Online t-Interval Scheduling

Unnar P6r Bachmann

December 19, 2009

v

REYKJAVIK UNIVERSITY

HASKOLINN I REYKJAVIK

Online t-Interval Scheduling

Unnar P6r Bachmann

Master of Science
December 19, 2009

Reykjavik University - Department of Computer Science

M.Sc. Thesis

v

REYKJAVIK UNIVERSITY

HASKOLINN I REYKJAVIK

Online t-Interval Scheduling

by

Unnar P6r Bachmann

Thesis submitted to the School of Computer Science
at Reykjavik University in partial fulfillment
of the requirements for the degree of
Master of Science

December 19, 2009

Thesis Committee:

Dr. Magnus Mar Halldérsson, supervisor
Professor, Reykjavik University

Dr. Bjarni V. Halldorsson
Associate Professor, Reykjavik University

Dr. Hadas Shachnai

Copyright
Unnar b6r Bachmann
December 19, 2009

Online t-Interval Scheduling
by
Unnar b6r Bachmann

December 19, 2009

Abstract

This paper deals with non-preemptive onlitknterval scheduling. At-
interval is a union of half-open intervals (segments). In online scheduling
the t-intervals are presented incrementally and each presamtasdal must

be accepted or lost forever. A presentedterval which overlaps a previ-
ously accepted-interval cannot be accepted. The decision of whether or not
to accept an interval is made without knowledge of the future

Scheduling-intervals has an application in bandwidth allocationnsrais-

sion of continuous-media data, linear resource allocadioth genomic se-
guence similarity. Online scheduling is of increasing imance in a high-
speed world with an uncertain future.

The most famous version of the problem is the interval sclegiproblem
(t = 1). This version has been analyzed both when it is online aflic@f
It has also been analyzed with weighted intervals. Schegltdintervals for
t > 1is on the other hand area covered to lesser extent.

The performance of the algorithm is the ratio between the barnof ¢-
intervals in its output vs. the optimal offline schedule. Hétintervals are
weighted, the performance is the ratio between the totajhtaif these sets.
The maximum ratio, taken over all input instances, is the pefitive ratio.
The competitive ratio is measured with respect to diffefaators. One fac-
tor is the input sizer. Another one is), the ratio between the length of the
longest and the shortest intervals.

Raodbundid ¢-bilaval

eftir
Unnar b6r Bachmann

September 2009

Utdrattur

Pessi ritgerd fjallar um radbundin reiknirit fyrirbilaval. Sammengi half
opinna bila,t ad tolu, kallast-bil. | radbundnut-bilavali er eitt¢-bil birt

i senn. A peim timapunkti parf ad velja bilid, ella glata pyfirf fullt og
allt.

t-bilaval hefur margvislegan hagnytan tilgang: Uthlutun andwvidd, gag-
naflutningi, audlindastjérnun og mynsturgreiningu genagpem. Mikil-
veaegi radbundinna reiknirita er sivaxandi i heimi hrada agswvum framtid.

pekktasta utgafan afbilavali er bilaval ¢ = 1). betta vandamal hefur verid
kannad ad nokkru leiti. Baedi fyrir radbundin reiknirit ogae bilin eru gefin
fyrirfram. Einnig hefur bilaval verid kannad med vegnumuloil. Almennt
t-bilaval er hins vegar mun minna kannaad.

Frammistada reiknirits er maeld med hlutfallinu milli fj@éld-bila i dttaki
0g steersta mogulega bilasafnsins, par sem engin tvo biaskaiNalgu-
narhlutfall er hamark pessa hlutfalls, reiknad yfir 6ll migguinntok. Nal-
gunarhlutfallid er oft metid m.t.t. tiltekinna studla. Daeum slika studla er
n, fjoldi bila i inntaki. Annad deemi e\, hamarks hlutfall milli lengda bila
i inntaki.

To myself.

Acknowledgements

First and foremost | would like to thank Dr. Magnus Mar Halison for helping me
through the work needed to finish this thesis. Secondly, llvbke to thank the staff of
the Computer Science School of Reykjavik University for mvaand supportive attitude.
At last I would like to thank RANNIS for financial assistanaerihg this work .

Vi

Contents

1 Introduction and Principles 2
1.1 Introduction 2
1.2 Onlinet-Interval Scheduling 4
1.3 Applications and PreviousResults b
1.4 Online Scheduling 6
1.5 OurWork e 8
1.6 Definitions. e 9
1.7 TheBucketMethod 11
1.8 Yao’s Minimax Theorem, 14
2 The Interval Scheduling Problem 16
2.1 t-Interval Stacking Construction 16
2.2 ISPwithUnitIntervals 20
2.2.1 Randomized LowerBounds 20
2.2.2 Randomized Upper Bound when Depthis Two. 2 2
2.3 ISP withIntervalsof TwoLengths 24
2.3.1 DeterministicUpperBounds 24
2.3.2 Randomized LowerBound 25
2.3.3 RandomizedUpperBound 26
2.4 ISPwithParameten 28
2.4.1 DeterministicLowerBound 28
2.4.2 Randomized LowerBound 28
2.5 ISP with Intervals of Various Lengths 29
2.5.1 DeterministicLowerBound 29
2.5.2 Randomized LowerBound 30
2.5.3 RandomizedUpperBound 30
26 OnlinePISP 31
2.6.1 Different Online SchedulingModels 31
2.6.2 Randomized LowerBound 31

vii

3 2-Interval Scheduling Problems 34
3.1 2[SP with Intervals of Unit Length
3.1.1 Randomized LowerBounds 34

3.1.2 Searchforan Algorithm 37
3.1.3 2ISP with Unit Segmentsand DepthTwo 38
3.2 2[ISP Problem with Segments of Different Length 39
3.2.1 Randomized LowerBounds 39
3.2.2 RandomizedUpperBounds 42
3.2.3 The Virtual Algorithm for Two Groups of Segments 45
3.3 2ISP with Segments of Various Lengths 46
3.31 AKnowninAdvance a7
3.3.2 ANotKnowninAdvance 48
4 t-Interval Scheduling Problems 50
4.1 Randomized LowerBound 50
Bibliography 53

viii

List of Figures

11

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5

The problem of running aresourceonline.

Figure demonstrating intervéistacking construction.
A figure which demonstrates how intervals are groupedIgpithm 2.1.
The proof of upper bound fdiS P with depthtwo.
Instance which demonstrates lower bound for Pre§iR

Figure demonstrating intersectiiinterval d-stacking construction. . . .
Instance of online/ S P with unitsegments.
Instance of onlin@/SP withdepth2.
Lower bounds demonstrated #JrS P with segments of lengthandd > 1.
Proving that The Virtual Algorithm i8-competitive.

23

Chapter 1

Introduction and Principles

1.1 Introduction

Assume that you are runningrasource online Customers arrive and request to use
it from time to time, for up tot time periods, not necessarily of same length. These
requests must either be accepted or declined. If a requastepted, then ibccupies
the resource for these periods of time. A request cannotdepéed if one or more of its
periods intersect a period of a previously accepted req¥est aim is to accept as many
requests as possible. How will you accomplish that? Consiaerequests in Figure 1.1
arriving in the ordew, b, ¢, d, e, f andg. Theoptimal scheduleontains the requests

f andg. Many interesting questions arise when this problem isdgeoived. Is it wise

to accept the first requestupon arrival? If accepted, it would use the resource for two
periods. The first one is short but the second one is long. fibe period is not likely to
hinder many future requests from being scheduled, but ting p@riod may.

This uncertainty of future events is often characterizedrimdversary The adversary
designs an input with the sole purpose of making your allgoritook bad in compari-
son to the optimal schedule. The comparison is made by edieglthe ratio between
the number of requests your algorithm accepts to the nunflreigaests in the optimal
schedule, which the adversapytputs If an algorithm schedules onlyandd, in the
example in Figure 1.1, vs3 in the optimal schedule, the ratio 32. We call it the
performance ratiolt is ideal for the adversary to keep the ratio as high asiplessThe
power of the adversary is to know your algorithm in advandeenTthe adversary designs
an input instance which leaves the performance ratio asdsgbossible. We take some
other attributes of the adversary for granted, such as utelihpower of calculation. This

means that it can determine the optimal schedule and deterime performance ratio in
advance.

Since the adversary knows the structure of your algorithforbeit designs the input
instance, it is easy to see thataterministic algorithnis not good. The adversary will
first consider a request which uses the resource for a “vey’lbme period. If it is not
accepted by your algorithm, then no other interval will beha input instance. In this
case, the performance ratio is as bad as possible since tineabpchedule contains one
request but your algorithm contains none. If on the othedhgour algorithm accepts
the first interval, a sequence of requests would be addecetmfiut, requesting to use
a fraction of the “very long” time period. These requestsldawot be accepted by your
algorithm.

An obliviousadversary knows the structure of the algorithm but not thewue of its
randomized decisions. For such an adversargnaomized algorithncan hide the out-
come of its choices. Randomized algorithms do thereforeentfad input instance design
harder for an oblivious adversary. In this paper, we willaj&assume that the adversary
is oblivious. Other common types of adversaries areattiegptive offline adversargnd
adaptive online adversaryThe adaptive offline adversary is so powerful that it knows
the outcome of random decisions beforehand. Therfore i idesign is no harder for
adaptive offline if the algorithm is randomized. The adaptiwnline adversary has the
ability to foresee the outcome of random decisions. On therdtand, the adversary is
not allowed to output the optimal schedule. Instead, it lsasutput a schedule made
online, without knowing future events.

c d d c
e f g e f g

Figure 1.1: The resource is requested by custamey ¢, d, e, f andg for two periods
each. These requests arrive online in the same order. Thestcprrives first and before
b arrives we must decide whether to accemir not and so on. If we decide to accept
the requests, d ande cannot be accepted. The optimal schedule is therefofeandg.

1.2 Onlinet-Interval Scheduling

The problem described in the last section is tmdine ¢-Interval Scheduling Problem
(t1SP), which is the subject of this paper. The requests are jobsimtervals No
preemption is allowedT his means that oncetanterval is scheduled, it cannot be ejected
to free the resource. The version of the problem with 1, Interval Scheduling Problem
(IS P), is probably the most analyzed. If thentervals are allowed to haweeight then
these problems become Weightethterval Scheduling Problentl{//.SP) andW ISP
whent = 1. The aim in the non-weighted version, is to schedule as ma)gink ¢-
intervals as possible. In the weighted version the aim isutput the set of disjoint-
intervals of maximum weight. All thé-intervals are jobs carried out on a singdsource
or machine This means that no two overlappingntervals can be scheduled. A related
problem is thénterval Partitioning ProblemIn this problem, multiple (usually identical)
resources can carry out each job. The aim in this problem isséoas few machines as
possible.

Scheduling ot-intervals can be viewed by graph theory as an independeptselem.
Eacht-interval is a vertex and two intervals do intersect if andiyahthere is an edge
between them. Such an intersection graph is calleéhgerval graphor interval graph

if t = 1. Interval graphs are a subclasschibbrdal graphs Chordal graphs are the largest
class of intersection graph which can be colored in a gregslyién. The reason for this is
that chordal graphs havesamplicial elimination ordering The greedy algorithr&impli-
cal Coloringcolors an interval graph optimally using this order (Agisars & Greenlaw,
2007). A greedy algorithm (Kleinberg & Tardos, 2005) finds axiimum independent
set in an interval graph optimally by using it. It starts bhaduling the interval with the
smallest finishing time and rejects every interval thatrseets it. Then it continues until
no interval is left.Dynamic programmingan be used to solve th& /S P (Kleinberg &
Tardos, 2005).

Finding a maximum independent set in-enterval graph is on the other hand more chal-
lenging. It has been shown that finding maximum independeninsat-interval graph

is N P-hard, even whem = 2 (Bafna, Narayanan, & Ravi, 1995). Bar-Yehuda et al.
(Bar-Yehuda, Halldorsson, Naor, Shachnai, & Shapira, 26B8wed that the problem is
APX-hard, even wheh = 2. Subversions of the problem are hard as well. An example
is Strip graphs(Crama & Spieksma, 2008)(Keil, 1992)(Karlsson, 2005). tEaertex in

a strip graph is represented by an interval and a unit integysesenting an equivalence
class. The intervals representing the equivalence classesl disjoint from the intervals
representing the requests.

