σ⋆, the

algorithm receives an expected weight of1/ρ · w(J).

The method involves two steps:
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1. The weight of eacht-interval in the problem instance is assigned “properly” onto

thet-intervals inσ⋆.

2. Show that for eachJ ∈ σ⋆ the expected weight ofJ and the weights assigned toJ ,

is at least1/c · w(J).

For a given online algorithmA , the weight of the optimal schedule is compared, piece

by piece, to the expected weight ofσA. These results hold equally for randomized input

instances. This is because of linearity of expectation and the independence of the random

decisions ofA from the distribution of the input instances.

The fundamental elements of the Bucket Method are the buckets and a proper distribution

of weights into each bucket. For eachJ ∈ σ⋆, there is one and only one bucket. Into that

bucket we put the weight ofJ along with a fraction of weights assigned to it from other

intervals inS. Recall that the weight ofI ∈ S assigned toJ ∈ σ⋆ is w(I, J).

Definition 1.1: If S is an instance of an onlinetISP , then for eachJ ∈ σ⋆ we define

bucket(J)of J as the set:

{w(J)} ∪ {w(I, J) |I ∈ S\σ⋆ ∧ I ∩ J 6= ∅ }.

The weight of an intervalI is assigned properly if
∑

J∈σ⋆
w(I, J) ≤ w(I).

Definition 1.2: Let S be an instance of an onlinetISP andI ∈ S. The weight ofI ∈ S

is assignedproperly if
∑

J∈σ⋆
w(I, J) ≤ w(I).

For the rest of this section, we demonstrate how the buckets are used to find lower bound

of the expected weight ofσA. As a consequence of linearity of expectation, the expected

weight ofσA ⊆ S is split into the expected weight of eachI ∈ S. The expected weight

is calculated from possible random decisions ofA and the distribution of the input in-

stance.

Theorem 1.1: If A is an online algorithm andS an instance oftISP , thenE[σA] =
∑

I∈S EA[w(I)].

If I ∈ S andJ ∈ σ⋆ then the expected weight ofw(I, J) is EA[w(I, J)] = w(I, J) ·
Pr[I ∈ σA]. Given that the weights of allI ∈ S are assigned properly, the expected

weight ofI can be lower bounded by the expected weight of the assigned weights.
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EA [w(I)] = w(I) · Pr[I ∈ σA]

≥
∑

J∈σ⋆

w(I, J) · Pr[I ∈ σA] =
∑

J∈σ⋆

EA [w(I, J)]. (1.1)

If we denote the sum of the expected weight of all the elementsof bucket(J) byEA(w(bucket(J))),

we get the following theorem:

Theorem 1.2: Assume the weights of allI ∈ S are assigned properly. IfA is a random-

ized algorithm then:

E[σA] ≥
∑

J∈σ⋆

EA[w(bucket(J)]. (1.2)

Proof. Assume thatS is an instance of onlinetISP and the weights of allI ∈ S are

assigned properly. For simplicity letw(J, J) = w(J) for all J ∈ σ⋆. If A is a randomized

algorithm, then Equation 1.1 gives us:

E[σA] =
∑

I∈S

EA(w(I))

≥
∑

I∈S

∑

J∈σ⋆

EA(w(I, J))

=
∑

J∈σ⋆

∑

I∈S

EA(w(I, J))

=
∑

J∈σ⋆

EA[w(bucket(J)].

Instead of discussingEA(w(bucket(J))) as the expected weight of all the elements of

bucket(J), we simply state that it isthe expected weight of thebucket(J). Last theorem

shows us that the expected weight of an algorithm for a given problem instance is lower

bounded by the sum of the expected weight of each bucket. If weshow that an algorithm

gets a fraction of1/c from each bucket for any problem instance, then the algorithm is

ρ-competitive. We state this in the following corollary:

Corollary 1.1: Let A is an online algorithm andS be an instance of onlinetISP . If the

weights of allI ∈ S are assigned properly and

EA[w(bucket(J))] ≥ 1

ρ
· w(J),
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thenA is ρ-competitive.

An online algorithmA is proven to beρ-competitive fortISP if for any instanceS:

a) the weights of allI ∈ S are assigned properly into buckets.

b) and for allJ ∈ σ⋆

EA[w(bucket(J)] ≥ 1

c
· w(J).

1.8 Yao’s Minimax Theorem

Yao’s Minimax Theorem(Yao, 1977) is an important theorem for proving lower bounds

for randomized online algorithms. This theorem states thatthe expected weight of the

optimal online deterministic algorithm for an arbitrary input distributionp of finite size

is a lower bound on the expected weight of the optimal randomized algorithm for the

ISP .

Theorem 1.3(Yao’s Minimax Theorem): Let D be a set of deterministic algorithms and

S ′ ⊆ S be a finite set of input instances oftISP . If p is a finite probability distribution

overS ′ andq a probability distribution overD, thenSp andDq are the random variables

representing a random input instance and a randomized algorithm. For all distributionsp

over a finite setS ′ ⊆ S andq overD then

max
D∈D

E[σD] ≤ min
S∈S′

E[σDq ].

This theorem was derived by Andrew Yao from a more general theorem, von Neumann’s

Minimax Theorem. A practical version of the rule is stated inthe following corol-

lary.

Corollary 1.2: If R is a randomized algorithm with the competitive ratio ofρR, thenρR

is no less than the competitive ratio of the best deterministic algorithm, performing against

the worst probability distribution over finite set of input instances. More precisely, ifD
is the set of all deterministic algorithms andp a probability distribution over a finite set

S ′ ⊆ S thensup
R

cR = inf
p

sup
D∈D

cD.

Proof. Assume thatSp is a random input instance, wherep is a probability distribution

over a finite setS ′ ⊆ S. Assume furthermore thatD ∈ D has the competitive ratiocD. If

R is a randomized algorithm with the competitive ratioρR then Theorem 1.3 gives that
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E[σ⋆]

E[σR]
≤ min

D∈D

E[σ⋆]

E[σD]
.

sincemaxD∈D E[σD] ≤ ER[σR] by Yao’s Minimax Principle. This implies thatsup
R

cR ≤ sup
D∈D

cD

whereR is from the set of all randomized algorithms. This gives ussup
R

cR = inf
p

sup
D∈D

cD

wherep is from the set of all probability distributions over a finiteset of input instances.

This corollary is very practical, as it implies that the competitive ratio of any randomized

algorithm is lower bounded by the performance of the best deterministic algorithm on

any distribution of a finite number of problem instances. Therefore, it is possible to

take any distribution of finite instances and measure the best performance possible for

any deterministic algorithm and use the results as a lower bound for any randomized

algorithm.
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Chapter 2

The Interval Scheduling Problem

In this chapter we analyze onlineISP . In Section 2.1 we introducet-interval stacking

construction, which is a technique to prove randomized lower bound. It is used in Section

2.2 to demonstrate that any randomized algorithm has a competitive ratio at least two for

ISP with unit lengths. We will also use this technique later whenanalyzing2ISP . We

use Yao’s Minimax Theorem to derive a lower bound related to the depth of the online

ISP . In Section 2.3 we demonstrate that First Fit isd-competitive, if the intervals are of

two lengths,1 andd. We demonstrate as well that no deterministic algorithm does better.

In the same section we come up with a strongly randomized4-competitive algorithm for

ISP with intervals of two lengths. In Section 2.4 we demonstratethat any algorithm has

a competitive ratio at leastΩ(n). In Section 2.5 we demonstrate a stronglyO(log ∆)-

competitive algorithm forISP with intervals of various lengths. We close the chapter

with Section 2.6 by giving a strongly1.5-competitive algorithm for the Online Prefix

Interval Scheduling Problem.

2.1 t-Interval Stacking Construction

When deriving lower bound for deterministic algorithms, the adversary takes advantage

of the fact that it can foresee the outcome of a deterministicalgorithm. An oblivous

adversary can make the outcomes of a randomized algorithm predictable by “stacking”

them. We will spend the rest of this section demonstrating this technique.

The idea is simple. Given a randomized algorithmR , eitherR must schedule a single

interval fromI1, ..., I√d (Figure 2.1 a)), as they mutually overlap, with probabilityone,

or it must schedule at least one interval with probability less than1/
√

d. Depending on
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the structure ofR , the adversary will either design the input according to Figure 2.1 a) or

b).

a) b)

I√d

I√d−1

...

I1

I
J2 J1

Im+1Im

Im−1

...

I1

I ′

Figure 2.1: a) Input instance designed by the adversary in the proof Theorem 2.1 ifR
schedules intervals fromI1, ..., I√d “too greedily”. b) How the adversary alters the in-
put instance in the proof of Theorem 2.1 if some intervalI1, ..., I√d is scheduled with
“diminishing” probability.

Let R be a randomized algorithm andI1, I2, ..., Im be set of mutually overlapping in-

tervals, presented in this order as shown in Figure 2.1. b). The conditional probability

of schedulingIi is the probability of schedulingIi given that no overlapping interval has

been scheduled. We denote this probability withpi. On the other hand, theunconditional

probabilityof schedulingIi is qi =

i−1
∏

j=1

(1 − pj) · pi.