OnlinetISP is a harder problem because thaterval graph is introduced in steps.

1.3 Applications and Previous Results

The scheduling of-intervals and intervals have numerous applications imgbeworld.

Crew schedulings the problem of assigning flight crews to flights where eaightlhas
a start time, end time and duration. The aim of the calcutaoto find the minimum
number of flight crews needed for fixed amount of flights. Eaighflis described by
an interval and each crew by a machine. The problem is to nueithe number of
crews/machines needed.

Bandwith allocationBar-Noy, Canetti, Kutten, Mansour, & Schieber, 1995) ireawork
is another application. Number of users communicate vivort with a limited band-
width. Each communication request can be thought of as anvaitrequiring a certain
amount of bandwidth (demand). These communications camdifferent priorities. The
competitiveness of the system is with respedhi@ughputor the number of successful
requests. Here, the online version is particularly imparreemption usually improves
the competitive ratio.

Scheduling applications of split intervals are considare@Bar-Yehuda et al., 2002).
Scheduling of continuous-media data occurs where multiangetvers broadcast streams
of data to clients upon request. Requests from the cliem$eanodeled asintervals,
since requests can be split into views and breaks. Anoth@ication considered in that
paper is linear resource allocation. An example of a lineapuarce is disk drive with
contiguous blocks.

In (Goldman, Parwatikar, & Suri, 2000) the importance ofioalinterval scheduling for
high-speed networks is highlighted. An example of this isaaket-switched network
such as the Internet. Streams are passed to nodes/rouiebsfartivard them onward. In
order to do so, they need a scheduling algorithm. A suitdglerithm can be an interval
scheduling algorithm, since each stream can be thoughtani agerval.

Other applications are pattern matching over a set-witervals discussed by Vialette
(Vialette, 2004). The problems are of two kinds. The firstigpeon is to find a given

2-interval pattern and the second is to find the longesterval from a given graph. This
problem arises in molecular biology where a given RNA seaoyndtructure has to be
found in a database.

Bar-Yehuda et al. (Bar-Yehuda et al., 2002) came up wizirapproximation for offline
tW IS P using theLocal Ratio Techniquea method similar to dynamic programming and
introduced in (Bar-Yehuda & Even, 1985) to solve iVeighted Vertex Cover Problem
Similarities between Local Ratio Technique aRdmal-Dual Schemaare the issue of
(Bar-Yehuda & Rawitz, 2001). The paper also givesapproximation algorithm using
the Primal-Dual Method foV/ 1.5 P with intervals of even length.

The Primal-Dual Schema is a linear programming method. Mastbinatorial optimiza-
tion problems can be formulated as an integer programmiaggl@m. Solving a linear
programming relaxation of such a problem does not lead t@silite solution. In the
Primal-Dual Schema the dual complementary slackness tionsliare relaxed. The so-
lution becomes a feasible approximation solution to thgioal problem. Using Primal-
Dual Schema, Bar-Yehuda et al. (Bar-Yehuda & Rawitz, 20@&eg6t-approximation
algorithm for offline weighted-interval scheduling. Each interval was allowed to have a
demandi; € [0,1]. This means that intervals are allowed to overlap if the stitheir
demands is not greater than one.

1.4 Online Scheduling

The traditional assumption that inputs of algorithms arevkm in advance is not always
realistic. An example of this ischeduling In a global economy, the demand is ever
changing and it is vital to remain adaptive to changes in d@imn&n area where this is
relevant is in networks, The mostimportant being the Irder@achingof web documents
is an important problem. Web clients store actively acasgsb data in caches. This is
practical in order to have less stress on the network. Shcedtwork traffic is not known
in advance, the problem is online.

A related problem to this is theaging problemThe paging problem is a problem of two
storage units. One is fast but limited, the other is slow lastvThe goal here is to keep

as many actively requested pages in the fast memory. Aniglgomust decide online
which page to evict from the fast memory. A common deternimalgorithm used to
solve this problem i€ RU. This algorithm evicts the page whose most recent access was
earliest. This algorithm ig-competitive wheré: is the size of the fast memory. A more
complicated randomized algorithm#$(k)-competitive. HereH(k) = 1+ 5 +--- + 1.

A good survey of this and other online problems is in the b&pgroximation Algorithms

for NP-hard ProblemgHocbaum, 1997).

A closely related online problem to interval scheduling artdrval partitioning isschedul-
ing on parallel machineandload balancing In scheduling on parallel machines the on-
line scheduling is as follows: there are machines, given and jobs arrive online. These
jobs are scheduled in order to optimize certain objectivetion. A common objective
function is themakespan This is the time it takes to finish all jobs. For the most basic
version of the problem no preemption of intervals is alloveed all the machines are

. 1 "
identical. A famous greedy algorithm (Graham, 1969) 5— — -competitive. The

algorithm is very simple. It assigns each job to the leasiéoamachine. A lot of work
has since on both this version and others. In load balanttiegnachines are: as well
but each job is weighted. The goal becomes to minimize thet dmesingle machine from
each set of job requests.

Buchbinder and Naor (Buchbinder & Naor, 2009) use the PH&l Schema to solve
onlinecoveringandpackingproblems. Given a sé&t to be covered witlh known subsets
of S, where each set has a weight. The set cover problem is théepradf finding a
union of minimum weight where each elementSis covered. The set packing problem
is the problem of finding the maximum weighted union of setsctvluo not intersect.
For the covering problem there is a variablefor each set. The weight of each set,

is known in advance, and the objective function is there@eci - ;. The constraints

1=1
n

Za(i,j) -x; > 1, represent the elements 6f which need to be covered. They are

6:rt1=:sented one by one. For the covering problem, the conveetétio of B can by ob-
tained by violating the constraints by a factor no more thah. They also showed that
O(log n)-competitive algorithm exists for the fractional versiohtlee problem, which
does not violate any constraints. A good overview of the erflre of the Primal-Dual
method for online scheduling is in the paper (Chrobak, 2007)

In the paper (Goldman et al., 2000) nonpreemptive onlirervial scheduling is consid-
ered. Each interval is allowed to have a delay and the weiiggdich interval is its length.
In this problem each start point can be delayed within certartain limits. The paper
considers both unit lengths intervals, intervals with tvesgible lengths and intervals of
various length. In the case of unit length, the paper shoasttie lower bound of any
deterministic algorithm is at lea8tand4 /3 for a randomized one if the delay is arbitrary.
With intervals of two lengths they givesacompetitive algorithm for the same delay re-
strictions.

Another problem islob Schedulingwhere each job has a starting time, deadline and a
fixed processing timg. Each job can be viewed as an interval of lengtivhich has to

be scheduled within a given frame. This problem is consuler¢Chrobak, Jawor, Sgall,
& Tichy’, 2007). They give a randomizeg) 3-competitive algorithm. This algorithm
is barely random meaning that that it uses two deterministic algorithms endoses
between them with probability factor @f2. They do also give a lower bound for barely
random algorithms o3 /2.

One version of onlinéV ISP is where the intervals are of equal length and preemp-
tion is allowed. The algorithndzreedy,, which schedules each interval greedily (first
fit) and preempts a job if another job with double its weightvas, was proved to be
4-competitive by Woeginger (Woeginger, 1994). This proosvased on the so-called
doubling methodFurthermore, he proved that this constant was optimal fibetarmin-
istic algorithm.

When intervals inV ISP are allowed to have variable lengths, the ralipbetween the
shortest and the longest interval becomes significantwAiig the algorithm to preempt,
Canetti and Irani (Canetti & Irani, 1995) found a lower bowfd2(1/log A/ loglog A)
and upper bound ad(log A) for randomized algorithms.

Lipton and Tomkins (Lipton & Tomkins, 1994) studied an algfun where the weight of
each interval is its length. Their problem was non-preevepind the intervals are intro-
duced at their start time. They gave a strorigjlyompetitive algorithm when the intervals
are of same length. They gave a randomized algorithm whistrasigly O ((log A)!*€)-
competitive when the intervals are allowed to be of vari@mgths. Their algorithm did
not knowA in advance. They introduced a method which we calBheket Method

1.5 Our Work

In Chapter2 we will deal with /.SP. We start with introducing a so-callegdinterval
stacking construction used to derive lower boundstfgiP. Next we demonstrate that
every deterministic or randomized algorithm has a competiatio of at leasR, when
the intervals are of unit length. Furthermore, we relatedlaeer bound to the maximum
clique size of the intersection graph, We show that every algorithm has a competitive
ratio of at leas® — 1 In the case whem = 1 we give a stronglyl.5-competitive algo-
rithm. We give a s?ronglyi-competitive algorithm forl S P when intervals are allowed
to be of two lengths] andd. In terms of input sizex, we show that every algorithm has
a competitive ratio at lea$2(n). Another important factor isj\, the ratio between the
length of the longest and the shortest interval. We showeerty deterministic algorithm
has a competitive ratio at leaQ{A). In the randomized version we show that every al-

gorithm has a competitive ratio at ledstlog A). We analyze a related problem to online
1S P with unit intervals, the onlin®@refix Interval Scheduling Problerkor this problem
we give a stronglyl .5-competitive algorithm.

In Chapter3 we analyze the case of= 2, for unit segments, we show that every ran-
domized algorithm has a competitive ratio of at leasWhen the segments are allowed
to be of two lengths] andd, we demonstrate a randomized lower bound ahd a ran-
domized upper bound &. In terms of the factor\, we give aO(log® A)-competitive
algorithm whenA is known in advance. For the case wh&ns not known, we give a
O(log*™ A)-competitive algorithm

In Chapterd we show that fo¢ 7S P with unit intervals every randomized algorithm has a
competitive ratio of2(¢).

1.6 Definitions

If s, f € Rands < f, then ahalf-open intervals the sefs, f) = {z e R|s < z < f}.
Forl = [s, f), s is thestart timeof I and f thefinish time In this paper, we do not
distinguish between half-open intervals antérvals Two intervals,/ and.J, aredisjoint
if I N J = () and theyintersector overlapif 7 N .J # (.

A t-intervalis a union oft half-open intervals. Each interval isagmentTwo t-intervals,
I andJ, are disjoint if none of their segments intersect. They dersect if at least one
segment of intersects one or more segmentsjabr vice versa. A subset oftainterval
is called at-sub-interval If ¢ = 1 the subset is calledsub-interval If the segments of a
t-interval I areiy, ..., thenl = (i, ..., 4).

A t-interval isscheduledn amachineor aresourcef each of its segments occupies the
resource from its start time to its finish time. Onceiaterval is scheduled, no preemp-
tion is allowed. At-interval isblockedif it cannot be scheduled. If one or more segments
of at-interval overlap a segment of a scheduledterval, then it is blocked. If &interval

is not scheduled, then it is lost forever. tAnterval isvirtually scheduledf it does not
occupy the resource, but blocks other intersectiigtervals from being scheduled. A
scheduled-interval that occupies the resource is scheddieettly. In online scheduling
the resource is fred a presented-interval does overlap a schedulethterval. Other-
wise,the resource is in use

A t-Interval Scheduling Probler(t/.SP) is the problem of scheduling as many disjoint
t-intervals from a given set afintervals on a single resource. Th¢eighted:-Interval

Scheduling Problen¢WW 1S P) is the problem of scheduling a set#intervals of maxi-
mum weight from a given set afintervals with weight. Note that thid S P is a special
case oftW ISP, were the weight of alt-intervals is equal. We assume thdtS P is
tW1SP where each-interval has the weight. If ¢ = 1, we call the former prob-
lem Interval Scheduling ProblerfY S P) and the latter on&Veighted Interval Scheduling
Problem(W 1S P). We also distinguish betweaetffline schedulingndonline scheduling

In offline scheduling, the set dfintervals are given in advance. In online scheduling,
thet-intervals are presented one by one. The ratio between tigesd and the shortest
segment of any-interval in a given problem is denoted By

A t-interval graphis an intersection graph where each vertex is representeddand
only onet-interval. Two vertices are adjacent if and only if thitervals they represent
intersect. At-union graphis an edgewise union d@finterval graphs over the same vertex
set, whereby they form a subclasstehterval graphs.t/SP andtW ISP are equal
to maximum independent set and weighted maximum indepeérsge¢mproblems in a-
interval graph. We say that an instance bf P inducesthe intersection grap&y. If the
max clique size of the intersection graphris= x(G), then we say that the problem has
thedepthof 7.

The weight of a-interval I is denoted byw(7), while a problem instance is denoted by
S. The set of all problem instances is denotedyWe say thatr C S is afeasible
scheduleor anoutputif no ¢-intervals ofo intersect. A feasible schedule, has a weight
w(o) =Y e, w(l). Afeasible schedule, which is an output of algoritAryis denoted by
o4 0rA(S). If R isarandomized algorithm, ther, is a random variable of (.S), the set
of all feasible schedules. The expected weight ef S is Ex [w(I)] = w({)-Pr[] € og].
The expected weight of the outputRfis Ejog] = >, sw(l)-Pr[I € og]. The feasible
set of maximum weight is called treptimal scheduledenoted by, or OPT(S). If the
t-intervals are nonweighted we can assume that ¢acterval has the weight. The
weight of a feasible schedule, is in this case the number of intervals in it. Instead of
usingw(o) we uselo|.

If p is a distribution ovetS, thensS, is arandom input instancen this case, the expected
weight of an output is calculated with respecptand the algorithm itself, both if the algo-
rithm is randomized or deterministic. The expected weidhhe output or the expected
number oft-intervals in the output is calculated both with respeqgt tmdA , E,[A(S)].

In the case of a random input instangg the weight ofo, becomes the expected weight
calculated with respect to the probability distributjanif there is a positive probability
that/ is an instance fron,, then/ € S,. Furthermore, if there is a positive probability
thato is a feasible schedule 6f, theno C S,,.

10

If I € o andJ € o,, it can be useful tassigna part ofw(I) to J if I intersects/. Let
w(I, J) denote the weight of that is assigned td. The expected weight of the fraction
of I distributed toJ is thenw(1, J) times the probability thaf is scheduled. For a given
input instancesS, the assignment of weights operif >, . w(/,J) < w(I) for all
Ies.

The performance ratio of an algorithm in this paper is mea$w@against aroblivious
adversary Such an adversary recognizes the structure of algorititmdituthe outcome
of its random decisions. The purpose of the adversary issigdes difficult input for the
algorithm as possible, difficult in the sense that the ragitnieen the optimal solution and
the expected weight of the algorithm is maximized. We sayttimadversargutputsthe
optimal schedule or that the optimal schedule is the adugssschedule.

If p is a probability distribution over all input instances @iSP and A is an online
algorithm, therA is p-competitive against if for all input instanc&s E[A(S)] > 1 - |o,|.
The competitive ratio oA is p if for input instancesS, p < sup{c|E [A(S)] > % -|o,|}.

An algorithm isstronglyp-competitivef it receives the best possible competitive ratio for
the problem. The expected weight is calculated with resjgebbth (random) decisions
of A and the distribution of the input instance.

Prefix Online Interval Scheduling Problei 7S P) is an online interval scheduling prob-
lem where the input is known in advance by the online algorith. The input consists of
intervals/y, I, ... , I, presented in this order. After presentifigwherej € {1,2,...,n},
the adversary can decide to stop the presentatiomegitdnal point;j. After stopping the
presentation, it outputs the largest set of disjoint irsés¥romC = {3, ..., I;} vs. the
intervals scheduled online b& from C. The competitive ratio for this problem is not
only calculated over all input instances, but all subinstaginduced by different terminal
points.

1.7 The Bucket Method

In this section we introduce a method for proving upper baeuiod ¢/.5S P. Recall that
tISP is a special version ofii’ 1S P where eaclt-interval I has the weight ofv(1) =

1. We call it theBucket MethodLipton & Tomkins, 1994). By using this method, an
algorithm is proven to bg-competitive. This is done by proving that for eatke o,, the
algorithm receives an expected weightigp - w(.J).

The method involves two steps:

11

1. The weight of each-interval in the problem instance is assigned “properlytcon
thet-intervals ino,.

2. Show that for eacH € o, the expected weight of and the weights assigned 1o
is atleastl/c- w(J).

For a given online algorithm , the weight of the optimal schedule is compared, piece
by piece, to the expected weight@f. These results hold equally for randomized input
instances. This is because of linearity of expectation hadridependence of the random
decisions ofA from the distribution of the input instances.

The fundamental elements of the Bucket Method are the bsieket a proper distribution
of weights into each bucket. For eaghe o,, there is one and only one bucket. Into that
bucket we put the weight of along with a fraction of weights assigned to it from other
intervals inS. Recall that the weight of € S assigned to/ € o, isw(I, J).

Definition 1.1: If S is an instance of an onlind S P, then for each/ € o, we define
bucket(J)f .J as the set:

(W)Y U{w(l,J)|I€S\o, ANINJT £D)}.

The weight of an interval is assigned properly ¥ ;. w(I,J) < w([).

Definition 1.2: Let S be an instance of an onlinéSP and/ € S. The weight off € S
is assignegbroperlyif > . w(/,J) < w([).

For the rest of this section, we demonstrate how the bucketssed to find lower bound

of the expected weight af 4. As a consequence of linearity of expectation, the expected
weight ofo4 C S is split into the expected weight of ea¢he S. The expected weight

is calculated from possible random decisionsfofand the distribution of the input in-
stance.

Theorem 1.1: If A is an online algorithm and' an instance of/SP, thenE[o4| =

2res Balw ().

If I € S andJ € o, then the expected weight af(/, J) is Exlw(l,J)] = w(I,J) -
Pr[l € o4]. Given that the weights of all € S are assigned properly, the expected
weight of I can be lower bounded by the expected weight of the assignigihise

12

Ealw)] = wI)- Prl € o4]
> > w(,J)-Pril€os)=> Ealw (1.1)

J€Eox J€Eox

If we denote the sum of the expected weight of all the elenm@iitscket(J) by Ea(w(bucket(J))),
we get the following theorem:

Theorem 1.2: Assume the weights of all € S are assigned properly. X is a random-
ized algorithm then:

> Y Ealw(bucket(J)]. (1.2)
JEO’*
Proof. Assume thatS is an instance of online/.SP and the weights of all € S are
assigned properly. For simplicity let(/, J) = w(J) forall J € o,. If A is a randomized
algorithm, then Equation 1.1 gives us:

Eloa] = Y Eaw(1))

IesS

> > Y Ea(w(I,J

IES JEO’*

= ZZEA(UJ(I J))

Jeo, I€S

= ZEA (bucket(J)).

JGO'*

Instead of discussing 4 (w(bucket(J))) as the expected weight of all the elements of
bucket(J), we simply state that it ithe expected weight of thhecket(.J). Last theorem
shows us that the expected weight of an algorithm for a giveblpm instance is lower
bounded by the sum of the expected weight of each bucket. #hoes that an algorithm
gets a fraction ofl /¢ from each bucket for any problem instance, then the algorith
p-competitive. We state this in the following corollary:

Corollary 1.1: LetA is an online algorithm and be an instance of onlind SP. If the
weights of all/ € S are assigned properly and

Eslw(bucket(J))] > = - w(J),

13

thenA is p-competitive.

An online algorithmA is proven to be-competitive fort /.S P if for any instances:
a) the weights of all € S are assigned properly into buckets.

b) and for all.J € o,

E [w(bucket(J)] >

%-w(J).

1.8 Yao’'s Minimax Theorem

Yao’s Minimax Theorer(iYao, 1977) is an important theorem for proving lower bounds
for randomized online algorithms. This theorem states tiatexpected weight of the
optimal online deterministic algorithm for an arbitrarypirt distributionp of finite size

is a lower bound on the expected weight of the optimal randethialgorithm for the
ISP.

Theorem 1.3(Yao’s Minimax Theorem) Let D be a set of deterministic algorithms and
S’ C S be a finite set of input instances ©fS P. If p is a finite probability distribution
overS’ andg a probability distribution oveD, thensS, and D, are the random variables
representing a random input instance and a randomizedtalgor~or all distribution®
over a finite setS’ C S andq overD then

max Flop] < min Elop, |.
DeD Ses’

This theorem was derived by Andrew Yao from a more generairéme, von Neumann’s
Minimax Theorem. A practical version of the rule is statedthe following corol-
lary.
Corollary 1.2: If R is a randomized algorithm with the competitive ratiopaf thenpr
is no less than the competitive ratio of the best determaaggorithm, performing against
the worst probability distribution over finite set of inpusstances. More precisely, 1?
is the set of all deterministic algorithms apdh probability distribution over a finite set
S’ C S thensup cg = inf sup cp.

R P DeD
Proof. Assume thatS, is a random input instance, whepas a probability distribution
over a finite setS’ C S. Assume furthermore thd? € D has the competitive ratia,. If
R is a randomized algorithm with the competitive ratigthen Theorem 1.3 gives that

14

sincemaxpep Elop| < Eg[og] by Yao’s Minimax Principle. Thisimplies thatip cg < sup cp
R DeD
whereR is from the set of all randomized algorithms. This giveswuscr = inf sup ¢p
R P DeD
wherep is from the set of all probability distributions over a finget of input instances.

This corollary is very practical, as it implies that the caatifive ratio of any randomized
algorithm is lower bounded by the performance of the bestrdenistic algorithm on
any distribution of a finite number of problem instances. réfme, it is possible to
take any distribution of finite instances and measure thé ge$ormance possible for
any deterministic algorithm and use the results as a lowantbdor any randomized
algorithm.

15

Chapter 2
The Interval Scheduling Problem

In this chapter we analyze onling P. In Section 2.1 we introduceinterval stacking
construction, which is a technique to prove randomized tdyend. It is used in Section
2.2 to demonstrate that any randomized algorithm has a ditimpeatio at least two for
IS P with unit lengths. We will also use this technique later wiagalyzing2/5P. We
use Yao's Minimax Theorem to derive a lower bound relatecheodepth of the online
ISP. In Section 2.3 we demonstrate that First Figisompetitive, if the intervals are of
two lengths,1 andd. We demonstrate as well that no deterministic algorithnsdustter.
In the same section we come up with a strongly randomizedmpetitive algorithm for
IS P with intervals of two lengths. In Section 2.4 we demonstthgt any algorithm has
a competitive ratio at leas?(n). In Section 2.5 we demonstrate a stronglylog A)-
competitive algorithm for S P with intervals of various lengths. We close the chapter
with Section 2.6 by giving a strongly.5-competitive algorithm for the Online Prefix
Interval Scheduling Problem.

2.1 t-Interval Stacking Construction

When deriving lower bound for deterministic algorithmsg tidversary takes advantage
of the fact that it can foresee the outcome of a determinatorithm. An oblivous
adversary can make the outcomes of a randomized algoritedigb@ble by “stacking”
them. We will spend the rest of this section demonstratirgtédcthnique.

The idea is simple. Given a randomized algoritRmeitherR must schedule a single
interval from 1y, ..., I 5 (Figure 2.1 a)), as they mutually overlap, with probabititye,
or it must schedule at least one interval with probabiligsiéhant //d. Depending on

16

the structure oR, the adversary will either design the input according taiFég2.1 a) or
b).

a) b)
Il Il
Lia I
I\/g 3 I, 3 m+1
7 7
Jo Ji

Figure 2.1: a) Input instance designed by the adversaryarptbof Theorem 2.1 iR
schedules intervals fromy, ..., I ; “too greedily”. b) How the adversary alters the in-
put instance in the proof of Theorem 2.1 if some inter¥al.., I 5 is scheduled with
“diminishing” probability.

Let R be a randomized algorithm and, I, ..., I, be set of mutually overlapping in-
tervals, presented in this order as shown in Figure 2.1. b cbonditional probability
of schedulingl; is the probability of scheduling; given that no overlapping interval has

been scheduled. We denote this probability withOn the other hand, thenconditional
i—1

probability of scheduling’; is ¢; = [[(1 - p)) - pi-

j=1
A interval d-stacking constructiors an input, such that the expected number of intervals
inoris 1+ 1/v/dvs. two in the optimal schedule.