A intervald-stacking constructionis an input, such that the expected number of intervals

in σR is 1 + 1/
√

d vs. two in the optimal schedule.

If instead of intervals we havet-intervals with segments of same length, then this input is

called at-intervald-stacking construction.

Let I1, I2, ..., Im (m ∈ N), as in Figure 2.1 a), be a set of mutually overlapping intervals

of lengthl ∈ R, presented in order of decreasing left endpoints. The interval I =

m
⋂

i=1

Ii

is a left-oriented intersection interval. If Im = [sm, fm) andIm+1 = [fm, fm + l) then

I ′ =
m−1
⋂

i=1

Ii ∩ Im+1 (Figure 2.1 b)) is aright-oriented intersection interval. When refer-

ring to either of the two, we talk aboutintersection interval.

We can broaden the definition of the last paragraph, ifI1, ..., Im aret-intervals, with seg-

ments of lengths, and the intersection graph is at-union graph. If the segments ofIi are
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αi
1, ..., α

i
t thenI =

m
⋂

i=1

Ii is a left-oriented intersectiont-interval if ∀j ∈ {1, ..., t} :

m
⋂

i=1

αi
j

is a left-oriented intersection interval. Furthermore, ifIm =

t
⋃

i=1

[sm
i , fm

i ), Im+1 =

t
⋃

i=1

[fm
i , fm

i + l),

and∀i ∈ {1, ..., t} :

m−1
⋂

i=1

αi ∩ [fm
i , fm

i + l) is a right-oriented intersection interval, then

I ′ =

m−1
⋂

i=1

Ii ∩ Im+1 is aright-orientedt-interval.

Theorem 2.1: Let d be a square number. For any randomized algorithmR , there exists

an intervald-stacking construction. Furthermore, the left-oriented intersection intervalI
and the right-oriented intersection intervalI ′ as defined in the proof of this theorem are

of length
√

d.

Proof. First let I1, I2, I3, · · · , I√d be intervals as in Figure 2.1 a), namely,Ii = [si, fi)

for 1 ≤ i ≤
√

d, wheresi = d − (i − 1) ·
√

d andfi = 2d − (i − 1) ·
√

d for 1 ≤
i ≤

√
d. Furthermore, letpi denote the conditional probability ofR schedulingIi and

qi the unconditional probability, assuming that the intervals are presented in the order

1, 2, ...,
√

d.

The adversary alters the input design, depending on the structure ofR . Either each inter-

val fromI1, I2, I3, · · · , I√d is scheduled “too greedily” or at least one of them is scheduled

with “diminishing probability” . By scheduling “too greedily” we mean that each interval

is scheduled with unconditional probability of at least1/
√

d. By “diminishing” probabil-

ity we mean that at least one interval is scheduled with unconditional probability less than

1/
√

d.

“Too greedily”: If R schedules each interval fromI1, . . . , I√d with unconditional proba-

bility of at least1/
√

d, then the probability of scheduling some intervalIi ,1 ≤ i ≤√
d, is one, since

∑

√
d

i=1 qi = 1.

Settingm =
√

d, the left-oriented intersection interval

I :=

√
d
⋂

i=1

Ii = [s1, f√d),

is of lengthf√d − s1 = 2d − (
√

d − 1) ·
√

d − d =
√

d.

In this case, the adversary designs the input instance such that two disjoint intervals,

J1 andJ2, are presented afterI1, . . . , I√d (Figure 2.1 a)), both overlapping[s1, f√d).

SinceR schedules intervalsI1, . . . , I√d with probability1, there is zero probability
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of schedulingJ1 andJ2. The expected number of intervals inσR is in this case,1

vs. 2 in the optimal schedule.

“Diminishing Probability”: In the second case, there existsj ≤
√

d, such thatIj is

scheduled with unconditional probability less than1/
√

d. Let m be the first such

interval in the order1, ...,
√

d. In this case, the adversary takes the input design into

different direction. He presentsIm+1 = [fm, fm + d) after Im as in Figure 2.1 b)

and no more intervals. The expected number intervals inσR becomes a sum of three

terms: The probability of scheduling some intervalI1, ..., Im−1, the probability of

schedulingIm and the probability of schedulingIm+1. If p′ is the probability of

R scheduling some intervalI1, ..., Im, the expected number of intervals inσR is

p′ +(1− p′) · pm+1 +1/
√

d ≤ 1+1/
√

d, wherepm+1 is the conditional probability

of schedulingIm+1. The number of intervals in the optimal schedule is, on the other

hand,2, given byIm andIm+1. The right-oriented intersection interval

I ′ :=

m−1
⋂

i=1

Ii ∩ Im+1 = [fm, fm−1)

is of lengthfm−1 − fm = 2d − ((m − 1) − 1) ·
√

d − (2d − (m − 1) ·
√

d) =
√

d.

It is interesting to look at how Theorem 2.1 changes if the interval I1 = [d, d +
√

d)

is of length
√

d but every other interval is of lengthd in the proof. If we assume that

d is a fourth power of an integer, then the intervalsI1, I2, ..., I 4
√

d are altered, such that

Ii = [si, fi) = [
√

d − (i − 1) · 4
√

d, d +
√

d − (i − 1) · 4
√

d) for all 2 ≤ i ≤
√

d. The

left-oriented intersection interval

I :=

4
√

d
⋂

i=1

Ii = [s1, f 4
√

d) (2.1)

becomes an interval of lengthf 4
√

d − s1 = d +
√

d − ( 4
√

d − 1) · 4
√

d − d = 4
√

d. If m

in Theorem 2.1 is refined such that ifIm is the first interval inI1, I2, ..., I 4
√

d, scheduled

with unconditional probability less than1 + 1/ 4
√

d (if the structure ofR is such) then

Im+1 = [fm, fm +
√

d) and the right-oriented intersection interval

I ′ :=

m−1
⋂

i=1

Ii ∩ Im+1 = [fm, fm−1) (2.2)
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is an interval of length

fm−1 − fm = d +
√

d − (m − 1 − 1) · 4
√

d − (d +
√

d − (m − 1) · 4
√

d) =
4
√

d.

We state this as a corollary.

Corollary 2.1: Let d be a fourth power of an integer. For a givenISP with intervals

of lengthd, except for the first interval presented of length
√

d, there exists an interval√
d-stacking construction. Furthermore, the intervalsI andI ′ as defined in Equations 2.1

and 2.2 are of length4
√

d.

Theorem 2.1 and Corollary 2.1 can be extended fortISP .

Theorem 2.2: Assume that onlinetISP with segments of square lengthd is given as

well as a randomized algorithmR . Then there exists at-intervald-stacking construction.

Furthermore, the left-oriented intersectiont-intervalI and the right-oriented intersection

t-intervalI ′ have segments of length
√

d.

If we viewd in Theorem 2.1 of this chapter as a relative length, then for all input instances,

where the intervals are of same length, and any randomized online algorithmR , there

exists an input instance, such that the expected number of intervals inσR is 1 + 1/
√

d

vs. 2 in the optimal schedule. The adversary needs no more than an area of length three

to construct this input, since it uses an area of length no more than3d in the proof of

Theorem 2.1. In other words, for a given number0 < δ, there exists an input instance,

such that the performance ratio is at least2
1+δ

.

2.2 ISP with Unit Intervals

This section deals withISP where the intervals are of unit length. We prove that no

randomized algorithm has competitive ratio less than2. In terms of depth, these lower

bound are2 − 1
τ
, whereτ is the depth.

2.2.1 Randomized Lower Bounds

By viewing the lengthd, from last section, as a relative length we get the followingtheo-

rem (Yao, 1977).

Theorem 2.3: If R is a randomized algorithm forISP with intervals of same length,

thenρR ≥ 2.
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Proof. Assume thatR is a randomized algorithm for onlineISP with intervals of same

length andd a square number. By Theorem 2.1 there exists an input instance, such that

the expected number of intervals inR is 1+1/
√

d vs. 2 from the optimal schedule. Then

ρR ≥ sup
d

2

1 + 1√
d

= 2

Similar result can be obtained with Yao’s Minimax Theorem. The results are somewhat

stronger because they relate the lower bound directly to theclique size (depth) of the

interval graph induced by theISP instance.

Theorem 2.4: If τ is the depth ofISP with unit intervals andR is an online randomized

algorithm, thenρR ≥ 2 − 1
τ
.

Proof. Considerm instances ofISP with depth ofm as in Figure 2.1 b). For the first

instancem = 1, thenm = 2 and so on. The first instance consists only ofI1, the next one

of I1, I2 andI3 (I2 andI3 being disjoint), thenI1, I2, I3 andI4 (I3 andI4 being disjoint),

... and the last one ofI1, I2, ..., Im, Im+1. Assume that each instance is presented with

probability1/m. The expected number of intervals in the schedule which the adversary

outputs is
1

m
+

m
∑

j=2

1

m
· 2 = 2 − 1

m
.

A deterministic algorithm,D1 , which schedulesI1, outputs a schedule withE[σD1
] =

m · 1/m = 1.

A deterministic algorithm,D2 , which schedules one of the intervalIk where2 ≤ k ≤
m − 1, outputs a schedule with expected number of intervals at most

k−1
∑

i=2

1

m
+

2

m
+

m
∑

i=k+1

1

m
= 1 .

This is becauseD2 schedules at most two intervals whenm = k but otherwise at most

one.

A deterministic algorithm,D3 , which schedulesIm and rejects all other intervals in

the cliqueI1, . . . , Im−1, outputs a schedule with expected number of intervals at most
1

m
· (m − 2) +

2

m
= 1.

The competitive ratio of any randomized algorithm is therefore at least2 − 1

m
.
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The theorem above gives us in particular a lower bound for anISP is 1.5 if the depth is

two and12
3

if the depth is three.

2.2.2 Randomized Upper Bound when Depth is Two.

Algorithm 2.1: Assume an onlineISP with maximum depth of two is given. A ran-

domized algorithm is defined as follows.

1. If the interval does not overlap any previously presentedinterval, schedule it with

probability2/3 and with probability1/3 not.

2. Schedule interval greedily if it overlaps a previously presented interval.

Algorithm 2.1 splits intervals into four groups,1, 2, 3 and4. We denote the number of

interval in groupi by ni. Because the depth is two and each interval is a unit interval,

then no interval can overlap more than two intervals. A presented interval which does

not overlap a previously presented interval is scheduled with probability2/3. Let these

intervals be in group1 as well as every other interval scheduled with probability2/3, by

Algorithm 2.1.

If a presented interval intersects a previously presented interval, then it can overlap one

or two previously presented intervals. Presented intervals which intersect only one previ-

ously presented interval are either scheduled with probability 2/3 or 1/3, as in Figure 2.2.

Some of them are therefore in group1. Let the ones that are scheduled with probability

1/3 be in group2.

When other intervals are presented, they intersect two previously presented intervals.

Therefore, they must overlap intervals from either group1 or group2. Intervals which

overlap two previously presented intervals from group2 are in group3. They are sched-

uled with probability2/3 · 2/3 = 4/9.

Intervals which intersect two previously presented intervals but are not in group3 are

in group4. Since the depth is two, no interval in group4 can intersect interval from

group3 or 4. By definition of group4, an interval in group4 must either intersect two

intervals from group1 or one from each of groups1 and2. This means that they are

either scheduled with probability,1/3 · 1/3 or 1/3 · 2/3, less than1/3. If we order them

by decreasing left endpoints, then two adjacent intervals with respect to that order, are

seperated by chains of intervals, such as in Figure 2.3. Eachof these chains are seperated

from the rest of the input by two intervals from group3, presented after each interval in

the chains. Because of this, the first interval presented in the chain, does not intersect
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any other interval, presented prior to its arrival, and is therefore in group1. Therefore,

n1 ≥ n4 + 1.

I
I ′

I ′′

Figure 2.2: The intervalsI, I ′ andI ′′ are presented in this order. This picture demonstrates
how Algorithm 2.1 groups these intervals.I andI ′′ fall into group1 but I ′ into group2.

Theorem 2.5: Algorithm 2.1 is strongly3/2-competitive for onlineISP with unit inter-

vals and depth two.

Proof. Without a loss of generality, we can assume that the intersection graph is con-

nected. This means that the input instance is a chain of unit intervals as in Figure 2.3. If

n is the number of intervals, the number of intervals in the optimal schedule is at most
⌈n

2

⌉

≤ n + 1

2
. We group the intervals in the input instance according to the probability

by which Algorithm 2.1 schedules them, according to the remarks above. Let the number

of intervals in groupi ∈ {1, 2, 3, 4} beni.

The expected number of intervals in the scheduele which Algorithm 2.1 outputs is there-

fore at least

2

3
· n1 +

1

3
· n2 +

4

9
· n3 ≥

1

3
· (n4 + 1) +

1

3
· n1 +

1

3
· n2 +

4

9
· n3 ≥

n + 1

3
.

This proves that the competitive ratio of Algorithm 2.1 is3/2.

· · ·

Figure 2.3: Without a loss of generality in the proof of Theorem 2.5, the intersection
graph of the instance is connected.
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2.3 ISP with Intervals of Two Lengths

2.3.1 Deterministic Upper Bounds

A deterministic algorithm is bound to have bad competitive ratio for onlineISP . This is

because the adversary can determine which intervals are scheduled and which not when

he designs the input. Therefore we do not expect a deterministic algorithm to do better

thanFirst-Fit, which schedules intervals whenever the resource is free. In Theorem 2.7

we will prove this.

Theorem 2.6: First Fit isd+1-competitive for onlineISP with intervals of length1 and

d.

Proof. Each interval scheduled by First-Fit can overlap at mostd + 1 intervals in the

optimal solution.

Allowing d to become1 in Theorem 2.6 we get

Corollary 2.2: First Fit is 2-competitive for onlineISP where intervals are of unit

length.

Next theorem shows that no deterministic algorithm gains better bound than First Fit.

Theorem 2.7: Any deterministic algorithm for onlineISP with intervals of lengthd and

1 has a competitive ratio at leastd + 1.

Proof. Let a deterministic algorithmD be given. For simplicity we assume thatd ∈ Z+.

The adversary presentsd+2 disjoint intervals in the order of increasing left endpoints,I1,

..., Id, Id+1, Id+2, each of lengthd, separated by unit space, in this order. The adversary

knows exactly which intervals are scheduled byD and which not. IfD schedules no

interval, then there is nothing left to prove.

If on the other handD schedules some intervalIk, k ≤ d + 1, then the adversary alters

the input instance. The coordinate system is then shifted sothatIk = [0, d). The intervals

Ik+1, Ik+2, ..., Id+, Id+2 are altered as follows:Ik+1 = [−0.5, 0.5), Ik+2 = [0.5, 1.5), ...,

Id+1 = [−0.5 + d − k, 0.5 + d − k) andId+2 = [−0.5 + d − k + 1, 0.5 + d − k + 1).

SinceIk+1, Ik+2, ...,Id+1, Id+2 overlapIk, D cannot accept any interval after acceptingIk.

Therefore,D accepts only a single interval. The optimal schedule consists of all intervals

exceptIk. This proves that any deterministic algorithm isd + 1-competitive.
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Ik

Ik+1 Ik+2 Id+2· · ·

Notice that in Theorem 2.7, the intervals are presented in order of increasing endpoints.

The adversary in Theorem 2.7 has the property of beingtransparent(Halldórsson &

Szegedy, 1992).

2.3.2 Randomized Lower Bound

Theorem 2.8: Any randomized online algorithm forISP has a competitive ratio at least

4, where the intervals are of two possible lengths,1 andd ≫ 1.

Proof. Assume that a randomized algorithmR is given. Letd be a square number. By

Theorem 2.1, there exists an intervald-stacking construction.

Depending on the structure ofR the adversary can design an input instance such that,

there exists a left-oriented intersection intervalI or a right-oriented intersection interval

I ′, as defined in the proof of Theorem 2.1, both of length
√

d.

Left-oriented intersection interval. The probability thatR schedules some intervalIi,

1 ≤ i ≤
√

d, is one (see Figure 3.1 a)). The intersection intervalI =

√
d
⋂

i=1

Ii is an

interval of length
√

d. The adversary adds
√

d + 1 disjoint intervals to the input, all

intersectingI. By selectingd ≥ 9, thenρR ≥ 4/1 = 4.

Right-oriented intersection interval. The unconditional probability of schedulingIm =

[sm, fm) is less than1/
√

d. After presentingIm, the adversary presentsIm =

[fm, fm + d).

Let p′ be the probability thatR schedules some intervalIk, 1 ≤ k ≤ m − 1, and

pm+1 be the conditional probability thatR schedulesIm+1, (see Figure 1.1 b)). The

expected number of intervals inσR is at mostp′ + (1 − p′) · pm+1 + 1/
√

d as in

proof of Theorem 2.1. The expected number of intervals in theoptimal schedule is

on the other hand2 sinceIj andIj+1 are disjoint.

Therefore,
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ρR ≥ sup
d

2

p′ + (1 − p′) · pm+1 + 1/
√

d
=

2

p′ + (1 − p′) · pm+1
. (2.3)

By the final remarks in Section 2.1, the adversary can use an area of length three to

designd-interval stacking construction, resulting in an optimal schedule of weight

2 versus1 + δ of σR, where0 < δ.

If m⋆ = max{i ∈ N | 1

3
·
√

d ≥ i} thenm⋆ represents the number of such designs,

which can be constructed by the adversary, on the right-oriented intervalI ′ of length√
d. Assuming that the adversary decides to playm⋆ of these games, the num-

ber of intervals inσR on the area covered byI ′ is (1 − p′)(1 − pm+1)m
⋆(1 + δ).

Here (1 − p′)(1 − pm+1) is the probability of scheduling none of the intervals

I1, ..., Im−1, Im+1.