If instead of intervals we hauveintervals with segments of same length, then this input is
called at-interval d-stacking construction

Let Iy, I,I,, (m € N), as in Figure 2.1 a), be a set of mutually overlapping iraksrv

of length/ € R, presented in order of decreasing left endpoints. Thevaté&r = ﬂ I;
=1
is aleft-oriented intersection intervallf I,,, = [s,,, f) @nd L, 1 = [fim, fm + () then

m—1
7 = ﬂ I;N I+, (Figure 2.1 b)) is aight-oriented intersection intervalWhen refer-
=1
ring to either of the two, we talk abouttersection interval
We can broaden the definition of the last paragraph,,if., 7,, aret-intervals, with seg-
ments of lengths, and the intersection graph ig-ainion graph. If the segments éfare

17

af,..,af thenZ = (1) I; is aleft-oriented intersectiotrintervalif Vj € {1,....t} : [] o
i=1 i=1
t

t

is a left-oriented intersection interval. Furthermord,,jf= U[s;”“,) I = U[LD,
i=1 =1

m—1
andvi € {1,...,t} : ﬂ a; N [f", £ + 1) is a right-oriented intersection interval, then
1=1

m—1
7 = ﬂ I; N 1,4, is aright-orientedt-interval.

i=1
Theorem 2.1: Let d be a square number. For any randomized algorfhnthere exists
an intervald-stacking construction. Furthermore, the left-orienta@iisection interval
and the right-oriented intersection intenZalas defined in the proof of this theorem are

of length/d.

Proof. First let]y, I, I5,- - - , I ;; be intervals as in Figure 2.1 a), namely,= [s;, f;)
for1 < i < +d,wheres; =d— (i —1)-Vdandf, = 2d — (i — 1) - Vd for1 <
i < v/d. Furthermore, lep; denote the conditional probability & schedulingl; and
¢; the unconditional probability, assuming that the intesvale presented in the order

1,2,...,V4d.

The adversary alters the input design, depending on thetsteuofR . Either each inter-
valfrom1, I, I3, - - - , I 5 is scheduled “too greedily” or at least one of them is schediul
with “diminishing probability” . By scheduling “too gredg’ we mean that each interval
is scheduled with unconditional probability of at leagt/d. By “diminishing” probabil-
ity we mean that at least one interval is scheduled with uditmmal probability less than

1//4d.

“Too greedily”: If R schedules each interval frofy, . . ., I 7 with unconditional proba-
bility of at least1/+/d, then the probability of scheduling some interyall < i <
Vd, is one, sinc&Y? ¢, = 1.

Settingm = V/d, the left-oriented intersection interval

Vd
T:=(1= [s1, fya).
=1

is of lengthf,; — sy =2d — (Vd— 1) - Vd —d = Vd.

In this case, the adversary designs the input instance Battwo disjoint intervals,
JyandJ,, are presented aftéy, . .., I ; (Figure 2.1 a)), both overlapping, f. ;).
SinceR schedules intervals, . . ., I ;; with probability 1, there is zero probability

18

of scheduling/; and.J;. The expected number of intervalsdf is in this case]
vs. 2 in the optimal schedule.

“Diminishing Probability”: In the second case, there exigts< v/d, such thatl; is
scheduled with unconditional probability less thgh/d. Letm be the first such
interval in the ordet, ..., v/d. In this case, the adversary takes the input design into
different direction. He presents,., = [fn, fm + d) afterI,,, as in Figure 2.1 b)
and no more intervals. The expected number intervaigibecomes a sum of three
terms: The probability of scheduling some interval..., I,,_1, the probability of
scheduling/,, and the probability of scheduling,,,. If p’ is the probability of
R scheduling some intervdi, ..., I,,, the expected number of intervalsdn is
P4 (L =) Pmy1 +1/Vd < 1+1//d, wherep,,,, is the conditional probability
of schedulind/,,,. ;. The number of intervals in the optimal schedule is, on theot
hand,2, given byI,, andl,,.,. The right-oriented intersection interval

m—1

7 .= m LN L1 = [y frne1)

i=1

is of lengthf,,_1 — firn =2d — (m —1) — 1) - Vd — (2d — (m — 1) - Vd) = V/d.
n

It is interesting to look at how Theorem 2.1 changes if thervdl I, = [d,d + /d)
is of length+/d but every other interval is of lengtth in the proof. If we assume that
d is a fourth power of an integer, then the intervalsls, ..., I 47 are altered, such that
Li=1[si,f) =[Vd—(i—1)-Vd,d+Vd— (i—1)-vd)forall 2 < i < +d. The

left-oriented intersection interval

vd
T:= ﬂf = [s1, f43) (2.1)

becomes an interval of lengthy; — sy = d+ Vd — (Vd —1) - Vd —d = Vd. If m
in Theorem 2.1 is refined such thatiif, is the first interval inl,, I, ..., I+, scheduled
with unconditional probability less thanh+ 1/+v/d (if the structure ofR is such) then
L1 = [fons fn + \/8) and the right-oriented intersection interval

m—1

T = () LN g1 = [fm,) (2.2)

i=1

19

is an interval of length
s = fu=d V= (m = 1= 1) -V = (d 4 VA~ (m = 1)- Vi) =

We state this as a corollary.

Corollary 2.1: Let d be a fourth power of an integer. For a givé P with intervals
of lengthd, except for the first interval presented of lengtid, there exists an interval
v/d-stacking construction. Furthermore, the intenakndZ’ as defined in Equations 2.1
and 2.2 are of lengty/d.

Theorem 2.1 and Corollary 2.1 can be extended f6iP.

Theorem 2.2: Assume that onlineé/.S P with segments of square lengihis given as
well as a randomized algorithR. Then there exists @interval d-stacking construction.
Furthermore, the left-oriented intersectieimterval Z and the right-oriented intersection
t-intervalZ’ have segments of lengtfd.

If we view d in Theorem 2.1 of this chapter as a relative length, thenlfargut instances,
where the intervals are of same length, and any randomiziteoalgorithmR , there
exists an input instance, such that the expected numbeteais inoy is 1 4+ 1/v/d
vs. 2 in the optimal schedule. The adversary needs no more tharearoalength three
to construct this input, since it uses an area of length ncentteain3d in the proof of
Theorem 2.1. In other words, for a given numbeg ¢, there exists an input instance,
such that the performance ratio is at Ief{sél.

2.2 ISP with Unit Intervals

This section deals witl.SP where the intervals are of unit length. We prove that no
randomized algorithm has competitive ratio less thann terms of depth, these lower
bound are2 — 1, wherer is the depth.

2.2.1 Randomized Lower Bounds

By viewing the lengthl, from last section, as a relative length we get the followtep-
rem (Yao, 1977).

Theorem 2.3: If R is a randomized algorithm fafS P with intervals of same length,
thenpr > 2.

20

Proof. Assume thaR is a randomized algorithm for onlings P with intervals of same
length andd a square number. By Theorem 2.1 there exists an input iresstaoch that
the expected number of intervalsinis 1 + 1/+/d vs. 2 from the optimal schedule. Then

2
=2

pRi>SUP1
d 7

Similar result can be obtained with Yao’s Minimax TheorenneTesults are somewhat
stronger because they relate the lower bound directly taligeie size (depth) of the
interval graph induced by theS P instance.

Theorem 2.4: If 7 is the depth of S P with unit intervals andR is an online randomized
algorithm, therpp > 2 — 1.

Proof. Considerm instances ofl S P with depth ofm as in Figure 2.1 b). For the first
instancen = 1, thenm = 2 and so on. The first instance consists only,gthe next one
of I, I, and/; (I, andI; being disjoint), then, I, I3 andl, (I3 andl, being disjoint),

. and the last one af;, I, ..., I,,, I,,.1. Assume that each instance is presented with

probability 1/m. The expected number of intervals in the schedule which dveraary
11 1
tputs is— —.2=2-—,
outputs |sm + ; - -
A deterministic algorithmpP; , which scheduleg;, outputs a schedule witk[op,] =

m-1/m=1.

A deterministic algorithmD, , which schedules one of the internvgl where2 < k <
m — 1, outputs a schedule with expected number of intervals at mos

W

1 2 &1
TR DRI

This is becausé), schedules at most two intervals when= k but otherwise at most
one.

I
N

7

A deterministic algorithmDs , which scheduled,,, and rejects all other intervals in
the cliquels, ..., I,,_1, outputs a schedule with expected number of intervals at mos

1 2
—-(m—=2)4+—=1.
m m

o 1
The competitive ratio of any randomized algorithm is therefat leasp — —. [
m

21

The theorem above gives us in particular a lower bound far%h is 1.5 if the depth is
two and12 if the depth is three.

2.2.2 Randomized Upper Bound when Depth is Two.

Algorithm 2.1: Assume an onlind S P with maximum depth of two is given. A ran-
domized algorithm is defined as follows.

1. If the interval does not overlap any previously presemégtval, schedule it with
probability2 /3 and with probabilityl /3 not.

2. Schedule interval greedily if it overlaps a previouslggented interval.

Algorithm 2.1 splits intervals into four groups, 2, 3 and4. We denote the number of
interval in groupi by n;. Because the depth is two and each interval is a unit interval
then no interval can overlap more than two intervals. A pmeekinterval which does
not overlap a previously presented interval is scheduled priobability2/3. Let these
intervals be in group as well as every other interval scheduled with probability, by
Algorithm 2.1.

If a presented interval intersects a previously presemtahial, then it can overlap one
or two previously presented intervals. Presented intemvaiich intersect only one previ-
ously presented interval are either scheduled with praibpabi/3 or 1/3, as in Figure 2.2.
Some of them are therefore in grolipLet the ones that are scheduled with probability
1/3 be in group.

When other intervals are presented, they intersect twoiquesly presented intervals.
Therefore, they must overlap intervals from either graugr group2. Intervals which
overlap two previously presented intervals from gr@ugre in group3. They are sched-
uled with probability2/3 - 2/3 = 4/9.

Intervals which intersect two previously presented iraés\but are not in group are

in group4. Since the depth is two, no interval in grodpcan intersect interval from
group3 or 4. By definition of group4, an interval in groupl must either intersect two
intervals from groupl or one from each of groups and2. This means that they are
either scheduled with probability/3 - 1/3 or 1/3 - 2/3, less thari /3. If we order them
by decreasing left endpoints, then two adjacent intervatls wespect to that order, are
seperated by chains of intervals, such as in Figure 2.3. &&tiese chains are seperated
from the rest of the input by two intervals from groB8ppresented after each interval in
the chains. Because of this, the first interval presentetienchain, does not intersect

22

any other interval, presented prior to its arrival, and erdfiore in groupl. Therefore,
nq 2 ny + 1.

I/
—_—]//

Figure 2.2: The intervals, I’ and/” are presented in this order. This picture demonstrates
how Algorithm 2.1 groups these intervalsand/” fall into group1 but [’ into group?2.

Theorem 2.5: Algorithm 2.1 is stronglys /2-competitive for onlind S P with unit inter-
vals and depth two.

Proof. Without a loss of generality, we can assume that the intdosegraph is con-

nected. This means that the input instance is a chain of nteitvials as in Figure 2.3. If

n is the number of intervals, the number of intervals in tharopt schedule is at most

n n+1
<

. We group the intervals in the input instance according éoptfobability
by which Algorithm 2.1 schedules them, according to the mhabove. Let the number
of intervals in group € {1,2, 3,4} ben,.

The expected number of intervals in the scheduele whichrklgn 2.1 outputs is there-
fore at least

2 1 1 1 4 n+1
it nat o ny > oo (gt 1)+ ng g ng - ong > :

1
3 3 9 3 3 3 9 3

This proves that the competitive ratio of Algorithm 2.BjL.

Figure 2.3: Without a loss of generality in the proof of Theor2.5, the intersection
graph of the instance is connected.

23

2.3 1SP with Intervals of Two Lengths

2.3.1 Deterministic Upper Bounds

A deterministic algorithm is bound to have bad competitatgarfor online/.SP. This is
because the adversary can determine which intervals aeglslgd and which not when
he designs the input. Therefore we do not expect a detetmiaigorithm to do better
thanFirst-Fit, which schedules intervals whenever the resource is fre@héorem 2.7
we will prove this.

Theorem 2.6: First Fit isd + 1-competitive for onlind S P with intervals of lengti and
d.

Proof. Each interval scheduled by First-Fit can overlap at mbst 1 intervals in the
optimal solution. [|

Allowing d to becomel in Theorem 2.6 we get

Corollary 2.2: First Fit is 2-competitive for online/SP where intervals are of unit
length.

Next theorem shows that no deterministic algorithm gaitebbound than First Fit.

Theorem 2.7: Any deterministic algorithm for onlinéS P with intervals of lengthi and
1 has a competitive ratio at leastt 1.

Proof. Let a deterministic algorithr® be given. For simplicity we assume that Z, .

The adversary presents- 2 disjoint intervals in the order of increasing left endpesiit,

oo Iy g1, 1412, €ach of lengthi, separated by unit space, in this order. The adversary
knows exactly which intervals are scheduledDyand which not. IfD schedules no
interval, then there is nothing left to prove.

If on the other handd schedules some interval, k& < d + 1, then the adversary alters
the input instance. The coordinate system is then shiftedad, = [0, d). The intervals
Iiit, Igvoy ooy Loy, 1440 are altered as followsfy ; = [-0.5,0.5), ;4o = [0.5,1.5), ...,
Ippr =[-05+d—k,05+d—k)andlyy = [-05+d—k+1,05+d—k+1).

Sincely. 1, Iy, ..., 1as1, 1410 OVerlapl,, D cannot accept any interval after acceptipg
ThereforeD accepts only a single interval. The optimal schedule ctsmefsall intervals
except/,. This proves that any deterministic algorithmlis- 1-competitive.

24

I

Ik—i—l Ik+2 . Id+2

Notice thatin Theorem 2.7, the intervals are presenteddarasf increasing endpoints.

The adversary in Theorem 2.7 has the property of bé&iagsparent(Halldorsson &
Szegedy, 1992).

2.3.2 Randomized Lower Bound

Theorem 2.8: Any randomized online algorithm fdrS P has a competitive ratio at least
4, where the intervals are of two possible lengthandd > 1.

Proof. Assume that a randomized algoritiinis given. Letd be a square number. By
Theorem 2.1, there exists an interdastacking construction.

Depending on the structure & the adversary can design an input instance such that,
there exists a left-oriented intersection inter¥abr a right-oriented intersection interval
7', as defined in the proof of Theorem 2.1, both of length

Left-oriented intersection interval. The probability thaR schedules some interva|,
Vd
1 < i < +/d, is one (see Figure 3.1 a)). The intersection intefval ﬂ]i is an
i=1
interval of lengthyv/d. The adversary addgd + 1 disjoint intervals to the input, all

intersectingZ. By selectingl > 9, thenpg > 4/1 = 4.

Right-oriented intersection interval. The unconditional probability of schedulidg =
[sm, fm) iS less thanl/v/d. After presentingl,,, the adversary presenfs, =

[fms fom + D).

Let p’ be the probability thaR schedules some intervgl, 1 < £ < m — 1, and
pm+1 be the conditional probability th& scheduleg,, . 1, (see Figure 1.1 b)). The
expected number of intervals i is at mosty’ + (1 — p') - pmy1 + 1/Vd as in
proof of Theorem 2.1. The expected number of intervals irogitenal schedule is
on the other hand sincel; andI;, are disjoint.

Therefore,

25

(2.3)

2 2
PR = Sup = :
@ P+ A=p) pm+1/Vd DA A=) Pmp
By the final remarks in Section 2.1, the adversary can useeandadiength three to
designd-interval stacking construction, resulting in an optimetiedule of weight
2 versusl + ¢ of og, where0 < §.

If m* = max{i € N | % .v/d > i} thenm* represents the number of such designs,
which can be constructed by the adversary, on the rightitaikintervalZ’ of length
Vvd. Assuming that the adversary decides to play of these games, the num-
ber of intervals inog on the area covered 3§/ is (1 — p')(1 — pry1)m* (1 + 6).
Here (1 — p')(1 — p,11) is the probability of scheduling none of the intervals

Ly Iy I

The competitive ratio must therefore be at least

2m*

PR = Sup
dm*6 o+ (1 = p)pmar + 1/Vd+ (1= p')(1 = par)m*(1 + 6)
9
_ , 2.4
T (24)

When comparing the inequalities 2.3 and 2.4, it is convergnsep = p’ + (1 —

P)pm+1- Then 2.3 becomegr > 2/p and 2.4 becomegr > 2/(1 — p). The

competitive ratio must be at leasin{max{2/p,2/(1 — p)}}. Notice that2/p is a
p

strictly decreasing function gf and2/(1 — p) a strictly increasing function af.
These functions intersect jn= 1/2 and because of that; > 2/(1/2) = 4.

2.3.3 Randomized Upper Bound
Algorithm 2.2: Let ISP be given, where the intervals of lengtlandd. A randomized
algorithm for this problem is defined as follows.

1. Schedule unit intervals greedily.

2. Schedule intervals of lengthdirectly with probabilityl /2 and virtually with prob-
ability 1/2, if the resource is in free.

3. Do not schedule intervals of lengthf they overlap virtually scheduled intervals.

26

In order to prove that Algorithm 2.2 i$-competitive we use the Bucket Method. The
weights are assigned in the following fashion.

1. If I € Sis a unit interval thenv(I) is assigned evenly onto eache o,. This
means that if a unit interval overlaps two intervals in theéirmpl schedule, then
weight of1/2 is assigned to each. If it overlaps only ohe o, then the weight of
1is assigned to'.

2. If I € Sis aninterval of lengtl thenw (1) is assigned onto eache o,, of length
d.

3. If I; is a unit interval, and, is of lengthd, thenI; is aterminal intervalof I, if I,
overlaps one endpoint df. Assign weights evenly from segments of lengtbnto
its terminal intervals inr,. Since one interval can have only two terminal intervals
then either the weight af /2 or 1 is distributed to a terminal interval.

Theorem 2.9: Algorithm 2.2 is4-competitive for/.S P where the intervals of length
andd.

Proof. If J € o,, the algorithm can treaf in four different ways, depending on the order
of which the intervals are presented.

1. The resource is free In this case the expected weighttaf-ket(J) is at leastl /2.

2. Interval of length 1 is presented prior to J and overlaps it In this case the
expected weight dfucket(J) is atleastl /2 - 1/2 = 1/4.

3. Jisoflength1 and an intersecting interval I of length d is presented prior to J.
If J is a terminal interval fo/ then the expected weight éficket(.J) is1/2 - 1/2.
Assume/ is not a terminal interval of. With probability 1/2, I is scheduled
virtually. Either.J is scheduled greedily or another overlapping unit inteavaves
before it, scheduled greedily. In this case the expectedtweif bucket(J) is at
leastl/2-1/2 =1/4.

4. Jis of length d and an overlapping interval of length d is presented prior to J.
In this case the expected weightlig - 1/2 = 1/4.

Since 1-4 occurs with probabilityand in each case the expected weighwofket(.J) is
at leastl /4, the algorithm isl-competitive. [

27

2.4 [SP with Parameter n

The parameter, the number of intervals in the input instance, is an intarggarameter.
It is interesting to see that the lower bound for determiniakgorithms and randomized
algorithms are the same.

2.4.1 Deterministic Lower Bound

Notice that in the proof of Theorem 2.7, there exists an impstance for each determin-
istic algorithm, such it schedules no more than a singlevate/s. d + 1 intervals in the
optimal schedule. In terms of, this ratio isn — 1. Therefore, we have the following
corollary.

Corollary 2.3: Any deterministic algorithm has a competitive ratio at teas- 1, both if
n is known by the algorithm in advance or not.

As in Theorem 2.7, this result does hold when the intervadspaiesented in order of
increasing endpoints.

It is surprising to see that any randomized algorithm hasapatitive ratio at leas(n).
In order to do so we apply the Yao’s Minimax Theorem.

2.4.2 Randomized Lower Bound

Theorem 2.10: Any online randomized algorithm fofSP has a competitive ratio at
least?, whenn is not known in advance.

Proof. Let the length of the intervals &1, ... 2!, 2°, presented in that order. The
nature of the intervals are such that each interval is lotigen the total length of the
intervals that follow.

An interval can either intersect none of the intervals tb#iotv or all of them. This is the
reason why the adversary can make each interval ,good“ at“,bAn interval isgood

if it does not overlap any other interval that follow. On thtber hand an interval ibad

if it overlaps all the intervals that follow. The adversarnakes each interval bad with
probability 1 /2 and good with probability /2. This defines a probability distribution on
input instances with intervals.

28

Assume thalR is a randomized algorithm and the adversary designs a rariciom
instance as above. R is to have a lower competitive ratio thant must accept at least
one interval.

The number of good intervals presented before a bad interymesented is a geometric
random variable, since each interval is good with probghili2 and bad with probability
1/2. The expected number of good intervals presented beforel @t is presented is
thereforeﬁ = 2. This is also true for each subsequence of intervals in tpetinThis

is because each interval is good or bad, independent of attegwals. In particular,
this holds for the intervals th& attempts to schedule. Therefore, the number of good
intervals accepted b, before it accepts a bad one, is also a geometric randonmblaria

with expected value. This means thakt[o] < 2.

On the other hand, the expected number of intervals in thenapschedule i%./2, since
the expected number of good intervalsi&. The competitive ratio oR is therefore at
leastn /4.

This shows that any randomized algorithm has a competiitie at least: /4. [

2.5 ISP with Intervals of Various Lengths

We assume thak is known in advance by the algorithms in this section. We destrate a
randomized algorithm which i9(log A)-competitive. This bound is tight for randomized
algorithms by Corollary 2.4. On the other hand every deteistic algorithm isQ(A)-
competitive.

2.5.1 Deterministic Lower Bound

The following theorem gives us lower bound in terma\ofior deterministic algorithms.

If we letd = [A] in Theorem 2.7, we get the following results.

Theorem 2.11: Any deterministic online algorithm has a competitive rattdeast2(A)
for ISP, whenA is known in advance.

Notice that the intervals in the input instance in Theorei&e ordered by increasing
left endpoints. The results do therefore hold for the versibthe problem where the
intervals are presented in increasing left endpoint order.

29

Notice furthermore that the adversary uses only intervilergth 1 and A to design the
input instance.

2.5.2 Randomized Lower Bound

Let A be the ratio between the shortest and the longest segmerdaM@&mply observe
that[log A] = O(n) in the proof of Theorem 2.10.

Corollary 2.4: Any online randomized algorithm fatS P has a competitive ratio at least
Qlog A).

2.5.3 Randomized Upper Bound

Theorem 2.12: There exists a randomized algorithm whiclUslog A)-competitive for
IS P whereA is known in advance.

Proof. Assume that the shortest intervals are of lengt@nd the longest one of length
A. We design the randomized online algoritiRmas follows. First we split the possible
intervals in the inpufS into groups(;, wherei = 1,.. ., [log A]. In the first group there
are intervals of length betwednand2. In group: the intervals are of lengt¥—! to 2°.
Letg = m. Each groug; is selected with probability/g.

Intervals from this group are then scheduled greedily btéruals from other groups
rejected automatically. First-FiEE) is 3-competitive on the selected group by Theorem
2.6. If |o,| is the size of the optimal schedule aftdPT(G;)| the size of the optimal
schedule on groug;, then|OPT(G;)| < i - |FF(G;)| and

[log AT [log A] 1 Mog A] [log A] 1
< N < Z. 3| = . . ,
o] < ; OPT(Gy)| < ; 5 [FF(G) = ; foga7 1FF (@I
[log A]
[log A [log A]
_ . E 3] = - B .
This means thaR is O(log A)-competitive. |

30

2.6 OnlinePISP

2.6.1 Different Online Scheduling Models

Online computation has been criticized to for being pesstimand unrealistic. This is
mainly because algorithms are compared to adversariesmiithhited computational ca-
pacity on a worst case input. The competitive ratio is traeeperhaps not as informative
as it should be. Two algorithms can have the same competittice Both do very badly
for a particular instance but one of them performs betteractice.

In paging (Chrobak & Noga, 1998), there are two known deteistic algorithms, LRU
and FIFO that are strongly-competitive. In practice, however, LRU performs much
better. We can consider our randomized algorithm in The@#dra. Each solution outputs
a solution with very little variance, with respect to lengitirhe algorithm is not likely to
take advantage of easy input instances. This is becauseayslrestricts it schedule to
intervals from a single group.

This has been a motivation for different online scheduliraglels. Either the algorithmis
allowed to know more or the adversary is restricted in somg Baortcomings of com-
petitive analysis and possible improvements of its deingican be found in the paper
(Koutsoupias & Papadimitriou, 2000). This is a motivatiorconsider other scheduling
models for/SP. An online P1SP is the problem where the algorithm is allowed to look
ahead into the future. To be more precise we assume thatgbetaim knows the inter-
vals in the problem as well as the order which they are pregenVhat the algorithm does
not know is the terminal point, the point where the pres@madtops and the performance
ratio is calculated.