The competitive ratio must therefore be at least

ρR ≥ sup
d,m⋆,δ

2m⋆

p′ + (1 − p′)pm+1 + 1/
√

d + (1 − p′)(1 − pm+1)m⋆(1 + δ)

=
2

(1 − p′)(1 − pm+1)
. (2.4)

When comparing the inequalities 2.3 and 2.4, it is convenient to usep = p′ + (1 −
p′)pm+1. Then 2.3 becomesρR ≥ 2/p and 2.4 becomesρR ≥ 2/(1 − p). The

competitive ratio must be at leastmin
p
{max{2/p, 2/(1 − p)}}. Notice that2/p is a

strictly decreasing function ofp and2/(1 − p) a strictly increasing function ofp.

These functions intersect inp = 1/2 and because of thatρR ≥ 2/(1/2) = 4.

2.3.3 Randomized Upper Bound

Algorithm 2.2: Let ISP be given, where the intervals of length1 andd. A randomized

algorithm for this problem is defined as follows.

1. Schedule unit intervals greedily.

2. Schedule intervals of lengthd directly with probability1/2 and virtually with prob-

ability 1/2, if the resource is in free.

3. Do not schedule intervals of lengthd if they overlap virtually scheduled intervals.
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In order to prove that Algorithm 2.2 is4-competitive we use the Bucket Method. The

weights are assigned in the following fashion.

1. If I ∈ S is a unit interval thenw(I) is assigned evenly onto eachJ ∈ σ⋆. This

means that if a unit interval overlaps two intervals in the optimal schedule, then

weight of1/2 is assigned to each. If it overlaps only oneJ ∈ σ⋆ then the weight of

1 is assigned toJ .

2. If I ∈ S is an interval of lengthd thenw(I) is assigned onto eachJ ∈ σ⋆, of length

d.

3. If I1 is a unit interval, andI2 is of lengthd, thenI1 is a terminal intervalof I2 if I2

overlaps one endpoint ofI1. Assign weights evenly from segments of lengthd onto

its terminal intervals inσ⋆. Since one interval can have only two terminal intervals

then either the weight of1/2 or 1 is distributed to a terminal interval.

Theorem 2.9: Algorithm 2.2 is4-competitive forISP where the intervals of length1

andd.

Proof. If J ∈ σ⋆, the algorithm can treatJ in four different ways, depending on the order

of which the intervals are presented.

1. The resource is free. In this case the expected weight ofbucket(J) is at least1/2.

2. Interval of length 1 is presented prior to J and overlaps it. In this case the

expected weight ofbucket(J) is at least1/2 · 1/2 = 1/4.

3. J is of length1 and an intersecting intervalI of lengthd is presented prior toJ .

If J is a terminal interval foJ then the expected weight ofbucket(J) is 1/2 · 1/2.

AssumeJ is not a terminal interval ofI. With probability 1/2, I is scheduled

virtually. EitherJ is scheduled greedily or another overlapping unit intervalarrives

before it, scheduled greedily. In this case the expected weight of bucket(J) is at

least1/2 · 1/2 = 1/4.

4. J is of lengthd and an overlapping interval of lengthd is presented prior toJ .

In this case the expected weight is1/2 · 1/2 = 1/4.

Since 1-4 occurs with probability1 and in each case the expected weight ofbucket(J) is

at least1/4, the algorithm is4-competitive.
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2.4 ISP with Parameter n

The parametern, the number of intervals in the input instance, is an interesting parameter.

It is interesting to see that the lower bound for deterministic algorithms and randomized

algorithms are the same.

2.4.1 Deterministic Lower Bound

Notice that in the proof of Theorem 2.7, there exists an inputinstance for each determin-

istic algorithm, such it schedules no more than a single interval vs.d + 1 intervals in the

optimal schedule. In terms ofn, this ratio isn − 1. Therefore, we have the following

corollary.

Corollary 2.3: Any deterministic algorithm has a competitive ratio at least n− 1, both if

n is known by the algorithm in advance or not.

As in Theorem 2.7, this result does hold when the intervals are presented in order of

increasing endpoints.

It is surprising to see that any randomized algorithm has a competitive ratio at leastΩ(n).

In order to do so we apply the Yao’s Minimax Theorem.

2.4.2 Randomized Lower Bound

Theorem 2.10: Any online randomized algorithm forISP has a competitive ratio at

leastn
4
, whenn is not known in advance.

Proof. Let the length of the intervals be2n−1, ... ,21, 20, presented in that order. The

nature of the intervals are such that each interval is longerthan the total length of the

intervals that follow.

An interval can either intersect none of the intervals that follow or all of them. This is the

reason why the adversary can make each interval „good“ or „bad“. An interval isgood

if it does not overlap any other interval that follow. On the other hand an interval isbad

if it overlaps all the intervals that follow. The adversary makes each interval bad with

probability1/2 and good with probability1/2. This defines a probability distribution on

input instances withn intervals.
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Assume thatR is a randomized algorithm and the adversary designs a randominput

instance as above. IfR is to have a lower competitive ratio thann it must accept at least

one interval.

The number of good intervals presented before a bad intervalis presented is a geometric

random variable, since each interval is good with probability 1/2 and bad with probability

1/2. The expected number of good intervals presented before a bad one is presented is

therefore 1
1/2

= 2. This is also true for each subsequence of intervals in the input. This

is because each interval is good or bad, independent of otherintervals. In particular,

this holds for the intervals thatR attempts to schedule. Therefore, the number of good

intervals accepted byR , before it accepts a bad one, is also a geometric random variable

with expected value2. This means thatE[σR] ≤ 2.

On the other hand, the expected number of intervals in the optimal schedule isn/2, since

the expected number of good intervals isn/2. The competitive ratio ofR is therefore at

leastn/4.

This shows that any randomized algorithm has a competitive ratio at leastn/4.

2.5 ISP with Intervals of Various Lengths

We assume that∆ is known in advance by the algorithms in this section. We demonstrate a

randomized algorithm which isO(log∆)-competitive. This bound is tight for randomized

algorithms by Corollary 2.4. On the other hand every deterministic algorithm isΩ(∆)-

competitive.

2.5.1 Deterministic Lower Bound

The following theorem gives us lower bound in terms of∆ for deterministic algorithms.

If we let d = ⌈∆⌉ in Theorem 2.7, we get the following results.

Theorem 2.11: Any deterministic online algorithm has a competitive ratioat leastΩ(∆)

for ISP , when∆ is known in advance.

Notice that the intervals in the input instance in Theorem 2.7 are ordered by increasing

left endpoints. The results do therefore hold for the version of the problem where the

intervals are presented in increasing left endpoint order.
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Notice furthermore that the adversary uses only intervals of length1 and∆ to design the

input instance.

2.5.2 Randomized Lower Bound

Let ∆ be the ratio between the shortest and the longest segment. Wecan simply observe

that⌈log ∆⌉ = Θ(n) in the proof of Theorem 2.10.

Corollary 2.4: Any online randomized algorithm forISP has a competitive ratio at least

Ω(log ∆).

2.5.3 Randomized Upper Bound

Theorem 2.12: There exists a randomized algorithm which isO(log ∆)-competitive for

ISP where∆ is known in advance.

Proof. Assume that the shortest intervals are of length1 and the longest one of length

∆. We design the randomized online algorithmR as follows. First we split the possible

intervals in the inputS into groups,Gi, wherei = 1, . . . , ⌈log ∆⌉. In the first group there

are intervals of length between1 and2. In groupi the intervals are of length2i−1 to 2i.

Let g = 1
⌈log ∆⌉ . Each groupGi is selected with probability1/g.

Intervals from this group are then scheduled greedily but intervals from other groups

rejected automatically. First-Fit (FF ) is 3-competitive on the selected group by Theorem

2.6. If |σ⋆| is the size of the optimal schedule and|OPT (Gi)| the size of the optimal

schedule on groupGi, then|OPT (Gi)| ≤ 1
3
· |FF (Gi)| and

|σ⋆| ≤
⌈log ∆⌉
∑

i=1

|OPT (Gi)| ≤
⌈log ∆⌉
∑

i=1

1

3
· |FF (Gi)| =

⌈log ∆⌉
3

·
⌈log ∆⌉
∑

i=1

1

⌈log ∆⌉ · |FF (Gi)|

=
⌈log ∆⌉

3
·
⌈log ∆⌉
∑

i=1

E[R(Gi)] =
⌈log ∆⌉

3
· E[σR].

This means thatR is O(log∆)-competitive.
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2.6 OnlinePISP

2.6.1 Different Online Scheduling Models

Online computation has been criticized to for being pessimistic and unrealistic. This is

mainly because algorithms are compared to adversaries withunlimited computational ca-

pacity on a worst case input. The competitive ratio is therefore perhaps not as informative

as it should be. Two algorithms can have the same competitiveratio. Both do very badly

for a particular instance but one of them performs better in practice.

In paging (Chrobak & Noga, 1998), there are two known deterministic algorithms, LRU

and FIFO that are stronglyk-competitive. In practice, however, LRU performs much

better. We can consider our randomized algorithm in Theorem2.12. Each solution outputs

a solution with very little variance, with respect to lengths. The algorithm is not likely to

take advantage of easy input instances. This is because it always restricts it schedule to

intervals from a single group.