2.6.2 Randomized Lower Bound

I I I,

I/ I// I/ I//

Figure 2.4: OnlineP1SP. The intervals are presented in the ordgrls, ..., I,,,. In this
figure, I; is scheduled with probability less th&p3 but 7; and I,, with probability at
least2/3.

Theorem 2.13: Any online algorithm has a competitive ratio of at least for online
PI1SP,when the intervals are of unit length.

31

Proof. Let R be a randomized algorithm. Consider onliRéS P where the intervals, in
Figure 2.4 are presented in the ordar; I, ... ,[,,, wherel, = [2i,2i + 1). The intervals
are divided into two groups depending on the probability aschedules them. In the
first group are those who are scheduled with less probalbiian2/3 and in the other
are those scheduled with probability at least. No more intervals are presented, which
overlap the ones in the first group. On the other hand, for éaeh [2j,2j + 1), in the
second group, two intervalg = [2j — 0.5,25 + 0.5) and [= [2j + 0.5,2j + 1.5) are
presented, as in Figure 2.4. Two intervals, which ovefla@nd no other interval in the
instance.

Let the number of intervals in the first group be The expected number of intervals in
orisatmose/3-n;+2/3-(m—ny)+1/3-2(m—mny) = 4/3-m—2/3-ny = 2/3(2m—ny).
On the other hand the optimal schedule contains 2(m —n,) = 2m —n;. This proves
that the competitive ratio dr is at leastl.5.

32

33

Chapter 3
2-Interval Scheduling Problems

In this chapter we analyzy S P. For simplicity we assume that .S P contains intervals
as well. An interval in an input instance 21 S P is a2-interval, with one segment dis-
joint from every othep-interval, in the input instance. In Section 3.1. we showt évary
algorithm has a competitive ratio at ledstwhen segments are of unit length. Secondly,
we show that for the version of the problem with deptrevery algorithm has a com-
petitive ratio at least1/6. Finding an algorithm with lower competitive ratio than $tir
Fit remains an unsolved problem. We give an algorithm witlomgetitive ratio at least
3.375. In Section 3.2. we analyze the version of the problem witnsents of length
andd > 1. We give ar8-competitive algorithm for this problem. Furthermore, weye
that any algorithm has a competitive ratio at legadh Section 3.3 we analyze the version
of the problem where the segments are of various lengths svitkeing the maximum
ratio between the shortest and the longest segment. We dérat@nan upper bound of
O(log® A) for this problem, whem\ is known in advance an@(log*™ A) whenA is not
known.

3.1 2ISP with Intervals of Unit Length

3.1.1 Randomized Lower Bounds

Theorem 3.1: Any online randomized algorithm for th&/ S P with unit lengths has a
competitive ratio at least

Proof. Assume that a randomized algoritinis given. Letd be a square number. By
Theorem 2.2 there existRainterval d-stacking construction.

34

Depending on the structure &, the adversary can design an input instance such that,
there exists a left-oriented intersection inter¥adr a right-oriented intersection interval
7', as defined in the Section 2.1, with segments of lergth

Left-oriented intersection 2-interval. The probability thaR schedules som&interval

Li=[d—(i—1)-Vd,2d— (i —1)-Vd)U[12d — (i — 1) -Vd, 14d — (i — 1) - /d),
Vd

1 < i < V/d, is one (see Figure 3.1 a)). The intersectivimterval Z = ﬂ]i is
i=1

a 2-interval with both segments of lengifid. The adversary adds four disjoint

intervals of lengthl to the input, two which intersect the left segmentZaf/; and

J>) and two which intersect the right oné;(and.J,). Thencg > 4/1 =4 > 3.

Right-oriented intersection 2-interval. Assumem is the lowest number in, ..., Vd,
such that the unconditional probability of scheduliRg= [s., fin) U [Sm, i) IS
less thari /v/d. After presenting,,,, the adversary presents ., = [f,n, fm +d) U

[fons fn + d).
Letp’ be the probability thaR schedules som&intervalsl, 1 < k <m —1, and

pm1 the conditional probability thaR scheduled,, ; (see Figure 3.1 b)). After
presenting,,,; the adversary has two options.

I) Present no more-intervals. The expected number Bintervals inoy, is then
at mosty’ + (1 — p/) - pmy1 + 1/v/d as in Theorem 2.1. The optimal weight
of the input is on the other hari] sincel,, and/,, ., are disjoint.

Therefore,

2 2
Cr = Sup =)
i P4+ 1 —=p) ppa+1/Vd PV+A=p) pmn

If we denote the probability of scheduling soRvnterval overlapping

m—1
T' = () L; U Lypq with p, then
i=1
2

P+ (1=p) Pmi =2 31

CR >

i) Use the area covered by both left and right segmeft &b present two interval
V/d-stacking constructions. The area covered by a single seigofé’ is of
length+/d. By corollary 2.2, there exists a an intersection interizatacking
construction with either a left-oriented interval or a right-oriented intersec-

35

tion interval. The expected numberintervals inoy is in this case at most
p+(1—p)-(1+1/Vd) -2+ %. This is because the expected number of
2-intervalso is the unconditional probability dR scheduling th&-interval

I,,, plus the probability of scheduling some interval overiagZ’ and the
expected number of intervals in thestacking constructions.

The optimal weight is on the other handince both intervad-stacking con-
structions include disjoint intervals. Therefore,

4 4 4
Cr = sup = = .
T p (V) 2+ = pr(T-p)2 2

(3.2)

_ 2 4 . .
Comparing 3.4 and 3.2 we get that > min(max{-, 2—}). Notice that2/p is a
p p 2—p
strictly decreasing function antl/(2 — p) is a strictly increasing one. The solution to

minp(max{%, 2%p}) = 3 since

2 4 2
-—=——— & p=2/3and— = 3. (3.3)
p p+(l-p)-2 / 2/3
Thereforecr > 3.
a) b)
L L L L
I Iy 1,1 L1
N Ly I I I I
T T 7 7
Jg Jl J4 J3

Figure 3.1: a) Input instance designed by the adversaryeptbof Theorem 3.1, in the
case of a left-oriented intersecti@rinterval. b) Input instance designed by the adversary
in the proof Theorem 3.1, in the case of a right-oriented sgetion2-interval.

36

The area covered by the input, designed by the adversaryviem g in Theorem 3.1, is
14d sincel; = [d,2d) U [10d, 11d) and every2-interval presented aftel;, overlapsl;.
Since the length is relative, the adversary can use an area of leijtb design an input
instance for2/ S P with unit segments, where the performance ratio is as cloSeais
desired. In other words, for a given numltek ¢, there exists an input instance, such
that the performance ratio is at Iea}égg.

3.1.2 Search for an Algorithm

Several randomized algorithms were tried2@5 P with unit lengths but the competitive
analyzis of them fell short. As for any online randomizedoainm our aim is prove
upper bounds, at least lower than First FitK).

Theorem 3.2: F'F' is 4-competitive.

Proof. For each scheduledinterval, there are at most four intervals in the optiméalest:
ule that intersect a-interval scheduled by F'. ThereforeF F' is 4-competitive. [

Here is an algorithm which was considered as the best caledimlahaving a competitive
ratio close ta3.

Algorithm 3.1: Let S be an instance of an onlirn® S P with unit segments. When a
2-interval is presented and:

1. the resource is free,schedule it directly with probabilit2/3 and virtually with
probability 1 /3.

2. it does intersect a virtually schedule-interval with two segments then do not
schedule it.

3. it intersects a virtually scheduled2-interval with one segment Schedule it di-
rectly with probability2/3 and virtually with probabilityl /3.

The following example shows us that the algorithm fails teeheompetitive ratic.
Example 1: Consider Figure 3.2. In this onlin® S P instance the-intervals are pre-
sented in the orderly, I, J1, Jo, J3 andJ;. The expected number @fintervals in the
schedule of Algorithm 3.1i8/3-1+1/3-2/3 + (1/3)% - 4-2/3 = 32/27. On the other
hand the optimal schedule has the weight.of he competitive ratio of the Algorithm 3.1
is therefore at least08/32 = 3.375.

37

I I

Jl J2 Jl J3 J4 J3

Figure 3.2: An input instance which proves that Algorithrhh & at leasB.375 competi-
tive. The2-intervals are presented int the order I, J1, J2, J3 andJ,.

3.1.3 2ISP with Unit Segments and Depth Two

Recall that onlin@7.S P with unit segments has depth two, if the maximum clique size i
the intersection graph induced by thvntervals is two. Lower bound for this problem is
proved with Yao’s Minimax Theorem.

Theorem 3.3: The competitive ratio of any randomized online algorithmZ6S P with
depth2 is at leastl 1/6.

Proof. With probability 2/3 instance consisting of a singieinterval, I, is presented.
With probability 1/6, instances of Figure 3.3 a) and b) are presented. A detestigini
algorithm must do the same with and/; on all instances. Deterministic algorithms can
be grouped by how they scheduleandl,. There are three cases.

1. A deterministic algorithnD; scheduled;. The expected number @fintervals in
op,i182/3+1/6+1/6 =1.

2. A deterministic algorithmD, schedules/, but not/;. The expected number of
2-intervals inop, isatmostl /6 - 1 +1/6-4 = 5/6.

3. AdeterministicD; schedules neithdr nor ;. The expected number @fintervals

inop, isatmostl/6-3+1/6-3 = 1.

However, the expected numberdintervals in the of the optimal schedule2ig3 + 1/6 -
3+1/6-4 = 11/6. By Yao’s Minimax Theorem we get that a competitive ratio of a
randomized algorithm is at leakt /6.

38

Jl J1 J2 JS J2

Figure 3.3: In Theorem 3.3 Yao's Theorem, is used with thrgrut instances. With
probability 2/3, there is only a singlé-interval /; in the instance. With probability of
1/6 instances in a) and b) are presented. a) Firgervals are presented in the order
I, J1, Jo and J;. b) The2-intervals are presented in the ordgr I, Is andl,. The
2-intervals/, and/, do have the same status in a and b.

3.2 21S5P Problem with Segments of Different Length

In this section we prove lower bound®for 2/.S P where the-intervals can have lengths
1 andd > 1. Finally we give a&8-competitive algorithm for this problem.

3.2.1 Randomized LOW%I’ Bounds

I/
/ "
Il Il
I I
m/'—1 m'’—1
/ LT/ !
Im/ : Im/+1 Im” : Im//+1
() L]
' '
7 7

Figure 3.4: This picture represents the third option in trepof Theorem 3.4. In order
to avoid a competitive ratio higher th&nthe structure oR must be such thaf’ and.7”
are right-oriented intersection intervals, in option.iii)

Theorem 3.4: Any online randomized algorithm f&7S P, where the2-intervals are of
lengthsl andd > 1, has a competitive ratio at least

Proof. Assume that a randomized algoritinis given. Letd be a fourth power of an
integer. By Theorem 2.2 there existg8-interval d-stacking construction.

39

Depending on the structure &, the adversary can design an input instance such that,
there exists a left-oriented intersecti@rinterval Z or a right-oriented intersectiop-
intervalZ’, as defined in the remarks before Theorem 2.2, both with segnoé length
V.
Left-oriented intersection 2-interval. The probability thaR schedules som&interval
vd
I;,1 < i < V/d, is one (see Figure 3.1 a)). The intersectieintervalZ = ﬂ I;is
i=1
a 2-interval with both segments of lengtfid. Therefore, the adversary adelg'd
disjoint 2-intervals with unit segments, each intersecting one segwiZ. By
selectingd > 9, thencg > 2v/d > 6.

Right-oriented intersection 2-interval. Assumem is the lowest number ini, ..., V/d,
such that the unconditional probability of scheduliRg= [s., fim) U [Sm, fim) IS
less thari /v/d. After presentingd,,,, the adversary presents_.; = [fin, fm +d) U

[fony fn +).
Letp’ be the probability thaR schedules somintervalsi,, 1 < k <m — 1, and

pm1 the conditional probability thaR scheduled,, ; (see Figure 3.1 b)). After
presenting,,,.; the adversary has three options.

I) Present no more-intervals. The expected number Bintervals inoy, is then
at mosty’ + (1 — p') - pmy1 + 1/V/d as in Theorem 2.1. The optimal weight
of the input is on the othet, sincel,,, and/,,; are disjoint.