This has been a motivation for different online scheduling models. Either the algorithm is

allowed to know more or the adversary is restricted in some way. Shortcomings of com-

petitive analysis and possible improvements of its definitions can be found in the paper

(Koutsoupias & Papadimitriou, 2000). This is a motivation to consider other scheduling

models forISP . An onlinePISP is the problem where the algorithm is allowed to look

ahead into the future. To be more precise we assume that the algorithm knows the inter-

vals in the problem as well as the order which they are presented. What the algorithm does

not know is the terminal point, the point where the presentation stops and the performance

ratio is calculated.

2.6.2 Randomized Lower Bound

I1

I ′
1 I ′′

1

I2 · · ·
Im

I ′
m I ′′

m

Figure 2.4: OnlinePISP . The intervals are presented in the orderI1, I2, ..., Im. In this
figure, I2 is scheduled with probability less than2/3 but I1 andIm with probability at
least2/3.

Theorem 2.13: Any online algorithm has a competitive ratio of at least1.5 for online

PISP , when the intervals are of unit length.
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Proof. Let R be a randomized algorithm. Consider onlinePISP where the intervals, in

Figure 2.4 are presented in the order:I1, I2, ... ,Im, whereIi = [2i, 2i + 1). The intervals

are divided into two groups depending on the probability that R schedules them. In the

first group are those who are scheduled with less probabilitythan2/3 and in the other

are those scheduled with probability at least2/3. No more intervals are presented, which

overlap the ones in the first group. On the other hand, for eachIj = [2j, 2j + 1), in the

second group, two intervalsI ′
j = [2j − 0.5, 2j + 0.5) andI ′′

j = [2j + 0.5, 2j + 1.5) are

presented, as in Figure 2.4. Two intervals, which overlapIj , and no other interval in the

instance.

Let the number of intervals in the first group ben1. The expected number of intervals in

σR is at most2/3·n1+2/3·(m−n1)+1/3·2(m−n1) = 4/3·m−2/3·n1 = 2/3(2m−n1).

On the other hand the optimal schedule containsn1 +2(m−n1) = 2m−n1. This proves

that the competitive ratio ofR is at least1.5.
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Chapter 3

2-Interval Scheduling Problems

In this chapter we analyze2ISP . For simplicity we assume that2ISP contains intervals

as well. An interval in an input instance of2ISP is a2-interval, with one segment dis-

joint from every other2-interval, in the input instance. In Section 3.1. we show that every

algorithm has a competitive ratio at least3, when segments are of unit length. Secondly,

we show that for the version of the problem with depth2, every algorithm has a com-

petitive ratio at least11/6. Finding an algorithm with lower competitive ratio than First

Fit remains an unsolved problem. We give an algorithm with a competitive ratio at least

3.375. In Section 3.2. we analyze the version of the problem with segments of length1

andd ≫ 1. We give an8-competitive algorithm for this problem. Furthermore, we prove

that any algorithm has a competitive ratio at least6. In Section 3.3 we analyze the version

of the problem where the segments are of various lengths with∆ being the maximum

ratio between the shortest and the longest segment. We demonstrate an upper bound of

O(log2 ∆) for this problem, when∆ is known in advance andO(log2+ǫ ∆) when∆ is not

known.

3.1 2ISP with Intervals of Unit Length

3.1.1 Randomized Lower Bounds

Theorem 3.1: Any online randomized algorithm for the2ISP with unit lengths has a

competitive ratio at least3

Proof. Assume that a randomized algorithmR is given. Letd be a square number. By

Theorem 2.2 there exists a2-intervald-stacking construction.
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Depending on the structure ofR , the adversary can design an input instance such that,

there exists a left-oriented intersection intervalI or a right-oriented intersection interval

I ′, as defined in the Section 2.1, with segments of length
√

d.

Left-oriented intersection 2-interval. The probability thatR schedules some2-interval

Ii = [d− (i− 1) ·
√

d, 2d− (i− 1) ·
√

d)∪ [12d− (i− 1) ·
√

d, 14d− (i− 1) ·
√

d),

1 ≤ i ≤
√

d, is one (see Figure 3.1 a)). The intersection2-intervalI =

√
d
⋂

i=1

Ii is

a 2-interval with both segments of length
√

d. The adversary adds four disjoint

intervals of lengthd to the input, two which intersect the left segment ofI (J1 and

J2) and two which intersect the right one (J3 andJ4). ThencR ≥ 4/1 = 4 > 3.

Right-oriented intersection2-interval. Assumem is the lowest number in,1, ...,
√

d,

such that the unconditional probability of schedulingIm = [sm, fm) ∪ [sm, fm) is

less than1/
√

d. After presentingIm, the adversary presentsIm+1 = [fm, fm + d)∪
[fm, fm + d).

Let p′ be the probability thatR schedules some2-intervalsIk, 1 ≤ k ≤ m− 1, and

pm+1 the conditional probability thatR schedulesIm+1 (see Figure 3.1 b)). After

presentingIm+1 the adversary has two options.

i) Present no more2-intervals. The expected number of2-intervals inσR is then

at mostp′ + (1 − p′) · pm+1 + 1/
√

d as in Theorem 2.1. The optimal weight

of the input is on the other hand2, sinceIm andIm+1 are disjoint.

Therefore,

cR ≥ sup
d

2

p′ + (1 − p′) · pm+1 + 1/
√

d
=

2

p′ + (1 − p′) · pm+1
.

If we denote the probability of scheduling some2-interval overlapping

I ′ =

m−1
⋂

i=1

Ii ∪ Im+1 with p, then

cR ≥ 2

p′ + (1 − p′) · pm+1
= 2/p . (3.1)

ii) Use the area covered by both left and right segment ofI ′ to present two interval√
d-stacking constructions. The area covered by a single segment of I ′ is of

length
√

d. By corollary 2.2, there exists a an intersection intervald-stacking

construction with either a left-oriented intervalJ , or a right-oriented intersec-
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tion interval. The expected number of2-intervals inσR is in this case at most

p + (1 − p) · (1 + 1/ 4
√

d) · 2 + 1√
d
. This is because the expected number of

2-intervalsσR is the unconditional probability ofR scheduling the2-interval

Im, plus the probability of scheduling some interval overlapping I ′ and the

expected number of intervals in thed-stacking constructions.

The optimal weight is on the other hand4 since both intervald-stacking con-

structions include2 disjoint intervals. Therefore,

cR ≥ sup
d

4

p + (1 − p)(1 + 1/
4
√

d) · 2 + 1√
d

=
4

p + (1 − p) · 2 =
4

2 − p
.

(3.2)

Comparing 3.4 and 3.2 we get thatcR ≥ min
p

(max{2

p
,

4

2 − p
}). Notice that2/p is a

strictly decreasing function and4/(2 − p) is a strictly increasing one. The solution to

minp(max{2
p
, 4

2−p
}) = 3 since

2

p
=

4

p + (1 − p) · 2 ⇔ p = 2/3 and
2

2/3
= 3. (3.3)

Therefore,cR ≥ 3.

a) b)

I√d I√d

I√d−1 I√d−1

...
...

I1 I1

I I
J2 J1 J4 J3

Im+1Im+1Im Im

Im−1 Im−1

...
...

I1 I1

I ′ I ′

Figure 3.1: a) Input instance designed by the adversary in the proof Theorem 3.1, in the
case of a left-oriented intersection2-interval. b) Input instance designed by the adversary
in the proof Theorem 3.1, in the case of a right-oriented intersection2-interval.
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The area covered by the input, designed by the adversary for given d in Theorem 3.1, is

14d sinceI1 = [d, 2d) ∪ [10d, 11d) and every2-interval presented afterI1, overlapsI1.

Since the lengthd is relative, the adversary can use an area of length14 to design an input

instance for2ISP with unit segments, where the performance ratio is as close to 3 as

desired. In other words, for a given number0 < δ, there exists an input instance, such

that the performance ratio is at least3
1+δ

.

3.1.2 Search for an Algorithm

Several randomized algorithms were tried for2ISP with unit lengths but the competitive

analyzis of them fell short. As for any online randomized algorithm our aim is prove

upper bounds, at least lower than First Fit (FF ).

Theorem 3.2: FF is 4-competitive.

Proof. For each scheduled2-interval, there are at most four intervals in the optimal sched-

ule that intersect a2-interval scheduled byFF . ThereforeFF is 4-competitive.

Here is an algorithm which was considered as the best candidate for having a competitive

ratio close to3.

Algorithm 3.1: Let S be an instance of an online2ISP with unit segments. When a

2-interval is presented and:

1. the resource is free,schedule it directly with probability2/3 and virtually with

probability1/3.

2. it does intersect a virtually scheduled2-interval with two segments, then do not

schedule it.

3. it intersects a virtually scheduled2-interval with one segment. Schedule it di-

rectly with probability2/3 and virtually with probability1/3.

The following example shows us that the algorithm fails to have competitive ratio3.