Therefore,

2 2
Cr = sup =)
d p'+(1—p’)-pm+1+1/\/3 P+ 1=7) P
If we denote the probability of scheduling soyntervaliniy, ..., I,, 1, L, 11

with p, then
2

TP+ (1 =p) P

CR =2/p. (3.4)

i) The second option is to use the final remarks of Subse@&iaril. Notice that
segments of’ are both of length/d. Therefore, the adversary designs multi-
ple inputs oR-intervals with unit segments, using an area of constagtkeln
on the area covered by the segmentg’ofor each of these inputs, the perfor-
mance ratio i$ vs. 1 + §, where0 < . If s* = max{s € N | 1—14 Vd > s},
thens* is the number of such inputs, which can be made by the adyevsar
the area of length/d.

40

Therefore,

3s*
Ssu
20 0+ (L= P)pmps + L/d+ (L=) (1 = pmia) (L + 0)5*
3 3
_ _ , 3.5
=)0 —pne) 1-p (3:5)

If cg is no more thars, then 3.4 and 3.5 give thay3 < p < 1/2.

iii) The third option is to use Corollary 2.1 and construdeival v/d-design on
both segments af’ with intervals of lengthi. Assume first that the structure
of R is such that schedules the intervals in the design “too gsédédee proof
of Theorem 2.3) on either end. ThBnschedules one interval covering a left-
oriented intersection interval (an area of length) with probability 1 (see
proof of Theorem 2.3). In this case the adversary will preséh+ 1 disjoint
unit intervals in the area covered by the left-orientedrsgetion interval. In
this case-p can be made as large as possible by letting oco.

We can therefore assume that the structur® aé such that it schedules the
intervals with “diminishing probability” on both segmert$ 7' (see proof

of Theorem 2.1). The interval/d-design on both segments must therefore
be a right-oriented intersection interval$, and 7" as in Figure 3.4. This
means that the intervalg , and /], are scheduled both with unconditional
probability at most /v/d. Because the problem is symmetrical for both ends
of 7', we can assume th& schedules some interval i}, ..., I’ , and some
interval inIy, ..., I, with the same probability. Therefore,

(3.6)

4 4
Cr = sup = .
e pr(-p) - (1+1Vd) -2y p+(1—p) -2y

! "

ﬂ I andﬂ I are both of length at leastd (see Figure 3.4 b)) as Corollary
=1 =1

2.1 suggests.

The adversary can on the other hand design multiple inp@srdervals with
unit segments, using an area of constant lendton the area covered by the
segments of/’ and.7”. For each of these inputs, the performance rati® is
vs. 1+ 9, where0 < 6.

Therefore

41

3m* -2
B Y e 7 B G 1) W e v
3
- Taw 0

If cr is no more tharg, theny < 1/4 by 3.7, sincel/3 < p < 1/2. If we

definex = p + (1 — , then 3.6 becom > > and
z=p+(1-py ecs%_H(l_p)y_H%

4 .
T } By solving

3 3
3.7 becomesy > 1 . Thereforecp > max {—

—x x 1—x’x+6
3 4
max{ ,—1},then
z 11—z r+3
3 4 1
= & o =-and3/(1—-1/2) =6.
=z 2+l 772 /1-1/2)

We have shown that; > 6.

3.2.2 Randomized Upper Bounds

In this subsection intervals of lengtharelong and unit intervalshort

The following algorithm is named thértual Algorithm (VA) as similar algorithm in the
paper (Lipton & Tomkins, 1994).

Algorithm 3.2: Let .S be an instance of an onlirzd S P where the length of the segments
can be eithell or d. The following algorithm ishe Virtual Algorithm The algorithm
schedules a presentgdnterval with the following rules.

1. The resource is free Schedule 2-interval greedily if both segments are short.
Otherwise schedule it directly with probability’2 and virtually with probability
1/2.

2. A presented 2-interval does intersect a virtually scheduled2-interval. If the
2-intervals intersect in such a way that long segments guettieen do nothing.

3. A presented 2-interval intersects only virtually scheduled 2-intervals with a
short segment Schedule it greedily if it contains two short segments Ibaéovise
with probability 1 /2.

42

Competitive Analyzis of the Virtual Algorithm

In order to prove that Algorithm 3.2 i&-competitive with the Bucket Method we need
first to assign weights properly tb € o,.

If I ¢ 0., J € o, and! overlaps/ then:

1. w(Il,J) = 1/4 if segments of same length overlap, or if a short segment of
overlaps a long segment gt

2. J is a terminal 2-interval of /, if a long segment of overlaps an endpoint of a
short segment of . If J is a terminaR-interval of I thenw(/, J) = 1/4.

3. w(I,J) = 0if I overlaps a short segment #fwith a long segment, and is not a
terminal2-interval of /.

Notice that weight of/ ¢ o, can at most be assigned to four € o,. Therefore
> o, w(I,J) <w(I) = 1and weights are assigned properly.

The following theorem tells us thdfya [bucket(.J)] is at least; - w(J) = 1. Theorem 1.1
gives us that this is enough to prove tNdt is 8-competitive.

Theorem 3.5: The VA is 8-competitive for online/S P with segments of length and
d.

Proof. Assume thatS is an instance o275 P with segments of length andd. We use
the Bucket Method to prove this. Assume that the weights ssgyaed as in 1-3 above.

Five possibilities can occur whehe o, is presented.

1. The resource is free when/ is presented Then.J will be scheduled with the
probability at leastl /2. Therefore the expected weight bicket(J) is at least
1/2-w(J)=1/2-1=1/2

2. A 2-interval I is scheduled directly/virtually prior to arrival of J and they
intersect with segments of same lengthin this casew(1, J) = 1/4. With prob-
ability 1/2, I is scheduled directly. The expected weightotket(.J) is at least
1/2-1/4=1/8.

3. A 2-interval [is presented prior to arrival of .J and intersects a long segment
of J with a short segment ThenW (1, .J) = 1/4. Sincel is scheduled witH /2
the expected weight dfucket(J) is at leastl /2 - 1/4 = 1/8.

43

4. A 2-interval I is presented prior to the arrival of J and intersects a short seg-
ment of J with a long segment If J is a terminak-interval of I thenw(I, J) =
1/4. In this case the expected weightiaicket(.J) is at leastl /2 - 1/4 = 1/8.

If, on the other hand/ is not a terminak-interval of I, thenw(I, J) = 0. Three
scenarios can come up.

a) No 2-interval is presented in betwednand ./, or 2-intervals which intersect
a long segment of with a long segment. In this case, ev@Anterval that
comes in between and! is blocked byl. Therefore, the expected weight of
bucket(J) is at leastl /2 -1/2 = 1/4.

b) A 2-interval, I’, with two short segments is presented in betwéemd ./ and
overlaps the short segment.dfcovered by!/. Sincew(I’, J) = 1/4 and!’ is
scheduled greedily, the expected weightefket(.J)is1/2-1/4 =1/8.

c) Number of2-intervals with one segment long and the other short areepted
in between/ and.J, and intersect/ with a short segment as in Figure 3.5. As-

sume that these intervals arein number. The probability that is scheduled

. . 1 m . . .
directly is at most5 . (5 becausd is scheduled virtually with proba-
bility 1/2, and all the2-intervals presented betweédrand ./, are scheduled
virtually with probability1/2. Since the assigned weight of all these intervals

is 1/4, the expected value of their total assigned Weig%t isz <%) : i
i=1
The expected weight dficket(J) is therefore
1 (/1) 1 /1\™"\ _1 1
— . — Pp— — > _ = — .
> (;Q) 4+<2)) z25 =g W)
forallm e N.

5. 2-intervals, I’ and [” are presented beforeJ, which has two short segments,
and I’ and I” cover both segments of/ with long segments.

a) No more intervals in betweeh and J are presented d-intervals that are
blocked. In this case the expected weight@fket(J)is1/2-1/2-1=1/4
sincel’ and/” are scheduled virtually with probability/2 and./ is scheduled
greedily.

b) Two different2-intervals are presented and overlap both segmenfsvath a
short segment. The assigned weight of both of them i®1/4 and both are

44

scheduled with probability at leasf2. Because of that the expected weight
of bucket(J) is atleastl /2-1/2-1/4+1/2-1/2-1/4=1/8.

c) Greedily scheduled interval is presented in betwkand.J and overlaps both
segments of/. In this case the assigned weight.fds 1/2 (1/4 from both
segments). The expected weighthatket(.J) is thereforel /2 -1/2-1/2 =
1/8.

d) All possible2-intervals (not blocked) that are presented in betwéemd J
intersect one segment dfas in 4c). For simplicity assume that this segmentis
covered byl’. The only influencd” has on the expected weightlafcket(.J)
is to make sure/ is scheduled with probability at leasy2. This case is
therefore identical to 4c).

By 1-5,
Eyalw(bucket(J))] > 1/8 =1/8 - w(J) .
u

I

T 1 /1) 1
m:{ - }22@ ¥

1/1\™"!
J 125 (3)

Figure 3.5: Case 4c) in the proof of Theorem 3.5. Multiplmtervals are presented in
between the arrivals dfand.J, each having one long segment and interdestith a short
segment.

3.2.3 The Virtual Algorithm for Two Groups of Segments

Assume that we haveX S P where segments can either be of length frbto 2 or d to
2d. Let the first group be thshort groupand the second one theng group Segments
from the long group arédong and segments from the short group ateort For this

45

problem we can redefine the Virtual Algorithm (Algorithm B.8uch that it treats the
segments from the short group as unit segments and the stegimeen the long group as
segments of lengtti.

If I ¢ o, andJ € o,, then the following assignment of weights is proper becahse
weight of each2-interval is assigned to at most six disjoinintervals:

1. w(l,J) = 1/6 if I overlapsJ € o,, and segments from the same length group
overlap, or if a short segment éfoverlaps a long segment gt

2. J is a terminal 2-interval of /, if a long segment of overlaps an endpoint of a
short segment of.. If J is a terminaR-interval of I, thenw(1, J) = 1/6.

3. w(l,J) = 0if J overlaps a short segment éfwith a long segment, and is not a
terminal2-interval of /.

Using the proper assignment of weights above we get thedoilp Theorem.

Theorem 3.6: For an online2/S P with segments from a short group and a long group,
defined in this section, the redefinition of the Virtual Algbm in this section isl2-
competitive.

Proof. Assume thatS be an instance df/ S P with segments of length andd. Assume
that the weights are assigned as in 1-3 above. This Theorproved by using the same
proof as in Theroem 3.5, with the redefinition of long segnaemd short segment. W

We call this redefinition th&®edefined Virtual AlgorithifRVA).

3.3 2ISP with Segments of Various Lengths

In this section we examing/.S P with various lengths. An important factor here/As
the ratio between the shortest and the longest segment. kVassame without a loss
of generality that the shortest segment is of lenggémd the longest segment of length
A.

We will examine two cases, wheh is known in advance and wheh is not known in
advance.

46

3.3.1 A Known in Advance

We can group the first segments of thentervals of a given instancg into [log A — 1]
groups. In grouglog A — 1| are the segments of length strictly greater thgf2 and
less than or equal td. In group[log A — 1] — 1 are segments of length strictly greater
thanA/4 and less than or equal th/2 etc. Let the groups bey, vy, ... ,Vfga—17. IN
the same fashion we group the second segments @titervals, into the groups;, v},
Uhega_11- ThESE groups are partitions of the first and second segments

We can combine groups in last paragraph and grougimervals of input instancé
into groups. These groups are symbolized byog A — 1] x [log A — 1| matrix S;;.
The entryS,,,,, stands for a group di-intervals fromS where the first segment is i,
and the second segmentif). These grouping defines a partition of théntervals of
S.

The next theorem is a direct result of Theorem 3.6.

Theorem 3.7: TheRVA is 12-competitive for each group representeddyy,.

A simple randomized algorithn®; , takes advantage of this by picking in advance a sin-

gle group represented I8;. Each group is picked with equal probabiljiy= ﬁ
0og
and2-intervals from it scheduled, usirigVA. Since this algorithm ig2-competitive for

each group, the expected numbegahtervals inog, Is:

[log A—17] [log A—1]

Elog,] = Z Z logA - E(RVA(Sy))
j=1

ﬂogA—l] [log A—11]

1 1
log iy 12 1OFT Sl

|‘M
[

Since)_; > . |OPT(S;)| > |OPT(S)| we get:

[log A—17 [log A—1] 1

> 3 |OPT(Sy)| = |OPT(S).
1ogA 12 (logA)? 12

j=1

Algorithm R, is thereforeO(log? A)-competitive.

a7

Theorem 3.8: R, is O(log® A)-competitive for21.S P with intervals of various length,
whereA is known in advance.