Example 1: Consider Figure 3.2. In this online2ISP instance the2-intervals are pre-

sented in the order:I1, I2, J1, J2, J3 andJ4. The expected number of2-intervals in the

schedule of Algorithm 3.1 is2/3 · 1 + 1/3 · 2/3 + (1/3)2 · 4 · 2/3 = 32/27. On the other

hand the optimal schedule has the weight of4. The competitive ratio of the Algorithm 3.1

is therefore at least108/32 = 3.375.
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J1 J1J2 J3 J3J4

I2 I2

I1 I1

Figure 3.2: An input instance which proves that Algorithm 3.1 is at least3.375 competi-
tive. The2-intervals are presented int the orderI1, I2, J1, J2, J3 andJ4.

3.1.3 2ISP with Unit Segments and Depth Two

Recall that online2ISP with unit segments has depth two, if the maximum clique size in

the intersection graph induced by the2-intervals is two. Lower bound for this problem is

proved with Yao’s Minimax Theorem.

Theorem 3.3: The competitive ratio of any randomized online algorithm for 2ISP with

depth2 is at least11/6.

Proof. With probability 2/3 instance consisting of a single2-interval, I1, is presented.

With probability 1/6, instances of Figure 3.3 a) and b) are presented. A deterministic

algorithm must do the same withI1 andI2 on all instances. Deterministic algorithms can

be grouped by how they scheduleI1 andI2. There are three cases.

1. A deterministic algorithmD1 schedulesI1. The expected number of2-intervals in

σD1
is 2/3 + 1/6 + 1/6 = 1.

2. A deterministic algorithmD2 schedulesI2 but not I1. The expected number of

2-intervals inσD2
is at most1/6 · 1 + 1/6 · 4 = 5/6.

3. A deterministicD3 schedules neitherI1 norI2. The expected number of2-intervals

in σD3
is at most1/6 · 3 + 1/6 · 3 = 1.

However, the expected number of2-intervals in the of the optimal schedule is2/3 + 1/6 ·
3 + 1/6 · 4 = 11/6. By Yao’s Minimax Theorem we get that a competitive ratio of a

randomized algorithm is at least11/6.
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a)

J1 J1 J2 J2J3

I2 I2

I1 I1
b) I1 I1

I2 I2I3 I4 I5

Figure 3.3: In Theorem 3.3 Yao’s Theorem, is used with three input instances. With
probability2/3, there is only a single2-interval I1 in the instance. With probability of
1/6 instances in a) and b) are presented. a) The2-intervals are presented in the orderI1,
I2, J1, J2 andJ3. b) The2-intervals are presented in the orderI1, I2, I3 andI4. The
2-intervalsI1 andI2 do have the same status in a and b.

3.2 2ISP Problem with Segments of Different Length

In this section we prove lower bound of6 for 2ISP where the2-intervals can have lengths

1 andd ≫ 1. Finally we give a8-competitive algorithm for this problem.

3.2.1 Randomized Lower Bounds

Im′′+1Im′′

Im′′−1

...

I ′

I ′′
1

J ′′

I ′
m′+1I ′

m′

I ′
m′−1

...

I ′

I ′
1

J ′

Figure 3.4: This picture represents the third option in the proof of Theorem 3.4. In order
to avoid a competitive ratio higher than6, the structure ofR must be such thatJ ′ andJ ′′

are right-oriented intersection intervals, in option iii).

Theorem 3.4: Any online randomized algorithm for2ISP , where the2-intervals are of

lengths1 andd ≫ 1, has a competitive ratio at least6.

Proof. Assume that a randomized algorithmR is given. Letd be a fourth power of an

integer. By Theorem 2.2 there exists a2-intervald-stacking construction.
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Depending on the structure ofR , the adversary can design an input instance such that,

there exists a left-oriented intersection2-interval I or a right-oriented intersection2-

intervalI ′, as defined in the remarks before Theorem 2.2, both with segments of length√
d.

Left-oriented intersection 2-interval. The probability thatR schedules some2-interval

Ii, 1 ≤ i ≤
√

d, is one (see Figure 3.1 a)). The intersection2-intervalI =

√
d
⋂

i=1

Ii is

a 2-interval with both segments of length
√

d. Therefore, the adversary adds2
√

d

disjoint 2-intervals with unit segments, each intersecting one segment of I. By

selectingd > 9, thencR ≥ 2
√

d > 6.

Right-oriented intersection2-interval. Assumem is the lowest number in,1, ...,
√

d,

such that the unconditional probability of schedulingIm = [sm, fm) ∪ [sm, fm) is

less than1/
√

d. After presentingIm, the adversary presentsIm+1 = [fm, fm + d)∪
[fm, fm + d).

Let p′ be the probability thatR schedules some2-intervalsIk, 1 ≤ k ≤ m− 1, and

pm+1 the conditional probability thatR schedulesIm+1 (see Figure 3.1 b)). After

presentingIm+1 the adversary has three options.

i) Present no more2-intervals. The expected number of2-intervals inσR is then

at mostp′ + (1 − p′) · pm+1 + 1/
√

d as in Theorem 2.1. The optimal weight

of the input is on the other2, sinceIm andIm+1 are disjoint.

Therefore,

cR ≥ sup
d

2

p′ + (1 − p′) · pm+1 + 1/
√

d
=

2

p′ + (1 − p′) · pm+1
.

If we denote the probability of scheduling some2-interval inI1, ..., Im−1, Im+1

with p, then

cR ≥ 2

p′ + (1 − p′) · pm+1
= 2/p . (3.4)

ii) The second option is to use the final remarks of Subsection3.1.1. Notice that

segments ofI ′ are both of length
√

d. Therefore, the adversary designs multi-

ple inputs of2-intervals with unit segments, using an area of constant length14

on the area covered by the segments ofI ′. For each of these inputs, the perfor-

mance ratio is3 vs. 1 + δ, where0 < δ. If s⋆ = max{s ∈ N | 1

14
·
√

d ≥ s},

thens⋆ is the number of such inputs, which can be made by the adversary on

the area of length
√

d.
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Therefore,

cR ≥ sup
d,δ

3s⋆

p′ + (1 − p′)pm+1 + 1/d + (1 − p′)(1 − pm+1)(1 + δ)s⋆

=
3

(1 − p′)(1 − pm+1)
=

3

1 − p
. (3.5)

If cR is no more than6, then 3.4 and 3.5 give that1/3 ≤ p ≤ 1/2.

iii) The third option is to use Corollary 2.1 and construct interval
√

d-design on

both segments ofI ′ with intervals of lengthd. Assume first that the structure

of R is such that schedules the intervals in the design “too greedily” (see proof

of Theorem 2.3) on either end. ThenR schedules one interval covering a left-

oriented intersection interval (an area of length4
√

d) with probability 1 (see

proof of Theorem 2.3). In this case the adversary will present 4
√

d + 1 disjoint

unit intervals in the area covered by the left-oriented intersection interval. In

this casecR can be made as large as possible by lettingd → ∞.

We can therefore assume that the structure ofR is such that it schedules the

intervals with “diminishing probability” on both segmentsof I ′ (see proof

of Theorem 2.1). The interval
√

d-design on both segments must therefore

be a right-oriented intersection intervals,J ′ andJ ′′ as in Figure 3.4. This

means that the intervalsI ′
m′ andI ′′

m′′ are scheduled both with unconditional

probability at most1/ 4
√

d. Because the problem is symmetrical for both ends

of I ′, we can assume thatR schedules some interval inI ′
1, ..., I

′
m′ and some

interval inI ′′
1 , ..., I ′′

m′′ with the same probabilityy. Therefore,

cR ≥ sup
d

4

p + (1 − p) · (1 + 1/
√

d) · 2y
=

4

p + (1 − p) · 2y . (3.6)

m′

⋂

i=1

I ′
i and

m′′

⋂

i=1

I ′′
i are both of length at least4

√
d (see Figure 3.4 b)) as Corollary

2.1 suggests.

The adversary can on the other hand design multiple inputs of2-intervals with

unit segments, using an area of constant length14 on the area covered by the

segments ofJ ′ andJ ′′. For each of these inputs, the performance ratio is3

vs. 1 + δ, where0 < δ.

Therefore

41



cR ≥ sup
d,δ

3m⋆ · 2
p + (1 − p)2y + 2 · (1 − p)(1 − y)(1 + 1/d)m⋆

=
3

(1 − p)(1 − y)
. (3.7)

If cR is no more than6, theny ≤ 1/4 by 3.7, since1/3 ≤ p ≤ 1/2. If we

definex = p + (1 − p)y, then 3.6 becomescR ≥ 4

x + (1 − p)y
≥ 4

x + 1
6

and

3.7 becomescR ≥ 3

1 − x
. ThereforecR ≥ max

x

{

3

1 − x
,

4

x + 1
6

}

. By solving

max
x

{

3

1 − x
,

4

x + 1
6

}

, then

3

1 − x
=

4

x + 1
6

⇔ x =
1

2
and3/(1 − 1/2) = 6.

We have shown thatcR ≥ 6.

3.2.2 Randomized Upper Bounds

In this subsection intervals of lengthd arelong and unit intervalsshort.

The following algorithm is named theVirtual Algorithm(VA ) as similar algorithm in the

paper (Lipton & Tomkins, 1994).