3.3.2 A Not Known in Advance

If A is not known beforehand, we can still take advantage of atipawrtmentioned in
last section. We motifyr; from last section to get a new randomized algoritRin A

presente@-interval I is in the same group as a previously presertaaterval I, if the

ratio between the length of the first/second segmeiitaofd [’ is between and2. If not,

I belongs to a new group.

We can keep track of the longest segment known each tiamed schedule-intervals in

groupi with probability
1 1
Ci = C(]. + 6)((10g l)2)1+6/2 - C(]_ + 6)(10g l)2+6 Where

oo

((m)zziix<oo, if x> 1,
i=1

is theRiemann zeta function

R, changes at mostlog? A times. Because of this, we get a probability distribution on
Sij:

(log A 2 0o

) 00
1 1 1 1
; = ; AT i = i o) 2o e = /) oy = !

1=1

A 2-interval presented to the algorithm is either in a new graupelected group or a
rejected one. If it is a new group and no group has been sdldtien either its group is
chosen with probability; or not with probabilityl — p;.

The algorithmR, uses the probability; to find out with what probabilityp;, it needs to
chooseith group when &-interval from it is presented. Before @dnterval in groupi
arrives the algorithm has to refuse to schedietervals from certain number of groups.
Therefore the algorithm needs to ensure that p; - Hé;ll(l —p;). Thenp, = ¢
andp; = m Notice that) < p; < 1 does always hold. This can be shown by
induction. Fori = 1 we have thap; = ¢; < 1. If we assume that < p;, < 1 for
1=1,...,k—1we get

48

Ck Ck Ck Ck Pk—1

O < pk‘ = = = o =

i1 —p;) (Q—peo) A —p;) Q=pro1) 3= a1 1=

1 e
C(+e/2)ktte/2 Pr—1 (k‘ - 1) e/ Pr—1 DPk—1 < %
= . <

. <
I—pr—1 1—ppq — 1

1
C(1+e/2)(k—1)1Te/2 L= pr

since the functionf(z) = £ has an absolute extreme in = 7, on the interval
10, 1].

The probability ofR, choosing a single group is at leagf,:+,). After selecting a
group as aboveR, usesRVA to schedule th@-intervals in the selected group. For a
given group,S,,.,, we have:

E[RZ(Snm)]

v

Clog2+eA . E[RVA(Snm)]
BN
(log A)2+e 12

v

- E[OPT(S,ym)]- (3.8)

By 3.8,R, is O(log>™ A)-competitive.
Theorem 3.9: R, is O(log?** A)-competitive for2 S P with intervals of various length,
whereA is not known in advance.

49

Chapter 4

t-Interval Scheduling Problems

4.1 Randomized Lower Bound

Some graphs have the property that they can be representetebyals, such that for
each vertex there is one and only one half open interval oretlidine, and two intervals
intersect if and only if there is an edge between their vestiEvery complete graphi,,
onn vertices can be represented by intervals by assigning the Bderval to each vertex
in K,,. Not all graphs can be represented by intervals. The simgless of such graphs
are cycles(,,. However they can be represented2iyntervals. This is the motive to the
following definition.

Definition 4.1: A t-interval representatiof a graphG is an assignment dfintervals
to each vertex ofr such that:

a) for each vertex € G there is one and only orteinterval.

b) for all edges in&, {v,w} € G if and only if thet-interval assigned to intersects the
t-interval assigned ta.

A graph iss-interval representablef there exists an integes > 0, such thatG has
a s-interval representation. If every segment of thetervals in the representation is
a unit interval, the graph is-unit-interval representabland the representatiofzunit-
interval representation If s = 1 then we say that the graph iisterval representable
Interval numbeiof a graphd, i(G), is the smallest integer> 0 such thati is s-interval
representable.

For each grapld- there exists & > 0 such that is s-interval representable. Griggs and
West (Griggs & West, 1980) give lower bound @t7) in terms of number of vertices.

50

They show that for any grapi, i(G)) < [%]. Therefore, every grapfi with n vertices is
n-interval representable. This can can be exploited in aezlatet-interval scheduling
to Online Independent Set ProbléMm /S P)

An OISP is the problem of finding maximum independent set in a grapheres the
vertices are presented one at a time along with edges toopsyipresented vertices.
Recall that Theorem 2.10 gives us that the competitive i@tiany online randomized
algorithm is at leas} for online I.SP. By definition of 1.5 P, these lower bound hold for
OISP as well, since interval graphs are a special class of graphis fact is a key to
proving lower bound fot/.S P with unit segments.

Corollary 4.1: Any randomized algorithm foD /.S P has a competitive ratio at least4.

In order to relate) ISP to onlinet/SP it is essential to show, tha?/SP can be con-
verted bit by bit tot/.SP.

Definition 4.2: A OIS P with verticesvy, ..., v,, presented in this order can be converted
adaptivelyto t1S P if

a) each vertexy, is represented by one and only oxterval, /;, constructed and
scheduled online by some onlinéS P algorithm, beforev;,, is presented. No
t-interval can be rescheduled or reconstructed.

b) I, ..., I, is at-interval representation of the induced subgraph.., v;.

Theorem 4.1: EveryO1S P can be converted adaptively tm&S P with unit segments.

Proof. Assume we have @175 P with n verticesuvy, ..., v,, presented in this order. Let
A be an online algorithm. We show how each vertexcan be represented with an
interval with unit segments; = (i1, ..., /). Thesen-intervals are constructed based only
on previously presented vertices. etc.

We definen intervals, such thaf, = [(j — 1)n+ (k—1),(j — 1)n+ k) forall 1 <k <n
andl < j <n. Thismeans thaf; = [0,1) U [1,2)U---U[n—1,n), L =[n,n+1)U
[n+1,n+2)U---U[2n — 1,2n). All these intervals are disjoint.

As the vertex, is presented; is altered, such that {fv;, v, } € Gforl <k < j—1, then
I; is redefined, such that = i%. After I; has been altered and befarg, is presented,
A makes a decicion whether to schedfjl@r not.

Each vertex; is then represented by one and only dhand there is an edge betwegn
andvy, if and only if I; and/, intersect.

This proves that ead /S P can be converted adaptivelytd .S P.

51

Theorem 4.2: Any online randomized algorithm faér S P with unit segments has a com-
petitive ratio at least.

Proof. We prove this theorem by contradiction. Assume that theist®an algorithm
A with competitive ratio less thah for tISP. If S is an instance 0©ISP with n
vertices, then it can be converted adaptivelynicdd P by Theorem 4.1. This problem
can be solved with4, such that the performance ratio is less thad. If we output the
vertices represented by theintervals ino4, thenS has been solved with performance
ratio less tham /4. This is a contradiction to Corollary 4.1. [

52

Bibliography

Agnarsson, G., & Greenlaw, R. (200@raph theory modelling, applications and algo-
rithms Upper Saddle River, New Jersey: Prentice Hall.

Bafna, V., Narayanan, B. O., & Ravi, R. (1995). Non-overiagplocal alignments
(weighted independent sets of axis parallel rectanglesyvdds '95: Proceedings
of the 4th international workshop on algorithms and dataistures(pp. 506-517).
London, UK: Springer-Verlag.

Bar-Noy, A., Canetti, R., Kutten, S., Mansour, Y., & Schieli2 (1995). Bandwidth al-
location with preemption. I$TOC '95: Proceedings of the twenty-seventh annual
ACM symposium on Theory of computifpp. 616—625). New York, NY, USA:
ACM.

Bar-Yehuda, R., & Even, S. (1985). Local-ratio theorem fopraximating the weighted
vertex cover problemAnnals of Discrete Mathematic5, 27—46.

Bar-Yehuda, R., Halldérsson, M. M., Naor, J. S., Shachnaj,&HShapira, I. (2002).
Scheduling split intervals. ISODA '02: Proceedings of the thirteenth annual
ACM-SIAM symposium on Discrete algorithpp. 732—741). Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics.

Bar-Yehuda, R., & Rawitz, D. (2001). On the equivalence leetvthe primal-dual
schema and the local-ratio techniqueARRPROX '01: Proceedings of the 4th Inter-
national Workshop on Approximation Algorithms for Combanel Optimization
Problems (pp. 24—-35). London, UK: Springer-Verlag.

Bar-Yehuda, R., & Rawitz, D. (2006). Using fractional prirdaal to schedule split
intervals with demanddDiscrete Optimization3(4), 275 - 287.

Buchbinder, N., & Naor, J. S. (2009). Online primal-dualaithms for covering and
packing.Math. Oper. Res34(2), 270-286.

Canetti, R., & Irani, S. (1995). Bounding the power of pre@iopin randomized schedul-
ing. INnSTOC '95: Proceedings of the Twenty-Seventh Annual ACM &jiarp on

53

Theory of Computingpp. 606—615). New York, NY, USA: ACM.
Chrobak, M. (2007). Competitiveness via primal-dugiGACT News38(3), 100-105.

Chrobak, M., Jawor, W., Sgall, J., & Tichy", T. (2007). Omlischeduling of equal-length
jobs: Randomization and restarts hefdAM J. Comput.36(6), 1709-1728.

Chrobak, M., & Noga, J. (1998). LRU is better than FIFO.90®DA '98: Proceedings
of the Ninth Annual ACM-SIAM Symposium on Discrete Algorgfpp. 78-81).
Philadelphia, PA, USA: Society for Industrial and Appliecdatiematics.

Crama, Y., & Spieksma, F. (2008). Scheduling jobs of equajtle: complexity, facets
and computational resultdathematical programming2(4), 207-277.

Goldman, S. A., Parwatikar, J., & Suri, S. (2000). On-linkextuling with hard deadlines.
Journal of Algorithms34, 370—389.

Graham, R. L. (1969). Bounds on multiprocessing timing aalges. SIAM Journal on
Applied Mathematigsl7, 416—429.

Griggs, J. R., & West, D. B. (1980). Extremal values of themal number of a graph.
SIAM Journal on Algebraic and Discrete Method§l), 1-7.

Halldérsson, M. M., & Szegedy, M. (1992). Lower bounds forlme graph coloring.
In SODA '92: Proceedings of the Third Annual ACM-SIAM Sympuosin Dis-
crete Algorithmgpp. 211-216). Philadelphia, PA, USA: Society for Industand
Applied Mathematics.

Hocbaum, D. S. (Ed.). (1997RApproximation algorithms for np-hard problem®0 Park
Plaza, Boston: PWS Publishing company.

Karlsson, R. K. (2005).Strip graphs and related scheduling problemdnpublished
master’s thesis, University of Iceland, Reykjavik, Icalan

Keil, J. (1992). On the complexity of scheduling tasks withcdete starting times.
Operations research letteré2(5), 293-295.

Kleinberg, J., & Tardos, E. (2005plgorithm design Addison Wesley.

Koutsoupias, E., & Papadimitriou, C. H. (2000). Beyond cetfitjve analysis.SIAM J.
Comput, 30(1), 300-317.

Lipton, R. J., & Tomkins, A. (1994). Online interval scheithgl. In SODA '94 Pro-
ceedings of the Fifth Annual ACM-SIAM Symposium on Disdkégerithms(pp.
302-311).

Vialette, S. (2004). On the computational complexity onBerval pattern matching
problems.Theor. Comput. SGi3122-3), 223-249.

Woeginger, G. J. (1994). On-line scheduling of jobs withdis¢art and end time3.heor.
Comput. Scj.130(1), 5-16.

Yao, A. C.-C. (1977). Probabilistic computations: Towardrafied measure of com-
plexity. In Sfcs '77: Proceedings of the 18th annual symposium on fdiordaof
computer sciencfpp. 222—-227). Washington, DC, USA: IEEE Computer Society.

REYKJAVIK UNIVERSITY

HASKOLINN | REYKJAVIK

Department of Computer Science
Reykjavik University
Ofanleiti 2, IS-103 Reykjavik, Iceland
Tel: +354 599 6200
Fax: +354 599 6201
http://www.ru.is