Algorithm 3.2: Let S be an instance of an online2ISP where the length of the segments

can be either1 or d. The following algorithm isthe Virtual Algorithm. The algorithm

schedules a presented2-interval with the following rules.

1. The resource is free. Schedule a2-interval greedily if both segments are short.

Otherwise schedule it directly with probability1/2 and virtually with probability

1/2.

2. A presented 2-interval does intersect a virtually scheduled2-interval . If the

2-intervals intersect in such a way that long segments overlap, then do nothing.

3. A presented 2-interval intersects only virtually scheduled 2-intervals with a

short segment. Schedule it greedily if it contains two short segments but otherwise

with probability1/2.
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Competitive Analyzis of the Virtual Algorithm

In order to prove that Algorithm 3.2 is8-competitive with the Bucket Method we need

first to assign weights properly toJ ∈ σ⋆.

If I /∈ σ⋆, J ∈ σ⋆ andI overlapsJ then:

1. w(I, J) = 1/4 if segments of same length overlap, or if a short segment ofI

overlaps a long segment ofJ .

2. J is a terminal2-interval of I, if a long segment ofI overlaps an endpoint of a

short segment ofJ . If J is a terminal2-interval ofI thenw(I, J) = 1/4.

3. w(I, J) = 0 if I overlaps a short segment ofJ with a long segment, andJ is not a

terminal2-interval ofI.

Notice that weight ofI /∈ σ⋆ can at most be assigned to fourJ ∈ σ⋆. Therefore
∑

J∈σ⋆
w(I, J) ≤ w(I) = 1 and weights are assigned properly.

The following theorem tells us thatEVA [bucket(J)] is at least1
8
·w(J) = 1

8
. Theorem 1.1

gives us that this is enough to prove thatVA is 8-competitive.

Theorem 3.5: TheVA is 8-competitive for online2ISP with segments of length1 and

d.

Proof. Assume thatS is an instance of2ISP with segments of length1 andd. We use

the Bucket Method to prove this. Assume that the weights are assigned as in 1-3 above.

Five possibilities can occur whenJ ∈ σ⋆ is presented.

1. The resource is free whenJ is presented. ThenJ will be scheduled with the

probability at least1/2. Therefore the expected weight ofbucket(J) is at least

1/2 · w(J) = 1/2 · 1 = 1/2

2. A 2-interval I is scheduled directly/virtually prior to arrival of J and they

intersect with segments of same length. In this casew(I, J) = 1/4. With prob-

ability 1/2, I is scheduled directly. The expected weight ofbucket(J) is at least

1/2 · 1/4 = 1/8.

3. A 2-interval I is presented prior to arrival of J and intersects a long segment

of J with a short segment. ThenW (I, J) = 1/4. SinceI is scheduled with1/2

the expected weight ofbucket(J) is at least1/2 · 1/4 = 1/8.
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4. A 2-interval I is presented prior to the arrival of J and intersects a short seg-

ment of J with a long segment. If J is a terminal2-interval ofI thenw(I, J) =

1/4. In this case the expected weight ofbucket(J) is at least1/2 · 1/4 = 1/8.

If, on the other hand,J is not a terminal2-interval ofI, thenw(I, J) = 0. Three

scenarios can come up.

a) No 2-interval is presented in betweenI andJ , or 2-intervals which intersect

a long segment ofJ with a long segment. In this case, every2-interval that

comes in betweenJ andI is blocked byI. Therefore, the expected weight of

bucket(J) is at least1/2 · 1/2 = 1/4.

b) A 2-interval,I ′, with two short segments is presented in betweenI andJ and

overlaps the short segment ofJ covered byI. Sincew(I ′, J) = 1/4 andI ′ is

scheduled greedily, the expected weight ofbucket(J) is 1/2 · 1/4 = 1/8.

c) Number of2-intervals with one segment long and the other short are presented

in betweenI andJ , and intersectJ with a short segment as in Figure 3.5. As-

sume that these intervals arem in number. The probability thatJ is scheduled

directly is at most
1

2
·
(

1

2

)m+1

becauseI is scheduled virtually with proba-

bility 1/2, and all the2-intervals presented betweenI andJ , are scheduled

virtually with probability1/2. Since the assigned weight of all these intervals

is 1/4, the expected value of their total assigned weight is
1

2
·

m
∑

i=1

(

1

2

)i

· 1

4
.

The expected weight ofbucket(J) is therefore

1

2
·
(

m
∑

i=1

(

1

2

)i

· 1

4
+

(

1

2

)m+1
)

≥ 1

8
=

1

8
· w(J),

for all m ∈ N .

5. 2-intervals, I ′ and I ′′ are presented beforeJ , which has two short segments,

and I ′ and I ′′ cover both segments ofJ with long segments.

a) No more intervals in betweenI and J are presented or2-intervals that are

blocked. In this case the expected weight ofbucket(J) is 1/2 · 1/2 · 1 = 1/4

sinceI ′ andI ′′ are scheduled virtually with probability1/2 andJ is scheduled

greedily.

b) Two different2-intervals are presented and overlap both segments ofJ with a

short segment. The assigned weight of both of them toJ is 1/4 and both are
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scheduled with probability at least1/2. Because of that the expected weight

of bucket(J) is at least1/2 · 1/2 · 1/4 + 1/2 · 1/2 · 1/4 = 1/8.

c) Greedily scheduled interval is presented in betweenI andJ and overlaps both

segments ofJ . In this case the assigned weight toJ is 1/2 (1/4 from both

segments). The expected weight ofbucket(J) is therefore1/2 · 1/2 · 1/2 =

1/8.

d) All possible2-intervals (not blocked) that are presented in betweenI andJ

intersect one segment ofJ as in 4c). For simplicity assume that this segment is

covered byI ′. The only influenceI ′′ has on the expected weight ofbucket(J)

is to make sureJ is scheduled with probability at least1/2. This case is

therefore identical to 4c).

By 1-5,

EV A[w(bucket(J))] ≥ 1/8 = 1/8 · w(J) .

I

...

J

m =

{







=
1

2
·

m
∑

i=1

(

1

2

)i

· 1

4

} ≥ 1

2

(

1

2

)m+1

Figure 3.5: Case 4c) in the proof of Theorem 3.5. Multiple2-intervals are presented in
between the arrivals ofI andJ , each having one long segment and intersectJ with a short
segment.

3.2.3 The Virtual Algorithm for Two Groups of Segments

Assume that we have a2ISP where segments can either be of length from1 to 2 or d to

2d. Let the first group be theshort groupand the second one thelong group. Segments

from the long group arelong and segments from the short group areshort. For this
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problem we can redefine the Virtual Algorithm (Algorithm 3.2), such that it treats the

segments from the short group as unit segments and the segments from the long group as

segments of lengthd.

If I /∈ σ⋆ andJ ∈ σ⋆, then the following assignment of weights is proper becausethe

weight of each2-interval is assigned to at most six disjoint2-intervals:

1. w(I, J) = 1/6 if I overlapsJ ∈ σ⋆, and segments from the same length group

overlap, or if a short segment ofI overlaps a long segment ofJ .

2. J is a terminal2-interval of I, if a long segment ofI overlaps an endpoint of a

short segment ofJ . If J is a terminal2-interval ofI, thenw(I, J) = 1/6.

3. w(I, J) = 0 if J overlaps a short segment ofJ with a long segment, andJ is not a

terminal2-interval ofI.

Using the proper assignment of weights above we get the following Theorem.

Theorem 3.6: For an online2ISP with segments from a short group and a long group,

defined in this section, the redefinition of the Virtual Algorithm in this section is12-

competitive.

Proof. Assume thatS be an instance of2ISP with segments of length1 andd. Assume

that the weights are assigned as in 1-3 above. This Theorem isproved by using the same

proof as in Theroem 3.5, with the redefinition of long segmentand short segment.

We call this redefinition theRedefined Virtual Algorithm(RVA).

3.3 2ISP with Segments of Various Lengths

In this section we examine2ISP with various lengths. An important factor here is∆,

the ratio between the shortest and the longest segment. We can assume without a loss

of generality that the shortest segment is of length1 and the longest segment of length

∆.

We will examine two cases, when∆ is known in advance and when∆ is not known in

advance.
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3.3.1 ∆ Known in Advance

We can group the first segments of the2-intervals of a given instanceS into ⌈log ∆ − 1⌉
groups. In group⌈log ∆ − 1 ⌉ are the segments of length strictly greater than∆/2 and

less than or equal to∆. In group⌈log ∆ − 1 ⌉ − 1 are segments of length strictly greater

than∆/4 and less than or equal to∆/2 etc. Let the groups beυ1, υ2, ... , υ⌈log ∆−1 ⌉. In

the same fashion we group the second segments of the2-intervals, into the groupsυ′
1, υ′

2,

... ,υ′
⌈log ∆−1 ⌉. These groups are partitions of the first and second segments.

We can combine groups in last paragraph and group the2-intervals of input instanceS

into groups. These groups are symbolized by a⌈log ∆ − 1 ⌉ × ⌈log ∆ − 1 ⌉ matrix Sij.

The entrySmn stands for a group of2-intervals fromS where the first segment is inυm

and the second segment inυ′
n. These grouping defines a partition of the2-intervals of

S.

The next theorem is a direct result of Theorem 3.6.

Theorem 3.7: TheRVA is 12-competitive for each group represented bySnm.

A simple randomized algorithm,R1 , takes advantage of this by picking in advance a sin-

gle group represented bySij. Each group is picked with equal probabilityp =
1

(log ∆)2
,

and2-intervals from it scheduled, usingRVA. Since this algorithm is12-competitive for

each group, the expected number of2-intervals inσR1
is:

E[σR1
] =

⌈log ∆−1 ⌉
∑

i=1

⌈log ∆−1 ⌉
∑

j=1

1

(log ∆)2
· E(RVA(Sij))

≥
⌈log ∆−1 ⌉
∑

i=1

⌈log ∆−1 ⌉
∑

j=1

1

(log ∆)2
· 1

12
· |OPT (Sij)|.

Since
∑

i

∑

j |OPT (Sij)| ≥ |OPT (S)| we get:

⌈log ∆−1 ⌉
∑

i=1

⌈log ∆−1 ⌉
∑

j=1

1

(log ∆)2
· 1

12
· |OPT (Sij)| ≥ 1

(log ∆)2
· 1

12
· |OPT (S)|.

Algorithm R1 is thereforeO(log2 ∆)-competitive.
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Theorem 3.8: R1 is O(log2 ∆)-competitive for2ISP with intervals of various length,

where∆ is known in advance.

3.3.2 ∆ Not Known in Advance

If ∆ is not known beforehand, we can still take advantage of a partition mentioned in

last section. We motifyR1 from last section to get a new randomized algorithmR2 . A

presented2-intervalI is in the same group as a previously presented2-intervalI ′, if the

ratio between the length of the first/second segment ofI andI ′ is between1 and2. If not,

I belongs to a new group.

We can keep track of the longest segment known each time,l and schedule2-intervals in

groupi with probability

ci =
1

ζ(1 + ǫ)((log l)2)1+ǫ/2
=

1

ζ(1 + ǫ)(log l)2+ǫ
where

ζ(x) =
∞
∑

i=1

1

ix
< ∞, if x > 1,

is theRiemann zeta function.

R2 changesl at mostlog2 ∆ times. Because of this, we get a probability distribution on

Sij:

(log ∆)2
∑

i=1

ci ≤
∞
∑

i=1

1

ζ(1 + ǫ/2)i1+ǫ/2
=

1

ζ(1 + ǫ/2)

∞
∑

i=1

1

i1+ǫ/2
= ζ(1+ǫ/2)· 1

ζ(1 + ǫ/2)
= 1.

A 2-interval presented to the algorithm is either in a new group, a selected group or a

rejected one. If it is a new group and no group has been selected, then either its group is

chosen with probabilitypi or not with probability1 − pi.

The algorithmR2 uses the probabilityci to find out with what probability,pi, it needs to

chooseith group when a2-interval from it is presented. Before an2-interval in groupi

arrives the algorithm has to refuse to schedule2-intervals from certain number of groups.

Therefore the algorithm needs to ensure thatci = pi · Πi−1
j=1(1 − pj). Thenp1 = c1

andpi = ci

Πi−1

j=1
(1−pj)

. Notice that0 < pi < 1 does always hold. This can be shown by

induction. Fori = 1 we have thatp1 = c1 < 1. If we assume that0 < pi < 1 for

i = 1, . . . , k − 1 we get
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0 < pk =
ck

Πk−1
j=1(1 − pj)

=
ck

(1 − pk−1) · Πk−2
j=1(1 − pj)

=
ck

(1 − pk−1) · ck−1

pk−1

=
ck

ck−1
· pk−1

1 − pk−1

=

1
ζ(1+ǫ/2)k1+ǫ/2

1
ζ(1+ǫ/2)(k−1)1+ǫ/2

· pk−1

1 − pk−1
=

(

k − 1

k

)1+ǫ/2

· pk−1

1 − pk−1
<

pk−1

1 − pk−1
≤

1
2

1 − 1
2

= 1

since the functionf(x) = x
1−x

has an absolute extreme inx = 1
2
, on the interval

]0, 1].

The probability ofR2 choosing a single group is at leastclog2+ǫ(∆). After selecting a

group as above,R2 usesRVA to schedule the2-intervals in the selected group. For a

given group,Snm, we have:

E[R2(Snm)] ≥ clog2+ǫ ∆ · E[RV A(Snm)]

≥ 1

(log ∆)2+ǫ
· 1

12
· E[OPT (Snm)]. (3.8)

By 3.8,R2 is O(log2+ǫ ∆)-competitive.

Theorem 3.9: R2 is O(log2+ǫ ∆)-competitive for2ISP with intervals of various length,

where∆ is not known in advance.
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Chapter 4

t-Interval Scheduling Problems

4.1 Randomized Lower Bound

Some graphs have the property that they can be represented byintervals, such that for

each vertex there is one and only one half open interval on thereal line, and two intervals

intersect if and only if there is an edge between their vertices. Every complete graphKn

onn vertices can be represented by intervals by assigning the same interval to each vertex

in Kn. Not all graphs can be represented by intervals. The simplest class of such graphs

are cycles,Cn. However they can be represented by2-intervals. This is the motive to the

following definition.

Definition 4.1: A t-interval representationof a graphG is an assignment oft-intervals

to each vertex ofG such that:

a) for each vertexv ∈ G there is one and only onet-interval.

b) for all edges inG, {v, w} ∈ G if and only if thet-interval assigned tov intersects the

t-interval assigned tow.

A graph iss-interval representableif there exists an integers ≥ 0, such thatG has

a s-interval representation. If every segment of thes-intervals in the representation is

a unit interval, the graph iss-unit-interval representableand the representations-unit-

interval representation. If s = 1 then we say that the graph isinterval representable.

Interval numberof a graphG, i(G), is the smallest integers ≥ 0 such thatG is s-interval

representable.

For each graphG there exists as ≥ 0 such thatG is s-interval representable. Griggs and

West (Griggs & West, 1980) give lower bound ofi(G) in terms of number of vertices.
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They show that for any graphG, i(G) ≤ ⌈n
3
⌉. Therefore, every graphG with n vertices is

n-interval representable. This can can be exploited in orderto relatet-interval scheduling

to Online Independent Set Problem(OISP )

An OISP is the problem of finding maximum independent set in a graph, where the

vertices are presented one at a time along with edges to previously presented vertices.

Recall that Theorem 2.10 gives us that the competitive ratioof any online randomized

algorithm is at leastn
4

for onlineISP . By definition ofISP , these lower bound hold for

OISP as well, since interval graphs are a special class of graphs.This fact is a key to

proving lower bound fortISP with unit segments.

Corollary 4.1: Any randomized algorithm forOISP has a competitive ratio at leastn/4.

In order to relateOISP to onlinetISP it is essential to show, thatOISP can be con-

verted bit by bit totISP .

Definition 4.2: A OISP with verticesv1, ..., vn presented in this order can be converted

adaptivelyto tISP if

a) each vertex,vj is represented by one and only onet-interval, Ij, constructed and

scheduled online by some onlinetISP algorithm, beforevj+1 is presented. No

t-interval can be rescheduled or reconstructed.

b) I1, ..., Ij is at-interval representation of the induced subgraphv1, ..., vj .

Theorem 4.1: EveryOISP can be converted adaptively to anISP with unit segments.

Proof. Assume we have aOISP with n verticesv1, ..., vn, presented in this order. Let

A be an online algorithm. We show how each vertexvj can be represented with ann-

interval with unit segmentsIj = (ij1, ..., i
j
n). Thesen-intervals are constructed based only

on previously presented vertices. etc.

We definen intervals, such thatijk = [(j − 1)n +(k− 1), (j − 1)n + k) for all 1 ≤ k ≤ n

and1 ≤ j ≤ n. This means thatI1 = [0, 1) ∪ [1, 2) ∪ · · · ∪ [n − 1, n), I2 = [n, n + 1) ∪
[n + 1, n + 2) ∪ · · · ∪ [2n − 1, 2n). All these intervals are disjoint.

As the vertexvj is presented,Ij is altered, such that if{vj , vk} ∈ G for 1 ≤ k ≤ j−1, then

Ij is redefined, such thatijk = ikj . After Ij has been altered and beforevj+1 is presented,

A makes a decicion whether to scheduleIj or not.

Each vertexvj is then represented by one and only oneIj and there is an edge betweenvj

andvk if and only if Ij andIk intersect.

This proves that eachOISP can be converted adaptively tonISP .
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Theorem 4.2: Any online randomized algorithm fortISP with unit segments has a com-

petitive ratio at leastt
4
.

Proof. We prove this theorem by contradiction. Assume that there exists an algorithm

A with competitive ratio less thant
4

for tISP . If S is an instance ofOISP with n

vertices, then it can be converted adaptively tonISP by Theorem 4.1. This problem

can be solved withA, such that the performance ratio is less thann/4. If we output the

vertices represented by then-intervals inσA, thenS has been solved with performance

ratio less thann/4. This is a contradiction to Corollary 4.1.
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